Synthesis of Diazepine-fused Porphyrinoids and Annulated Porphyrin Arrays

Aoife A. Ryan, Fanny Pouyatos, Aurelie Stallivieri, Teodor Silviu Balaban, and Mathias O. Senge

a School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152 – 160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland
b Aix Marseille Université, CNRS, UMR iSm2 7313, F-13397 Marseille, France
c Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland

Reprint requests to Prof. Dr. M. O. Senge. Fax: #353-1-896-8537. E-mail: sengem@tcd.ie

Received May 15, 2014

Porphyrins with exocyclic rings allow for significant modulation of the photochemical properties of the macrocycle via modulation of the aromatic system through electronic and conformational effects. Here we sought to generate such porphyrinoids via a stepwise strategy involving two cycloaddition steps, the first improving the synthesis of a relatively unstable dehydropurpurin intermediate which ring opens to form a key 1,5-diketone species. A library of a new class of porphyrinoids, namely diazepine-fused porphyrinoids was synthesized via condensation methods from these 1,5-diketone precursors in yields of 8 – 49%. Cycloaddition methodologies were also applied to bisporphyrins, and their reactivities were investigated.

Key words: Porphyrinoids, Cycloaddition, Diazepine, 1,5-Diketones

Introduction

Tetrapyrroles with exocyclic rings have great biological significance, and there are numerous synthetic derivatives of such [1 – 3]. Depending on the exocyclic ring size a perturbation of the macrocycle is often observed, and these distorted porphyrinoids have interesting photophysical properties and exhibit bathochromic shifts in their absorption profiles [4]. The development of such compounds is attractive for the purpose of applying to areas such as two-photon photodynamic therapy (2PA-PDT), whereby an enhancement of absorption of 7,8-dehydropurpurin bearing a fused cyclopentadiene ring (Fig. 1) which causes a significant distortion of the porphyrin macrocycle, which, upon ring opening of zinc(II) derivatives, forms a 1,5-diketone porphyrin (Fig. 1). Diketones readily undergo intramolecular cyclization reactions with various nucleophiles to form heteroaromatic compounds such as pyrylium salts, pyridines and diazepines, and this reactivity will be exploited. For example, the reaction of 1,5-diketones with various

© 2014 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com
Amino derivatives is widely known, with the resulting generation of nitrogen containing heterocycles [12]. Osuka and co-workers utilized this methodology to generate a novel pyridine-fused porphyrinoid, namely an oxopyridochlorin (Fig. 1) which like the dehydropurpurins, exhibit a substantial red-shift of bands in the near-IR region due to enhanced conjugation and distortion of the macrocycle. Here we report a similar strategy with the goal of generating diazepine porphyrinoids.

Results and Discussion

As we described previously, the initial strategy which we undertook involved the proposed synthesis of a triply fused dimeric dehydropurpurin [13]. Although [3 + 2] annulation occurred, the predominant product isolated was a 1,5-diketone porphyrin due to the instability of zinc(II) 7,8-dehydropurpurins. In order to further exploit the utility of these materials, we synthesized a library of dehydropurpurins 2a–e using the [3 + 2] annulation strategy. Using bromoporphyrins 1a–e, a Pd(0)-catalyzed reaction of a double bond on the bromoporphyrin with the internal alkyne diphenylacetylene, porphyrins 2a–e were generated in good to excellent yields of up to 85% yields (Scheme 1).

The zinc dehydropurpurins are unstable in dilute solution, and on exposure to air and light, the cyclopentadiene ring opens, to give 1,5-diketones 3a–e in almost quantitative yields. This is not seen with nickel(II) or palladium(II) porphyrins and is thus presumed to occur from singlet oxygen generation. As shown in Scheme 2, a plausible mechanism for the ring opening includes a light-initiated [2 + 2] cycloaddition of singlet oxygen with the external double bond to give a dioxetane intermediate. This then decomposes to yield the diketone product [14]. The reactivity of these 1,5-diketones was further investigated as they are widely known to undergo various cyclization reactions to give 5-, 6- and 7-membered ring products, depending on the reagents and conditions used [15–17]. We decided to use hydrazine as a substrate to develop a novel diazepine-fused porphyrin, and to explore the reactivity of the porphyrin 1,5-diketones generated and the effect that the fused diazepine moiety would have on the macrocycle. Condensation of 1,5-diketones 3a–e [9] with hydrazine hydrate yielded the desired diazepine products 4a–d in yields of up to 49% (Scheme 3). Numerous conditions were explored; with the optimum yield obtained employing a microwave unit as the heat source. Although the synthesis gave moderate yields, the reaction was not as successful in terms of yields as that for the pyridinium-porphyrinoid. The condensation mechanism begins with the protonation of the carbonyl oxygen under acidic conditions and subsequent nucleophilic attack of hydrazine at the electrophilic carbon. A series of proton transfer and elimination of water yields a hydrazone intermediate. Another attack by the hydrazine moiety, this time intramolecularly, closes the ring. Subsequent proton transfer and loss of water yields the 1,2-diazepine porphyrin. Attack by the other nitrogen would generate a 6-membered annulated ring (such as an N-amino-pyridinium salt), which due to loss of global aromaticity, however, was not formed. These are novel fused porphyrinoid systems, although the macrocycle here is not perturbed as observed for the [3 + 2] adduct and pyridinium derivative. Attempts to generate pyrylium salt derivatives via a similar strategy [18–20] were largely unsuccessful.

