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Aquaporin proteins (AQPs) have been shown to be involved in abiotic stress responses. However,
the precise role of AQPs, especially in response to cold stress, is not understood in wheat (Triticum
aestivum). In the present study, quantitative real time polymerase chain reaction (qRT-PCR) analysis
revealed that TaAQP7 expression increased in leaves, but decreased in roots after cold treatment.
Expression of TaAQP7 in tobacco plants resulted in increased root elongation and better growth
compared with wild-type (WT) plants under cold stress. Moreover, after cold treatment, the transgenic
tobacco lines exhibited higher chlorophyll contents, lower levels of malondialdehyde (MDA), and
less ion leakage (IL) than WT plants. Thus, expression of TaAQP7 enhanced cold stress tolerance in
transgenic tobacco. Taken together, our results suggest that TaAQP7 confers cold stress tolerance by
relieving membrane damage in the transgenic plants.
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Introduction

Low temperature inhibits water uptake by roots.
Aquaporin proteins (AQPs) are known to transport wa-
ter and other small molecules through biomembranes.
In rice, the decrease in root hydraulic conductivity un-
der cold stress is related to the function of aquapor-
ins (Ahamed et al., 2012). In maize and cucumber,
the decrease in root hydraulic conductivity caused by
cold stress may be the result of aquaporin dysfunc-
tion caused by oxidation or intercellular accumulation
of hydrogen peroxide (Lee et al., 2004, 2005; Aroca
et al., 2005). Plant AQPs can be classified into five sub-
families: plasma membrane intrinsic proteins (PIPs);
tonoplast membrane intrinsic proteins (TIPs); nodulin
26-like intrinsic proteins (NIPs); X (for unrecognized)
intrinsic proteins (XIPs); and small basic intrinsic pro-
teins (SIPs) (Weaver et al., 1991; Kammerloher et al.,
1994; Chaumont et al., 2001; Johanson et al., 2001;
Johanson and Gustavsson, 2002; Danielson and Jo-
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hanson, 2008). PIPs are further divided into the sub-
families PIP1 and PIP2 (Schäffner, 1998; Chaumont et
al., 2000). Many AQP genes have been identified in
a number of plant species (Sade et al., 2010) including
35 in Arabidopsis (Johanson et al., 2001), 36 in maize
(Chaumont et al., 2001), and 33 in rice (Sakurai et al.,
2005).

Activities of AQPs can be directly regulated by
phosphorylation, which may be induced in response
to a number of stimuli, including abiotic stresses (Jo-
hansson et al., 2000; North and Nobel, 2000; Horie
et al., 2011), plant hormones (Bienert et al., 2006), and
light (Chaumont et al., 2005; Kaldenhoff and Fischer,
2006). Cold stress affects the expression of AQP genes.
AtPIP1;1, AtPIP1;2, AtPIP1;5, AtPIP2;2, AtPIP2;3,
AtPIP2;4, and AtPIP2;7 were found to be downregu-
lated, while AtPIP2;5 and AtPIP2;6 were upregulated
in cold-stressed roots and aerial parts of Arabidop-
sis thaliana (Jang et al., 2004). In addition, OsPIP2;7
was generally upregulated in roots but downregulated
in shoots of rice at the early stage of chilling stress
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(Li et al., 2008). These results indicate that different
members of the AQP family respond differentially to
cold stress. Thus, mediation of cold stress responses
by AQPs appears to be complex.

