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Chemotherapy is one of the main strategies for reducing the rate of cancer progression or, in some
cases, curing the tumour. Since a great number of chemotherapeutic agents are cytotoxic compounds,
i. e. similarly affect normal and neoplastic cells, application of antitumour drugs is preferred in cancer
management and therapy. In this study, the cytotoxicity of diversin was evaluated in 5637 cells, a tran-
sitional cell carcinoma (TCC) subline (bladder carcinoma), and normal human fibroblast cells using
the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Chromatin con-
densation and DNA damage induced by diversin were also determined by means of 4′,6-diamidino-2-
phenylindole (DAPI) staining and the comet assay, respectively. In addition, the mechanism of action
of diversin was studied in more detail by the caspase 3 colourimetric assay and flow cytometry-based
cell-cycle analyses (PI staining). Our results revealed that diversin has considerable cytotoxic effects
in 5637 cells, but not on HFF3 (human foreskin fibroblast) and HDF1 (human dermal fibroblast) cells.
Further studies showed that diversin exerts its cytotoxicity via induction of chromatin condensation,
DNA damage, and activation of caspase 3 in 5637 cells. In addition, flow cytometric analyses revealed
that 5637 cells are mostly arrested at the G2 phase of the cell cycle in the presence of diversin.
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Introduction

Cancer, as a major cause of death worldwide, has
been considered a challenging clinical issue for many
years. Among several strategies, cancer chemopreven-
tion and therapy is one of the most effective and conve-
nient methods in cancer management. In recent years,
a vast number of synthetic chemicals and biological
compounds have been studied for their cytotoxic and
anticancer effects in vitro.

Bladder cancer, which is the most prevalent can-
cer of the genitourinary system (Vikram et al., 2009),
is the 4th and 7th most common cancer in men and
women, respectively. It can be grouped into different

types based on the nature of the initiating cells, the
carcinogenesis process, or the extent of the tissues en-
gaged in tumour formation, among which the transi-
tional cell carcinoma (TCC) represents the most com-
mon form of these abnormalities.

Apoptosis and necrosis are two distinct forms of
cell death in mammals. Unlike necrosis, which can
invade large populations of cells, apoptosis normally
triggers the death process only in a single cell. Further-
more, necrosis is an accidental cell death that occurs as
a result of severe physical or chemical changes (Kerr
et al., 1972, 1994; Leist and Jäättelä, 2001; Saraste
and Pulkki, 2000), while apoptosis not only occurs
during natural fetal development (Fadeel et al., 1999;
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Lockshin and Zakeri, 2001; Lowe and Lin, 2000), but
can be also induced by various stimulators, including
drug treatment and/or other stress conditions (Gho-
brial et al., 2005). Since misregulation of apoptosis
(Ghobrial et al., 2005), including both excessive or re-
duced cell death, normally leads to various human dis-
eases such as cancer (Landowski et al., 1997; Reed,
2002), apoptosis-based therapies are considered new
biological approaches for the treatment of such abnor-
malities.

Approximately three out of four anticancer drugs
are obtained from natural products (Newman and
Cragg, 2007). In terms of chemical properties, they
fall into different chemical classes, including sesqui-
and diterpenes, coumarins, and alkaloids. For instance,
the genus Ferula is a rich source of secondary metabo-
lites including coumarin and sesquiterpene derivatives.
Various Ferula species are widely consumed as food
in Iranian folk medicine (Barthomeuf et al., 2008).
We showed previously that diversin, a terpenyloxy
coumarin from Ferula diversivittata, has promising
chemopreventive effects as determined by two stan-
dard tests including the in vitro Epstein-Barr virus
early antigen (EBV-EA) inhibition and in vivo two-
stage mouse skin carcinogenesis assays (Iranshahi
et al., 2010).