The UV/Vis absorption spectra of porphyrins 2a, 3a, and 4a are shown in Fig. 2. Due to the perturbation of the macrocycle in 2a a split in the Soret band is observed. On returning to aromaticity in 3a, a typical por-
### Entry	R¹	R²	2	3	Yield (%)
1 | 4-Methylphenyl | H | 2a^a | 3a^b | 72 |
2 | 4-Methylphenyl | Phenyl | 2b^a | 3b^b | 52 |
3 | Phenyl | Phenyl | 2c^a | 3c^b | 85 |
4 | 3-Methoxyphenyl | H | 2d^a | 3d^b | 80 |
5 | 3-Methoxyphenyl | 3-Methoxyphenyl | 2e^a | 3e^b | 39 |
6 | 3-Methoxyphenyl | Phenyl | 2f^a | 3f^b | 76 |

Scheme 1. Synthesis of porphyrin-3,5-bisketones.
^aDiphenylacetylene (1.5 eq.), Pd₂(dba)₃ (5%), (o-Tol)₃P (0.2 eq.), toluene, N,N-dicyclohexylmethylamine (5 eq.), 120 °C, 24 h;
^bCHCl₃, air, light, 24 h.

Scheme 2. Ring opening mechanism.

Phosphoryl absorption is seen. The diazepine adducts are characterized by broad Soret bands and also a slight bathochromic shift compared to their 1,5-diketone precursors.

Fig. 3 shows a comparison of the NMR spectra of bromoporphyrin 1f, dehydropurpurin 2f, 1,5-diketone porphyrin 3f, and the diazepine-fused porphyrin 4b. On generation of 2f from bromoporphyrin 1f, there was a substantial increase in shielding of β-signals from between 8.8 and 9.8 ppm to 7.2 to 8.2 ppm. Also, with 1f there are four β-proton signals, with six signals for the β-protons in 2f, due to the distortion of the macrocycle. This is most evident for the β-protons closest to the cyclopentadiene ring which occur as two singlets. The methoxy CH₃ signal for 1f occurs as a 6H singlet but with 2f, two 3H singlets are observed due to the asymmetry of the macrocycle. Some impurities are present in the spectrum of 2f, as here the ring opening was promoted to generate diketone 3f. The spectrum for 3f returns to that for a porphyrin with the β-signals resonating in the region of 8.6–9.1 ppm. The ketone functional groups were also confirmed via ¹³C NMR analysis with low-field resonances of 194.5 and 199.3 ppm for the carbonyl carbons attached to the β and meso carbons, respectively. The diazepine-fused porphyrin 4b exhibits a slight difference in chemical shifts for the β-protons, typical of fused moieties, with the two closest to the fused ring occurring as singlets with the highest field strength in the β-region. The structure was confirmed by HRMS, with a parent ion of m/z = 864.2222 (calculated for [C₆₄H₄₀N₆O₂Zn]: 864.2191), and also the loss of signals at 194 and 198 ppm in ¹³C NMR analysis for the carbonyl carbons.