As a major crop of world-wide importance, wheat
(Triticum aestivum) production is severely constrained
by drought, salinity, extreme temperature, and other
environmental stress factors. A better understanding
of the mechanisms employed by wheat plants to tol-
erate abiotic stresses will be helpful for wheat genetic
improvement. To date, more than 35 AQP genes have
been identified in the wheat genome. Although some
common wheat and durum wheat AQP genes such as
TaNIP, TdPIP1;1, TdPIP2;1, and TaAQP8 have been
found to be involved in drought or salt stress tol-
erance (Forrest and Bhave, 2008; Gao et al., 2010;
Ayadi et al., 2011; Hu et al., 2012), their role in cold
tolerance has not been studied. Recently, we have iso-
lated the cDNA of 1019 bp corresponding to the wheat
gene TaAQP7 (GenBank HQ650109) that encodes
a novel PIP2 protein of 286 amino acids, and have
characterized the function of the protein in transgenic
tobacco during drought stress (Zhou et al., 2012). In
the present study, we found that expression of TaAQP7
confers cold stress tolerance to tobacco plants by pro-
tecting the membrane integrity in transgenic tobacco.

Materials and Methods

Plant materials and treatment

The seeds of wheat (Triticum aestivum L. cv. Chi-
nese Spring) were surface-disinfected and germinated
as described previously (Zhou et al., 2012). For cold
treatment, the 10-d-old seedlings were transferred into
Petri dishes and maintained at 4 ◦C for different time
periods (0, 1, 2, 6, 12, 24 h). Leaf and root samples
from both treated and control plants were subsequently
frozen in liquid nitrogen and stored at −80 ◦C for ex-
traction of total RNA.

Quantitative real time polymerase chain reaction
(qRT-PCR) analysis

The expression of TaAQP7 in wheat seedlings af-
ter cold treatment was examined by qRT-PCR in a de-
tection system (MJ Research Opticon 2; BioRad, Fos-
ter City, CA, USA) according to the methods previ-
ously described (Zhou et al., 2012). In all qRT-PCR
experiments, a relative quantification method was em-
ployed to assess relative expression of the tested genes

with three replicates of each condition (Livak and
Schmittgen, 2001).

Low-temperature stress tolerance assays of the
transgenic and wild-type (WT) plants

The recombinant plasmid pCAMBIA1304-TaAQP7-
GFP under the control of the CaMV 35S promoter
was transformed into tobacco, and the plants of the T2
generations of three independent transgenic tobacco
lines (OE6, OE9, and OE13) expressing TaAQP7 were
obtained, as we described previously (Zhou et al.,
2012). Among the transgenic lines, OE6 and OE9
had higher TaAQP7 expression levels. The transgenic
lines and WT plants were cultured in Murashige and
Skoog (MS) medium under a 16-h light/8-h dark
cycle at 25 ◦C for one week. Then the seedlings
were transferred to growth chambers of 4 ◦C for 2 d
followed by recovery at 25 ◦C for one week, and then
the whole seedlings were sampled to measure the
root length. Furthermore, transgenic lines and WT
plants were cultured in MS medium under a 16-h
light/8-h dark cycle at 25 ◦C for one week and then
transplanted to containers filled with a mixture of soil
and sand (3:1) where they were regularly watered.
Six-week-old tobacco plants similar in growth status
were exposed to −20 ◦C for 1.5 h, then returned to
room temperature for 10 d of recovery, after which
photographs were taken of them. After 2 d of recovery
from the −20-◦C treatment, leaves were sampled
for analysis of the chlorophyll and malondialdehyde
(MDA) contents, as well as of the ion leakage (IL).
The same measurements were taken on seedlings
exposed to 4 ◦C for two weeks.

Measurement of chlorophyll and MDA contents, and
IL

Chlorophyll content was extracted using 95%
ethanol and analysed by UV spectrophotometry as de-
scribed in Yang et al. (2009). MDA content was mea-
sured according to Heath and Packer (1968). IL was
determined as described by Jiang and Zhang (2001).