The aim of the present study was to investigate
the cytotoxicity and anticancer properties of diversin
in cancerous 5637 and normal – HFF3 (human
foreskin fibroblast) and HDF1 (human dermal fibro-
blast) – cell lines using the 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assay. A more detailed mechanistic description
of diversin action was achieved by 4′,6-diamidino-
2-phenylindole (DAPI) staining, the alkaline comet
method, and the assay of caspase 3 activity. More-
over, the 5637 cell-cycle distribution pattern, after
diversin treatment, was also investigated through flow
cytometric analyses of PI-stained cells.

Materials and Methods

Cell culture

5637 cells were purchased from the Pasteur Institute
(Tehran, Iran), and HDF1 (human dermal fibroblast)
and HFF3 (human foreskin fibroblast) cells were gen-
erously provided by the Royan Institute, (Tehran, Iran).

Low- and high-glucose Dulbecco’s modified Ea-
gle’s media (DMEM; Gibco, Paisley, UK), supple-

mented with 10−15% (v/v) heat-inactivated fetal
bovine serum (FBS; Gibco), were used for cancerous
and normal human cell types, respectively. Cells were
grown at 37 ◦C in a humidified atmosphere of 5% (for
5637 cells) and 10% (for normal cell lines) CO2 in air.
The medium was changed every 24 – 48 h, and all cell
lines were subcultured using 0.25% trypsin/EDTA
(1 mM) (Gibco) when required.

Extraction of diversin

Diversin [7-(3′,7′-dimethyl-5′-oxoocta-3′,6′-dienyl-
oxy)coumarin, C19H20O4, Mr 312; Fig. 1] was iso-
lated from Ferula diversivittata as previously reported
(Iranshahi et al., 2010). The structure of the com-
pound was confirmed by 1D and 2D NMR analyses
(Iranshahi et al., 2008), and its purity was checked
by thin-layer chromatography (TLC) (Iranshahi et al.,
2010) and high-performance liquid chromatography
(HPLC).

MTT cell viability assay

To measure antiproliferative effects of diversin,
the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-te-
trazolium bromide (MTT) (Sigma Aldrich, Munich,
Germany) assay (Mosmann, 1983) was used. Briefly,
after seeding the cells at a density of 8000− 10,000
cells/well on a 96-well plate, various concentrations
of diversin and their equivalent dimethylsulfoxide
(DMSO) controls were used in triplicate for the treat-
ment of 5637, HFF3, and HDF1 cells. After 24, 48, and
72 h of incubation, 20 µL MTT solution were added
per well, and plates were kept at 37 ◦C for another 4 h.
After replacing the contents of each well with 150 µL
DMSO, the optical densities (OD) were recorded by
an ELISA reader (Awareness, Palm City, FL, USA) at
495 nm. The IC50 values for each time point were cal-
culated as follows:

half maximal inhibitory concentration (%) =

mean OD (treated cells)
mean OD (control cells)

·100 .

Morphological observations

Morphological alterations, including membrane in-
tegrity and cytoplasmic granulation, were exam-
ined under an inverted microscope (Olympus, Tokyo,
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Japan). Furthermore, to determine the ability of di-
versin to induce apoptosis, nuclear changes were
evaluated by 4′,6-diamidino-2-phenylindole (DAPI)
(Merck, Darmstadt, Germany) staining after 72 h
in untreated 5637 cells, cells treated with 0.4%
DMSO (v/v), and cells treated with 40 µg/mL di-
versin. Briefly, cells were harvested and centrifuged at
1100×g for 10 min. The cell pellets were then fixed in
4% (v/v) paraformaldehyde (Sigma Aldrich), washed
with phosphate-buffered saline (PBS), and simultane-
ously permeabilized and stained with Triton X-100
(0.1%, v/v) (Merck) and DAPI (2 µg/mL). Finally,
the stained cells were monitored with a fluorescent mi-
croscope (Olympus), and normal and damaged nuclei
were counted.

