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The influence of the cultivation system and of the culture medium on the biotransformation of
(+)-limonene by a strain of Aspergillus niger was investigated. Biooxidation products were obtained
in all conditions tested. Using a laboratory bioreactor, six terpenes were identified in every medium,
predominantly terpineols and carveols, whereas terpinen-4-ol and perillyl alcohol were the only ter-
penes found when flasks were used for culture. Perillyl alcohol and carveols predominated when the
medium was tryptic soy broth (TSB), whereas the formation of terpineols was clearly favoured in
malt broth (MB). Thus, there was a marked influence of the culture conditions on the results of the
biotransformation. Changes in the conditions led to variations both in the type and relative amount of
products obtained.
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Introduction

Limonene [1-methyl-4-(1-methylethenyl)-cyclo-
hexene] is the most widespread terpene in nature and is
formed by more than 300 plant species (van der Werf
et al., 1999). (4R)-(+)-Limonene is the most widely
distributed form, and it is the major constituent of
citrus peel essential oils, in which it is usually found at
contents between 90% and 96% (Badee et al., 2011).
Nevertheless, the major contribution to citrus flavour
is due to the minor oxygenated constituents rather than
limonene (Ahmed et al., 1978). World production of
citrus and its derivates (essential oils among others)
increased significantly in the last decades [Food
and Agriculture Organization of the United Nations
(FAO), 2006]. The yield of (+)-limonene separated
from cold-pressed citrus peel oil was estimated at
36,000 tons per year (Krings and Berger, 2010). Due
to its low sensory activity, low water solubility, and
tendency to autoxidize and polymerize, it is usually
rectified from the oil and regarded as a processing
waste. The essential citrus oils, from which some

of the undesirable components (usually limonene)
have been removed by high vacuum distillation, are
called “folded” or “concentrated” oils (Schmidt,
2010). These properties, in conjunction with their high
structural similarity to high-value oxyfunctionalized
derivatives, turn limonene into an interesting starting
material for microbial transformations.

The first reports on the biocatalytic conversion of
limonene are from the 1960s (Dhavalikar and Bhat-
tacharyya, 1966; Dhavalikar et al., 1966). Since then,
several investigations related to microorganisms, plant
cells, enzymes, and microalgae capable of transform-
ing limonene to many oxyfunctionalized derivatives
have been carried out (Maróstica Jr. and Pastore,
2009). In the last decade, at least two reviews on
limonene biotransformations were published (Duetz
et al., 2003; Maróstica Jr. and Pastore, 2009). Among
microorganisms, several fungi have shown the abil-
ity to metabolize limonene into various derivatives
(Erasto and Viljoen, 2008). The fungal biooxidation
of limonene can occur at virtually all carbon atoms in
the structure, the unactivated methylene carbon atom
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C-5 being the only one for which no derivatization
has been reported. Although not directly proven in
all cases, all bioconversions of limonene by yeasts
and fungi seem to be initiated by P-450 monooxyge-
nases (Duetz et al., 2003). The first successful fun-
gal bioconversion was reported in the late sixties us-
ing Cladosporium species (Kraidman et al., 1969).
Since then, several developments in the use of fungal
species as limonene-metabolizing agents have been re-
ported.

The influence of nutritional and environmental pa-
rameters on the growth of microorganisms is well
known, affecting the number of viable cells per unit
volume (Roberts et al., 1995). Variations in these pa-
rameters can lead to morphological changes in the
fungus, concomitant with variations in its metabolism
(Žnidaršič and Pavko, 2001; Calvo et al., 2002). There-
fore, variations in growth conditions could potentially
lead to different biotransformation products. It is possi-
ble that, under different conditions, the same microor-
ganism effects different biotransformations of a given
substrate, either in the amount or type of products ob-
tained. However, the literature on fungal limonene bio-
transformations rarely reports the influence of culture
conditions. When this is the case, usually variations
in the percentage of bioconversion are reported, but
not variation in the type of products obtained. In this
work we report the influence of the cultivation sys-
tem and the culture medium on the biotransformation
of limonene by a strain of Aspergillus niger previously
isolated from contaminated orange peel.