In parallel to cycloaddition reactions of monomers and the generation of diazepine-porphyrinoids, we sought to apply the [3 + 2] annulation methodology to bromo bisporphyrins. Taking the directly linked porphyrin dimer 5, we were able to execute a double cycloaddition to form 6 (which is a mixture of rotamers).
Scheme 3. Synthesis of diazepine derivatives. **Reagents and conditions:** c) Hydrazine hydrate (10 eq.), EtOH-acetic acid, reflux or MW. a MW conditions, b not isolated due to difficulties with purification. HRMS (MALDI): m/z calculated for \([C_{48}H_{33}N_{6}O_2Zn]\): 789.1956, found 789.1948.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>4</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-Methylphenyl</td>
<td>H</td>
<td>4a</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3-Methoxyphenyl</td>
<td>Phenyl</td>
<td>4b</td>
<td>49(^a)</td>
</tr>
<tr>
<td>3</td>
<td>3-Methoxyphenyl</td>
<td>H</td>
<td>4c</td>
<td>n/db</td>
</tr>
<tr>
<td>4</td>
<td>3-Methoxyphenyl</td>
<td>3-Methoxyphenyl</td>
<td>4d</td>
<td>12</td>
</tr>
</tbody>
</table>

Fig. 2. Normalized absorption spectra of 2a, 3a and 4a in CH$_2$Cl$_2$.

Fig. 3. \(^1\)H NMR (400 MHz) spectra of 1f, 2f, 3f, and 4b in CDCl$_3$ (**impurities, compound not isolated before ring opening).
Scheme 4. Synthesis of directly linked bis-dehydropurpurins 6a and fused derivatives 8a and 8b. Reagents and conditions: diphenylacetylene (1.5 – 3 eq.), Pd$_2$(dba)$_3$ (5%), (o-Tol)$_3$P (0.2 eq.), toluene, N,N-dicyclohexylmethylamine (5 – 10 eq.), 120 °C, 24 h.

with the ring-opened dimer showing a parent ion peak at $m/z = 1342.3580$ (calculated for [C$_{84}$H$_{62}$N$_8$O$_2$Zn$_2$]: 1342.3579).

Additionally, using the alkynyl-linked dimer 9 as the internal alkyne source, the [3 + 2] methodology with bromo-porphyrin 10 was employed to generate the dehydropurpurin trimer 11. Although multiple attempts were carried out, 11 could only be isolated in a yield of 2% and only be identified via HRMS (Scheme 5). Here, lengthening the linker, for example to a diphenylacetylene, between the porphyrin units may help to improve the reaction as the steric hindrance in the cycloaddition would be minimized.

In conclusion, diazepine-fused porphyrinoids were synthesized in moderate yields from 1,5-diketone precursors. These materials display bathochromic shifts in their absorption profiles. Additionally, the [3 + 2] annulation methodology was applied to singly and triply linked porphyrin dimers. Future work will involve the synthesis of other fused hetero-aromatic moieties at the porphyrin periphery via similar principles and larger nitrogen heterocyclic derivatives, and also their incorporation into oligomeric porphyrins.

Experimental

General methods

All commercial chemicals used were of analytical grade and were supplied by Sigma Aldrich, Frontier Scientific, Inc. and Tokyo Chemical Industry (TCI) and used without further purification unless otherwise stated. 1H and 13C NMR spectra were recorded on a Bruker DPX 400 and Agilent 400 (400 MHz for 1H NMR; 100.6 MHz for 13C NMR) and/or Bruker AV 600 instrument (600 MHz for 1H NMR; 150.9 MHz for 13C NMR). Chemical shifts are reported in ppm and locked on residual solvent peaks. The assignment of signals was confirmed by 2D spectra (COSY, HSQC) except for those porphyrins with low solubility. UV/Vis absorption measurements were performed with a Shimadzu MultiSpec-1501 instrument. Microwave reactions were carried out in a CEM Discover 600 W microwave reactor. HRMS spectra were measured on MaldiQ-Tof Premier Micromass and Micromass/Waters Corp. USA liquid chromatography time-of-flight spectrometers equipped with an electrospay ionization source (ESI). Melting points were acquired on a Stuart SMP-10 melting point apparatus and are uncorrected. Thin layer chromatography (TLC) was performed on silica gel 60 (fluorescence in-
Scheme 5. Synthesis of porphyrin trimer 11. Reagents and conditions: a) 9 (1.5 eq.), 10 (1 eq.) Pd$_2$(dba)$_3$ (0.2 eq.), (o-Tol)$_3$P (0.2 eq.), toluene, N,N-dicyclohexylmethylamine (5 – 10 eq.), 120 °C, 24 h.

dicator F$_{254}$; Merck) pre-coated aluminum sheets. Flash chromatography was carried out using Fluka Silica Gel 60 (230 – 400 mesh).

Porphyrins 1a-f [13, 21], 9 and 10 [13] were synthesized according to previously reported methods [22].