Alkaline comet assay

To determine the level of DNA damage induced by
diversin, single cell gel electrophoresis (comet assay)
was employed. In brief, single cell suspensions were
prepared by mixing the cells with PBS (1X) and low-
melting point agarose (LMA) (1.5%, w/v; Fermentas,
St. Leon-Rot, Germany). The suspensions were placed
on microscopic slides, coated with normal-melting
point agarose (0.1%, w/v) (Helicon, Moscow, Russia),
and placed on ice for agarose solidification. The slides
were then covered with another layer of LMA, kept in
ice-cold lysis buffer (2.5 M NaCl, 100 mM Na2EDTA,
10 mM Tris, 2% Triton X-100, pH 10) for 4 h, and in-
cubated at 4 ◦C in electrophoresis buffer for 30 min.
Finally, electrophoresis was carried out at 4 ◦C for
20 min (25 V, 300 mA). The slides were then washed
with deionized water, neutralizing buffer (0.4 M Tris,
pH 7.5), and ethanol, dried at room temperature, and
stained with ethidium bromide (2 µg/mL; CinnaGen,
Tehran, Iran). Using a fluorescent microscope (Olym-
pus), photographs were taken from at least 300 cells in
each group for further analyses.

Caspase 3 activity assay

The same treatment schedule was applied to investi-
gate the ability of diversin to induce apoptosis via cas-
pase 3 activation, by the use of a caspase 3 colourimet-
ric assay kit (ab 39401; Abcam, Cambridge, UK). Cis-
platin (15 µg/mL) was included in the experiment as
a control. Protein concentrations were determined by
the method of Bradford (1976) using bovine serum al-
bumin (BSA) as standard. Samples containing 200 µg

protein were used for the evaluation of caspase 3 activ-
ity following the manufacturer’s protocol.

Flow cytometric analyses of cell-cycle distribution

For cell-cycle analysis, 5637 cells treated with
35 µg/mL diversin for 24 h were used. Adher-
ent and detached cells (Morelli et al., 2005) were
washed, resuspended in cold PBS containing Tri-
ton X-100 (0.1%, v/v), sodium citrate (0.1%, v/v),
RNase (100 µg/mL; Fermentas), and propidium io-
dide (100 µg/mL; Sigma Aldrich), and kept at 4 ◦C
for 30 min. Subsequently, flow cytometric analyses of
apoptotic cell death and cell-cycle pattern alterations
were performed using a BD FACS Calibur flow cy-
tometer (BD Biosciences, San Jose, CA, USA).

Data analyses

A statistical program (SPSS, version 17.0) was used
for data analysis. The Kolmogorov-Smirnov test was
used to examine the normal distribution of the data. Re-
sults are expressed as means ±SD for each treatment.
For variables with normal distribution, an independent
Student t-test and one-way ANOVA with Tukey’s test
were used to compare the means between two groups
or among more than two treatments for each variable,
respectively. The nonparametric Mann-Whitney U test
and Kruskal-Wallis H test were applied for analysis
of data in variables not showing normal distribution.
p < 0.001 was considered a significant difference. Pro-
grams used for the comet assay and flow cytometric
analyses were Tri Tek Comet Score freeware TM V 1.5
and WinMDI 2.9, respectively.

Results

Cytotoxic effects of diversin on cancerous and normal
human cell lines

The IC50 values of diversin (Fig. 1) in 5637 cells
were determined at 70 and 40 µg/mL, after 48 and
72 h of treatments, respectively, as evidenced by the

Fig. 1. The chemical structure of diversin [7-(3′,7′-dimethyl-
5′-oxoocta-3′,6′-dienyloxy)coumarin].
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Fig. 2. Viability of 5637 cells as a function of diversin con-
centrations (10 – 100 µg/mL) after 24, 48, and 72 h of treat-
ments as evidenced by the MTT assay. Data are means of
three independent experiments ±SD for each concentration.