Results

Cold treatment differentially influences TaAQP7
expression in leaves and roots of wheat seedlings

To investigate the response of TaAQP7 to cold
stress, wheat seedlings were incubated in a growth
chamber at 4 ◦C or 25 ◦C, and qRT-PCR was per-
formed with leaf and root samples. A no-treatment
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Fig. 1. TaAQP7 transcript levels in wheat seedlings under
cold stress. (A) Expression of TaAQP7 in leaves of wheat
seedlings under cold stress. Ten-day-old wheat seedlings
were subjected to 24 h of cold (4 ◦C) treatment, and leaves
were sampled for qRT-PCR analysis of TaAQP7 transcripts.
(B) Expression of TaAQP7 in roots of wheat seedlings under
cold stress. Wheat seedlings were treated as in (A), and root
TaAQP7 transcript levels were determined. Untreated con-
trols were included for each time point. Data are means±SD
of four replicates.

control was always included. TaAQP7 expression in-
creased in leaves (Fig. 1A), but decreased in roots in
response to cold treatment (Fig. 1B) compared with the
control plants at the same time points. Previously, Os-
PIP2;7 had been reported to be generally upregulated
in roots, but downregulated in shoots of rice plants at
the early stage of chilling stress (Li et al., 2008). These
results imply that the AQPs-mediated cold stress re-
sponse may be a complex process.

Expression of TaAQP7 improves tolerance of
transgenic tobacco plants to cold stress

T2 generations of three independent transgenic
tobacco lines (OE6, OE9, and OE13) expressing
TaAQP7 were obtained in our previous study (Zhou
et al., 2012). Among the transgenic lines, OE6 and
OE9 had higher TaAQP7 expression levels than OE13.
One-week-old tobacco seedlings were transferred to

Fig. 2. Effect of cold treatment on TaAQP7-expressing to-
bacco plants during early seedling development. One-week-
old transgenic tobacco seedlings were subjected to low tem-
perature (4 ◦C) for 2 d, followed by recovery at 25 ◦C for
one week. Plants growing at 25 ◦C were used as control. (A)
Photographs of seedlings; (B) root length. Data are means
±SD of four replicates. Similar results were observed in
three independent transgenic plants, compared to the respec-
tive controls, with ∗p < 0.05 and ∗∗p < 0.01.

a growth chamber of 4 ◦C for 2 d. After recovery
for one week at 25 ◦C, root length was measured.
Statistical analysis revealed that, under cold stress,
root growth of the transgenic lines was suppressed to
a lesser extent than that of WT plants (Figs. 2A, B),
while no obvious difference was observed between the
transgenic plants and the WT plants in MS medium.

Six-week-old transgenic lines and WT plants were
exposed to −20 ◦C for 1.5 h, then the plants were al-
lowed to recover at 25 ◦C for 10 d, and their pheno-
types were observed. After this extreme cold stress, the
WT plants died, while the transgenic plants survived
despite having some wilted leaves (Fig. 3). These re-
sults suggest that expression of TaAQP7 could improve
the tobacco plants’ tolerance to cold stress.

Expression of TaAQP7 in transgenic tobacco plants
improves chlorophyll content and decreases MDA
content and IL under cold stress

Enhanced cold tolerance in the transgenic lines
compared with WT plants led us to look for differences
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Fig. 3. Response of the transgenic lines OE6, OE9, and OE13
and WT plants to extreme cold shock. Six-week-old tobacco
plants were exposed to −20 ◦C for 1.5 h, then returned to
25 ◦C for 10 d, and photographs were taken at this time.

Fig. 4. Leaf contents of chlorophyll and MDA, as well as IL
in the transgenic lines (OE6, OE9, OE13) and WT plants un-
der cold stress. Six-week-old tobacco plants were exposed to
either −20 ◦C for 1.5 h followed by 2 d recovery at 25 ◦C,
or 4 ◦C for two weeks. Plants growing at 25 ◦C were used
as controls. Data are means ±SD of four replicates, com-
pared to respective controls, with ∗p < 0.05 and ∗∗p < 0.01
(g corresponds to fresh weight).

in physiological parameters known to be affected by
cold stress. The transgenic lines had a higher chloro-
phyll content than WT plants after the −20-◦C treat-
ment, but no difference was seen after the 4-◦C treat-
ment (Fig. 4). IL, an important indicator of membrane
injury, was higher in WT plants than in the transgenic

plants after both the 4-◦C and −20-◦C treatment, sug-
gesting that the transgenic plants suffered less mem-
brane damage than WT plants (Fig. 4). MDA is the
product of lipid peroxidation caused by reactive oxy-
gen species (ROS), and is in general used to evaluate
ROS-mediated injuries in plants (Moore and Roberts,
1998). MDA contents displayed a pattern similar to
those of IL and were lower in the transgenic lines rela-
tive to WT plants after cold treatment (Fig. 4). These
physiological parameters confirm that the transgenic
lines are more tolerant to cold stress.