Results and Discussion

Biotransformation products were obtained in all
conditions tested, and a total of 15 compounds were
identified (Scheme 1). Although A. niger is the most
frequently used fungal biocatalyst (Ward et al., 2006),
reports of successful bioconversions of (+)-limonene
with this fungus are very scarce (Rama Devi and Bhat-
tacharyya, 1978; Toniazzo et al., 2006). Several au-
thors found that either A. niger was not able to convert
limonene (Demyttenaere et al., 2001; Chatterjee and
Bhattacharyya, 2001; Toniazzo et al., 2005; Rozen-
baum et al., 2006; Rottava et al., 2010) or yield was
practically nil (Kaspera et al., 2005; Divyashree et al.,
2006). In these reports, different culture media, sub-
strate concentrations, and forms of the biocatalyst were
used, but all studies, with the exception of that of Di-
vyashree et al. (2006), were conducted with strains
from culture collections. This is not the case for the

results presented here, as the microorganism used was
isolated from a natural environment rich in the sub-
strate. This fact seems essential for the success of
the biotransformation, since adaptation to a potentially
toxic substrate is likely to have occurred, counteracting
the membrane damage caused by limonene (Onken and
Berger, 1999).

Table I presents the percentages of the bioconver-
sion products, obtained by applying the method of nor-
malization of areas to the chromatograms obtained by
gas chromatography (GC) and correcting the values of
areas by calculating relative response factors according
to the model proposed by Tissot et al. (2012). In each
trial we obtained more than one product, and mono-
hydroxylated products comprised nearly 80% of total
products obtained. The accumulation of multiple com-
pounds (e. g., hydroxy limonene isomers) may be due
to either the presence of multiple oxygenases with dif-
ferent regiospecificities or of a single enzyme display-
ing incomplete regiospecificity (Duetz et al., 2003).

Fungi growing either in flasks in a shaker or in a fer-
mentor gave different types and yields of biotransfor-
mation products. As a rule, biotransformation in flasks
resulted in fewer products. Terpinen-4-ol [in malt broth
(MB)] and perillyl alcohol [both in MB and tryptic
soy broth (TSB)] were the only terpenes found in this
system. We also obtained short-chain organic acids
when working with flasks and TSB, which may have
resulted from the catabolic use of monoterpene by
the microorganism, a fact that had been previously re-
ported (Menéndez et al., 2002) and was confirmed in
the present work. When the reaction was carried out
in a fermentor, six terpenes were identified in each
medium, tertiary alcohols predominating in MB (over
80% of the products were terpineols) and secondary
alcohols in TSB (60% were carveols). A striking influ-
ence of the nature of the system on the outcome of the
biotransformation is the high production of terpinen-
4-ol in MB in a shaker compared with its production
in a fermentor in the same growth medium. Interest-
ingly, terpinen-4-ol is a rarely reported metabolite of
limonene biotransformation (Bowen, 1975; Menéndez
et al., 2000; Kaspera et al., 2005) which, in this par-
ticular combination of reaction conditions, represented
almost 50% of the transformation products.

Cultures in flasks in a shaker or in a fermentor, re-
spectively, differ in the aeration and stirring conditions
that influence the fungal growth and, therefore, en-
zyme production and specificity. In this context, qual-
itative changes in the biotransformation profile could
be expected, but studies using different types of biore-
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Scheme 1. Biotransformation products of (+)-limonene: trans-carveol (1), cis-carveol (2), cis-p-mentha-2,8-dien-1-ol (3),
trans-p-mentha-2,8-dien-1-ol (4), carvone (5), dihydrocarvone (6), perillyl alcohol (7), propanoic acid (8), isobutanoic acid
(9), isopentanoic acid (10), terpinen-4-ol (11), α-terpineol (12), cis-β -terpineol (13), trans-β -terpineol (14), linalool (15).
Shaker and fermentor correspond to the cultivation system, while TSB (tryptic soy broth) and MB (malt broth) are the culture
media.

actors for fungal bioconversion of limonene reported
only quantitative, rather than qualitative, changes in
the products (Tan and Day, 1998; Kaspera et al., 2005;
Pescheck et al., 2009).