Fig. 3. (A) 5637 cell morphology of I) untreated cells, II) cells treated with 0.4% DMSO, and III) cells treated with 40 µg/mL
diversin, 72 h after treatments. (B) Fluorescent microscopic images of 5637 cells in the groups as indicated above. Damaged
cells shown by arrows in B III exhibit chromatin condensation. (C) Percentages of damaged cells calculated for each treatment.
(a) Significant difference (∗∗∗p < 0.001) between diversin- and DMSO-treated cells. (b) Significant difference (∗∗∗p < 0.001)
in comparison with untreated cells. The results were analysed by the Kruskal-Wallis H (∗p < 0.05) and Mann-Whitney U
tests.

MTT assay (Fig. 2). These results were corroborated
by morphological observations showing that cells
treated with 40 to 100 µg/mL diversin for 48 to 72 h
had rounded and granulated shapes, in contrast to the
DMSO controls and untreated cells (Fig. 3A).

To investigate the specificity of the anticancer ef-
fects of diversin, the same concentrations were applied
to two normal human cell lines, HDF1 and HFF3. The
MTT assay revealed that cytotoxic effects of diversin
on normal HDF1 and HFF3 cells (Figs. 4 and 5) were
significantly lower than those on 5637 cells.

Diversin induces chromatin condensation and DNA
fragmentation in 5637 cells

To evaluate diversin effects on the nuclei of
5637 cells, cells treated with 40 µg/mL (128 µM) di-



A. Haghighitalab et al. · Anticancer Effects of Diversin on Bladder Carcinoma Cells 103

Fig. 4. Viability of HFF3 cells after 24, 48, and 72 h of treatment with diversin (10 – 100 µg/mL) as determined by the MTT
assay. Data are means of three independent experiments ±SD for each concentration.

Fig. 5. Morphology of HFF3 cells after (A) 48 h and (B) 72 h of treatments with 0.9% (AI) and 0.8% (BI) of DMSO and
90 µg/mL (AII) and 80 µg/mL (BII) of diversin, respectively. Cell shrinkage and granulation of cytoplasm in diversin-
treated cells are indicated by arrows. Also, as clearly observed, the cell number was decreased significantly in diversin-treated
cells.

versin and an equivalent amount of DMSO were
stained with DAPI. Based on the number of cells
with condensed chromatin, 4, 13, and 45% of cells
had apoptotic features in the untreated, DMSO-, and
diversin-treated groups, respectively (Figs. 3B, C).

The comet assay revealed that the percentages of
DNA migrating in a tail, as an indicator of DNA dam-
age, were 3, 4.5, and 37 in untreated 5637 cells, in
cells treated with DMSO, and in cells treated with

40 µg/mL diversin, respectively (Fig. 6G). In contrast,
DNA tails were not observed in case of the normal
HDF1 cells treated with the same concentration of di-
versin for 72 h (Fig. 6F).

Diversin induces caspase 3 activity in 5637 cells

Induction of programmed cell death by diversin
was assessed by measuring the caspase 3 activ-
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Fig. 6. Diversin-induced selective DNA
damage visualized by the comet assay
in 5637 cells. Representative cells are
shown in (A, D) untreated cells, (B, E)
cells treated with 0.4% DMSO, and
(C, F) diversin (40 µg/mL)-treated 5637
(upper panel) and HDF1 (lower panel)
cells, respectively. (G) Percentages of
DNA in the tail, reflecting DNA dam-
age, were calculated after 72 h of treat-
ment of 5637 and HDF1 cells. (a) Sig-
nificant difference (∗∗∗p < 0.001) be-
tween diversin-treated 5637 and HDF1
cells. (b) Significant difference (∗∗∗p <
0.001) in comparison with untreated and
DMSO-treated 5637 cells. (c) Significant
difference (∗∗∗p < 0.001) in compari-
son with untreated and diversin-treated
HDF1 cells. The results were analysed
by the Kruskal-Wallis H (∗p < 0.05) and
Mann-Whitney U tests.