Discussion

Cold stress damages plants in many ways. For in-
stance, extracellular freezing and thawing cause cell
shrinkage and expansion, leading to plant tissue in-
jury (Peng et al., 2008). In addition, cold stress can
impact plant-water relations by directly/indirectly in-
ducing desiccation in plant cells (including chilling-
induced inhibition of root hydraulic conductivity and
extracellular freezing-induced cellular dehydration)
(Sanders and Markhart, 2001; Peng et al., 2008). AQPs
have been shown to respond to various environmental
stresses, including cold stress (Aroca et al., 2005; Guo
et al., 2006; Yu et al., 2006; Cui et al., 2008; Mahdieh
et al., 2008; Peng et al., 2008; Gao et al., 2010; Sade
et al., 2010), and this may be directly related to their
function in the transport of water across membranes.

AQPs have been widely reported to be either neg-
atively or positively affected by cold stress. Overex-
pression of PIP1;4 and PIP2;5 led to the enhancement
of water uptake upon cold stress in A. thaliana (Jang
et al., 2007). Overexpression of OsPIP2;7 improved
the transpiration rate and tolerance to low temperature
in rice (Li et al., 2008). Expression of RcPIP2s and
Panax ginseng PIP1 in A. thaliana enhanced the freez-
ing tolerance and cold acclimation of the transgenic
plants, which was presumably due to their increased
capacity to resist freeze desiccation (Peng et al., 2007,
2008). However, downregulation of PIP transcripts in
Arabidopsis and rice during cold acclimation was ben-
eficial in preventing cellular dehydration and thereby
increasing freezing tolerance (Jang et al., 2004; Yu
et al., 2006; Heinen et al., 2009). Thus, the differential
performance of AQPs under cold stress might be re-
lated to different cold response mechanisms. Notably,
although transcript levels of some PIPs were found to
increase significantly in wheat leaves after cold treat-
ment (Herman et al., 2006), no function of wheat AQPs
in cold stress tolerance has been reported.
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Here, we report that TaAQP7, a wheat aquaporin
gene, is a positive regulator in cold tolerance. Changes
in the expression of TaAQP7 in response to low tem-
perature suggested that TaAQP7 was involved in the
cold stress response. The functional investigation of
TaAQP7 under chilling (4 ◦C) and freezing (−20 ◦C)
stress was carried out with transgenic tobacco. The
transgenic lines exhibited longer roots under chilling
stress, a better growth status after freezing treatment,
as well as a higher chlorophyll content, a lower MDA
content, and reduced IL, as compared to WT plants. IL
is an important indicator of membrane injury. MDA is
the product of lipid peroxidation caused by ROS and
is generally used to assess ROS-mediated injuries in
plants (Moore and Roberts, 1998). The lower MDA
content and reduced IL suggest that the transgenic
lines suffered less membrane damage after chilling
and freezing treatments, indicating that expression of
TaAQP7 could help plants to preserve membrane in-
tegrity under cold stress. These results are consistent
with previous reports that OsPIP2;7-expressing rice

plants exhibited increased cold stress tolerance by re-
ducing membrane injury (Li et al., 2008).

In conclusion, TaAQP7, a wheat aquaporin gene,
was characterized as a positive regulator of cold toler-
ance. Expression of TaAQP7 in tobacco conferred tol-
erance to cold stress through relieving membrane dam-
age. Future work will put emphasis on the detailed reg-
ulation mechanism of TaAQP7 involved in cold stress.
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