The culture medium also played a role in limonene
biotransformation, as significant differences between
products formed in MB and TSB were observed.
The allylic hydroxylation of the methyl (perillyl alco-
hol) and methylene groups (carveols) predominated in
TSB, while the formation of terpineols (stoichiometri-
cally equivalent to the addition of water to limonene)
was clearly favoured in MB. The regioselectivity of
terpineol production also changed with the cultivation
system, as pointed out above. According to the litera-
ture, mainly quantitative variations in the biotransfor-

mation products of limonene have been reported for
different fungal growth media (Adams et al., 2003; Bi-
cas et al., 2008; Badee et al., 2011). A more recent
report noted that the culture medium can affect both
specificity and product concentration in the biotrans-
formation of limonene with a strain of Penicillium dig-
itatum (Prieto et al., 2011).

The quantitative variation in biotransformation
products reported in the literature (Tan and Day, 1998;
Adams et al., 2003; Kaspera et al., 2005; Bicas et al.,
2008; Pescheck et al., 2009; Badee et al., 2011) can
be explained by the influence of nutritional and en-
vironmental parameters, which may affect both the
number of viable cells, and the amount and activity
of the relevant enzymes catalyzing the biotransforma-
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Table I. Percentages of bioconversion products under the different culture conditions.

Product Cultivation system
TSB MB

Fermentor Shaker Fermentor Shaker
Perillyl alcohol (7) – 19.0 5.0 39.9
trans-Carveol (1) 31.8 – – –
cis-Carveol (2) 27.9 – – –
Terpinen-4-ol (11) – – 4.9 42.8
α-Terpineol (12) – – 58.4 –
cis-β -Terpineol (13) – – 13.4 –
trans-β -Terpineol (14) – – 4.9 –
cis-p-Mentha-2,8-dien-1-ol (3) 8.0 – – –
trans-p-Mentha-2,8-dien-1-ol (4) 8.0 – – –
Linalool (15) – – 7.3 –
Carvone (5) 2.5 – – –
Dihydrocarvone (6) 2.7 – – –
Propanoic acid (8) – 15.2 – –
Isobutanoic acid (9) – 37.7 – –
Isopentanoic acid (10) – 26.4 – –

TSB, tryptic soy broth; MB, malt broth.

tion (Roberts et al., 1995). Moreover, Cornelissen et al.
(2011) have recently shown that, irrespective of the ki-
netics of the respective enzyme, the efficacy of a cell-
based biocatalytic reaction is largely determined by the
physiology of the used microbial cells. In the present
work, higher yields of biomass were obtained in MB,
both in shaken flasks and in the biofermentor. In this
medium, a dry weight of 13.2 mg/mL was obtained in
flasks vs. 7.2 mg/mL in the fermentor, as compared
to 7.4 and 5.3 mg/mL, respectively, in TSB. However,
visually the pellets grown in MB were smaller than
those grown in TSB.

Qualitative changes in the products obtained can
be attributed to several causes. Limonene is a small
molecule with groups of similar electronic properties,
which can be biooxidized at different carbon atoms. On
the other hand, as mentioned by Žnidaršič and Pavko
(2001), a dynamic relationship exists between environ-
mental conditions and the growth pattern of filamen-
tous fungi in submerged cultures. Distinct cultivation
conditions could result in different morphological and
physico-chemical characteristics of fungal hyphal ele-
ments. This results in cellular differentiation in terms
of biochemical specialization and structural changes,
which could lead to a variety of specific metabolic
patterns. This is clear in the production of secondary
metabolites by fungi (Calvo et al., 2002), and also ap-
pears important in biotransformation processes carried
out by such microorganisms, according to the results
obtained in the present work.