Fig. 7. Caspase 3 activity in 5637 cells. The activity of
the untreated cells was considered equal to 100% and the
other activities are given in relation to this value. Data are
shown as means of three independent experiments ±SD.
(a) Significant (∗∗∗p < 0.001) in comparison with untreated
cells. (b) Significant difference (∗∗∗p < 0.001) between di-
versin (40 µg/mL)- and DMSO (0.04%)-treated cells. (c)
Significant difference (∗∗∗p < 0.001) in comparison with cis-
platin (15 µg/mL)-treated cells. The results were analysed
by ANOVA and Tukey’s multiple comparison tests.

ity in untreated 5637 cells, in cells treated with
DMSO (0.4%, v/v) with or without (negative control)
40 µg/mL diversin, and cisplatin (15 µg/mL) (posi-
tive control), respectively. Both cisplatin and diversin
increased the caspase 3 activity in 5637 cells about
fourfold in comparison to the untreated cells, while
DMSO alone caused a 2.5-fold increase in the caspase
3 activity (Fig. 7).

Diversin treatment alters distribution of cell-cycle
phases in 5637 cells

To define diversin effects on cell-cycle progres-
sion, untreated 5637 cells and cells treated with 0.35%
DMSO alone or with DMSO and 35 µg/mL di-
versin for 24 h were analysed by flow cytometry. The
diversin-treated 5637 cells were arrested in the G2
phase of the cell cycle (Fig. 8D), while the pattern
of cell-cycle phases was identical for untreated and
DMSO-treated cells (Figs. 8B, C).
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Fig. 8. Distribution of cell-cycle phases in 5637 cells, determined by propidium iodide staining and flow cytometry after 24 h
of incubation. (A) DNA dot plot drawn for untreated 5637 cells. (B) Untreated cells. (C) Cells treated with 0.35% DMSO.
(D) Cells treated with 35 µg/mL diversin.

Discussion

Coumarin derivatives are among the natural com-
pounds that gained attention due to their numerous

and diverse biological and pharmaceutical proper-
ties (Dighe et al., 2010; Fresco et al., 2006; Venu-
gopala et al., 2013). Furthermore, various studies have
demonstrated apoptosis-inducing effects of coumarins
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in a variety of cancerous cells (Chu et al., 2001;
Finn et al., 2003; Lopez-Gonzalez et al., 2004; Madari
et al., 2003; Yin et al., 2001).

In the present study, the cytotoxicity of diversin
to cancerous and normal human cell lines was eval-
uated for the first time. Diversin was more toxic to
5637 cells than other simple coumarins, such as um-
belliferone and herniarin (Haghighitalab et al., 2014),
when tested at 10 to 100 µg/mL in the MTT assay
(data not shown).

Establishing structure-activity relationships in drug
screening programmes is important in the search for
moieties most effective in enhancing a bioactivity. In
the coumarin group, umbelliferone, a 7-OH-coumarin,
is the simplest derivative of coumarin with a hy-
droxy group that has been shown to possess antibacte-
rial, antifungal, cytotoxic, and antiproliferative proper-
ties, among others (Lacy and O’Kennedy, 2004). Her-
niarin, a methoxy derivative of coumarin, has been
extracted from various plant species or was synthe-
sized chemically (Askari et al., 2009). Diversin is
a 7-terpenyloxy coumarin, derived from umbellifer-
one, which is structurally similar to other preny-
loxy coumarins, such as umbelliprenin and auraptene
that have also been extracted from Ferula species
(Iranshahi et al., 2007). The positive effects of the
prenyl moiety in the structure of diversin observed in
our experiments, in comparison to the hydroxy and
methoxy groups in umbelliferone and herniarin, re-
spectively (Haghighitalab et al., 2014), are in accor-
dance with previous studies indicating the key role
of the prenyl moiety in the enhancement of cyto-
toxicity and anticancer effects of various coumarins
(Fraigui et al., 2002; Ito et al., 1999; Barthomeuf et al.,
2006, 2008).

Cancer chemopreventive properties of diversin were
previously investigated and found to be superior to
those of other terpenoid coumarins isolated from
different Ferula species, such as auraptene, umbel-
liprenin, feselol, conferone, and mogoltacin (Iranshahi
et al., 2010). Likewise, the ability of diversin to in-
hibit papilloma formation was also considerably higher
than that of two strong natural cancer chemopreven-
tive agents, curcumin and quercetin, and it did not in-
duce any local lesion or inflammation in vivo (Iran-
shahi et al., 2010).

There are several reports indicating the toxicity
of coumarin compounds on cancerous cells (Venu-
gopala et al., 2013). We have found here that the cy-
totoxic effects of diversin were more strongly pro-
nounced in 5637 cells as compared to HDF1 and

HFF3 normal cells. These results are in agreement
with previous studies indicating the selective cytotoxic
effects of coumarin-based compounds on cancerous
cells (Alvarez-Delgado et al., 2009; Barthomeuf et al.,
2008; Rassouli et al., 2011).

Both DAPI staining and the comet assay revealed
more nuclear and DNA damage in diversin-treated
5637 cells than in the control groups and normal HDF1
cells. As seen in Fig. 6G, the mean percentage of dam-
aged DNA is about 15-fold higher in 5637 as compared
to HDF1 cells. Collectively, the results of the MTT,
DAPI, and comet assays, confirmed the selective ac-
tion of diversin on the cancerous 5637 cells.

The level of caspase 3 activity, one of the main
effector caspases that is activated in both extrinsic
(Zapata et al., 2001) and intrinsic (Hockenbery et al.,
1990; Kroemer et al., 1997) apoptotic pathways, was
found to be elevated about twofold in DMSO-treated
5637 cells, which is in accordance with previous re-
ports (Hanslick et al., 2009; Liu et al., 2000), while di-
versin provoked a fourfold increase nearly similar to
that effected by cisplatin (Fig. 7).

DNA damage and induction of apoptosis are the
modes of action of DNA-binding antitumour drugs in-
cluding cisplatin (Eastman, 1999; Fisher, 1994; Gon-
zalez et al., 2001). There are however, several inter-
fering factors which may change the apoptotic path-
way to necrosis (Cepeda et al., 2007; Eguchi et al.,
1997; Leist et al., 1997; Zhou et al., 2002). Our
observations are in agreement with those reported
for caspase 3 activation by umbelliprenin and other
coumarins (Barthomeuf et al., 2008; Chuang et al.,
2007; Kim et al., 2005; Willis and Adams, 2005).
On the other hand, Molina-Jimenez et al. (2003) re-
ported an inhibitory effect of the coumarin frax-
etin on rotenone-induced apoptosis, and the investi-
gation of the apoptotic effects of coumarin A/AA
revealed that this compound did not produce cas-
pase 3 activation after 24 h (Alvarez-Delgado et al.,
2009).

Arrest of the cells in the G2/M phase in re-
sponse to diversin is similar to what was reported for
the coumarins RKS262 and umbelliferone (Jiménez-
Orozco et al., 2001; Singh et al., 2011), while on the
other hand, umbelliprenin, a sesquiterpene coumarin,
caused arrest in the G1 phase (Barthomeuf et al.,
2008).

In conclusion, our study revealed interesting bioac-
tivities of the natural product diversin that may afford
protection against the development and early recur-
rence of transitional cell carcinomas. Nevertheless, in



A. Haghighitalab et al. · Anticancer Effects of Diversin on Bladder Carcinoma Cells 107

vivo and more in vitro studies are needed to better clar-
ify the effects of diversin on biological systems.

Moreover, for enhancement of the polarity/solu-
bility of this compound, chemically modified diversin
analogues can be designed, e. g. by addition of hydroxy
or amine groups to the coumarin nucleus or by sub-
stitution of the carbonyl by a hydroxy group. Such
modifications may improve the potency of diversin
as an anticancer agent for future in vivo or clinical
studies.
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