In conclusion, there is a clear influence of the cul-
ture conditions, i. e. both the nutrient medium and the

geometry of the culture system, on the results of the
biotransformation. Changes in these bioprocess param-
eters led to variations both in the type and relative
amount of the products obtained.

Experimental

Microorganism and inoculum

An Aspergillus niger strain was isolated from or-
ange peels and maintained as previously reported
(Menéndez et al., 2002). For identification of this
strain, a culture was grown on Czapek yeast extract
agar (CYA) at 5 ◦C, 25 ◦C, and 37 ◦C, and malt extract
agar (MEA) and 25% glycerol nitrate agar (G25N)
at 25 ◦C. All plates were incubated for 7 d. Fungal
identification was done according to Pitt and Hock-
ing (1999). A spore suspension in sterile normal saline
was used as inoculum, reaching a final concentration of
105 spores/mL in the respective culture medium. The
suspension was prepared from a fresh culture after 72 h
of growth.

Chemicals

R-(+)-Limonene (∼ 99%) was purchased from
Fluka (Buchs, Switzerland). α-Terpineol (95%),
carveol (97%, mixture of cis- and trans-isomers),
perillyl alcohol (96%), carvone (96%), and linalool
(97%), as well as propanoic, isobutanoic, and isopen-
tanoic acids, respectively, were obtained from Sigma-
Aldrich (St. Louis, MO, USA). A mixture of C9



C. García-Carnelli et al. · Limonene Biotransformation by Aspergillus niger 65

to C20 n-alkanes prepared with standards obtained
from Fluka and Sigma-Adrich was used for determi-
nation of Kováts retention indices. Technical grade
dichloromethane was distilled prior to use. Merck
(Darmstadt, Germany) 60 silica gel (230 – 400 mesh)
was used for sample clean-up.

Cultivation system and culture media

Biotransformation experiments were carried out in
two systems: (i) 1-L conical flasks in an orbital shaker
(IOC400.XX2.C; Sanyo, Tokyo, Japan), and (ii) a 3-
L fermentor (BIOFLO III batch/continuous fermentor;
New Brunswick Scientific, Enfield, CT, USA).

The culture media used were tryptic soy broth (TSB)
(DIFCO, Detroit, MI, USA) and malt broth (MB) pre-

Table II. Kováts retentions indices (KRI) and MS data of identified biotransformation products.

Compound KRIa KRIb MS: m/z (rel. int.)
Perillyl alcoholc 1295 1294 152 [M+] (5), 134 (10), 121 (38), 109 (18), 93 (48), 79 (79), 68 (88),

55 (57), 41 (100)

cis-Carveolc 1229 1229 152 [M+] (1), 134 (37), 119 (24), 109 (51), 91 (25), 84 (83), 69 (43),
55 (68), 41 (100)

trans-Carveolc 1217 1216 152 [M+] (6), 137 (8), 134 (4), 119 (14), 109 (100), 91 (26), 84 (91),
69 (33), 55 (56), 41 (94)

Carvonec 1243 1240 150 [M+] (1), 135 (3), 122 (2), 108 (30), 93 (31), 82 (100), 54 (68), 41
(39)

cis-Dihydrocarvone 1193 1184 152 [M+] (10), 137 (10), 121 (12), 109 (29), 95 (56), 81 (37), 67 (93),
55 (47), 41 (100)

Terpinen-4-ol 1177 1181 154 [M+] (6), 136 (7), 111 (33), 93 (33), 86 (16), 71 (100), 55 (33), 43
(93)

α-Terpineolc 1189 1193 136 [M+− H2O] (15), 121 (19), 107 (3), 93 (31), 81 (21), 67 (14),
59 (100), 55 (13), 43 (59)

cis-β -Terpineol 1144 1151 136 [M+− H2O] (11), 121 (12), 107 (14), 93 (28), 79 (12), 71 (50),
55 (23), 43 (100)

trans-β -Terpineol 1163 1160 136 [M+− H2O] (15), 121 (12), 107 (16), 93 (19), 79 (13), 71 (41), 55
(21), 43 (100)

trans-p-Mentha-2,8-dien-1-ol 1123 1119 152 [M+] (2), 137 (14), 134 (6), 121 (19), 109 (30), 94 (37), 91 (20),
79 (39), 67 (17), 55 (17), 43 (100)

cis-p-Mentha-2,8-dien-1-ol 1138 1134 152 [M+] (1), 137 (18), 134 (30), 119 (17), 109 (34), 91 (19), 79 (35),
67 (17), 55 (18), 43 (100)

Linaloolc 1097 1106 136 [M+− H2O] (3), 121 (6), 93 (31), 80 (16), 71 (57), 55 (56), 43
(100)

Propanoic acidc – Ndd 74 [M+] (72), 57 (29), 45 (100), 44 (18)

Isobutanoic acidc – Nd 88 [M+] (4), 73 (20), 55 (4), 43 (100)

Isopentanoic acidc – Nd 87 (21), 74 (61), 60 (84), 57 (37), 41 (100)

a KRI reported by Adams (2007) for an SE52 stationary phase.
b Experimental KRI obtained in the conditions mentioned above.
c Products identified by comparison of retention times with those of standard compounds.
d Nd, not determined.

pared as a 3% solution of malt extract (Amresco,
Solon, OH, USA) in distilled water.

Biotransformation assays

A total of four biotransformation experiments were
carried out. Two of these were conducted in the fer-
mentor with both TSB and MB as culture media, under
the following conditions: agitation, 150 rpm; volume,
1.5 L; aeration rate, 0.5 vvm. The other two trials
were conducted in flasks in a shaker with the same
culture media (0.2 L), at 100 rpm. All incubations
were for 5 d at 28 ◦C. (+)-Limonene was added once
after 48 h of incubation such as to obtain a content of
0.5% (v/v) in the culture media. All experiments were
conducted in duplicate. Two negative controls were
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performed, one using (+)-limonene in culture medium
(without inoculum), and in the other the medium
was inoculated with the fungus but no substrate was
added. For determination of biomass production, the
four trials were repeated under the same conditions.
Biomass yields were determined after filtration and
drying to constant weight.

Extraction and identification of bioconversion
products

The liquid medium was separated from the biomass
by filtration and then was extracted with CH2Cl2. The
mycelia were washed several times with the same sol-
vent. Organic phases were combined, then dried over
anhydrous Na2SO4, and concentrated under reduced
pressure at room temperature. Concentrated extracts
were cleaned up on a silica gel column eluted with
CH2Cl2, as optimized earlier in the laboratory.

The bioconversion products were identified by com-
paring their Kováts retention indices (KRI) with those
reported in the literature (Adams, 2007), and their
GC retention times with those of standard compounds
whenever it was possible (Table II). Comparison of
fragmentation patterns in the mass spectra with those

stored in the GC-MS databases (McLafferty and Stauf-
fer, 1991; Adams, 2007) was also performed.

Analysis conditions

High-resolution GC (HRGC) analyses were per-
formed on a Shimadzu (Kyoto, Japan) GC14B in-
strument equipped with an FID and EZ Chrom in-
tegration software for data processing. An SE-52
fused silica capillary column (30 m× 0.32 mm i.d.,
0.40 – 0.45 µm film thickness) was used. The tem-
perature program was as follows: 60 ◦C for 8 min;
60 – 210 ◦C at 3 ◦C/min. The GC conditions were as
follows: injector temperature, 280 ◦C; detector tem-
perature, 290 ◦C; carrier gas, N2 at 49 kPa; split ratio,
1:50.

HRGC-MS was carried out using a Shimadzu
QP 5500 instrument under the conditions described
above, with: carrier gas, He; ionization voltage, 70 eV;
temperature interface, 250 ◦C; acquisition mass range,
m/z 40 – 400.
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