[3,5-Dibenzoyl-10,20-bis(4-methylphenyl)porphyrinato]zinc(II) (3a)

Porphyrin 1a (200 mg, 0.32 mmol), diphenylacetylene (84 mg, 0.48 mmol) and (o-Tol)$_3$P (19 mg, 0.06 mmol) were dried under a pressure of 10$^{-2}$ mbar in a 25 mL Schlenk tube before being used. Toluene (5 mL) was added under argon. The mixture was then subjected to three freeze-pump-thaw cycles to degas the solution. The reaction was protected from light for the next steps. Pd$_2$(dba)$_3$ (15 mg, 0.02 mmol) and N,N-dicyclohexylmethylamine (0.35 mL, 1.65 mmol) were added to the mixture which was then heated at 110 °C for 24 h. Upon reaction completion, the solvent was removed under reduced pressure. The product was filtered through silica using CH$_2$Cl$_2$ as eluent and the solvent removed to obtain the ring-closed compound 2a. The product was then dissolved in CH$_2$Cl$_2$ (16 L) and exposed to light for 72 h to obtain the ring-opened compound 3a. Yield: 176 mg (0.23 mmol, 72%). M. p. > 300 °C. – 1H NMR (400 MHz, CDCl$_3$): δ = 2.67 (s, 3H, tolyl-C$_3$H$_7$), 2.74 (s, 3H, toyl-CH$_3$), 7.11 – 7.13 (m, 2H, Ph-H), 7.37 (t, J = 8.0 Hz, 2H, Ph-H), 7.50 – 7.54 (m, 6H, C$_6$H$_4$/Ph-H), 7.59 (d, J = 7.6 Hz, 2H, C$_6$H$_4$ – H), 7.83 – 7.85 (m, 2H, Ph-H), 8.08 (d, J = 7.6 Hz, 4H, C$_6$H$_4$-H), 8.91 – 8.96 (m, 3H, H$_g$), 9.09 – 9.11 (m, 2H, H$_g$), 9.38 – 9.40 (m, 2H, H$_g$), 10.27 ppm (s, 1H, H$_{meso}$). – 13C NMR (100 MHz, CDCl$_3$): δ = 29.8, 107.6, 121.0, 122.6, 127.3, 127.8, 128.7, 130.2, 131.9, 132.3, 132.9, 134.3, 135.3, 137.3, 138.0, 139.1, 141.2, 144.8, 138.4, 150.1, 150.6, 151.1, 151.8, 194.2, 198.7 ppm. – UV/Vis (CH$_2$Cl$_2$): λ_{max} (log ε) = 424 (5.14), 550 (3.92), 590 nm (3.78). – HRMS (MALDI): m/z = 760.1807 (calcd. 760.1817 for [C$_{48}$H$_{32}$N$_4$O$_2$Zn]).

[3,5-Dibenzoyl-10,20-bis(4-methylphenyl)-15-phenylporphyrinato]zinc(II) (3b)

Porphyrin 1b (200 mg, 0.28 mmol), diphenylacetylene (76 mg, 0.43 mmol) and (o-Tol)$_3$P (17 mg, 0.06 mmol) were dried under a pressure of 10$^{-2}$ mbar before being used. Toluene (5 mL) was added under argon. The mixture was
then subjected to three freeze-pump-thaw cycles. Pd\(_2\)(dba)\(_3\) (13 mg, 0.01 mmol) and N,N-dicyclohexylmethyamine (0.29 mL, 1.40 mmol) were added to the mixture which was then heated at 110 °C for 24 h. Upon reaction completion, the solvents were removed in vacuo. The residue was filtered through a short plug of silica gel using CH\(_2\)Cl\(_2\) as eluent, and the solvent was removed in vacuo to obtain the ring-closed compound 2b. This was then dissolved in CH\(_2\)Cl\(_2\) (14 L) and exposed to light for 72 h to obtain the ring-opened closed compound.

2c then subjected to three freeze-pump-thaw cycles. Pd\(_2\)(dba)\(_3\) (25 mg, 0.04 mmol), diphenylethynyl (10 mg, 0.06 mmol) and (o-Tol)\(_2\)P (3 mg, 0.01 mmol) were added to a 25 mL Schlenk tube and dried under a pressure of 10\(^{-2}\) mbar for 20 min. Toluen (3 mL) was added, and the solution was degassed via three freeze-pump-thaw cycles. Pd\(_2\)(dba)\(_3\) (2 mg, 0.002 mmol) and N,N-dicyclohexylmethyamine (37 mg, 0.17 mmol) were added, and the reaction mixture was heated to 110 °C and stirred at this temperature for 19 h, shielded from ambient light. The reaction mixture was filtered through a short plug of silica using CH\(_2\)Cl\(_2\) as eluent. Solvents were removed to yield a crude dark-orange solid containing 2d as confirmed by UV/Vis and HRMS analysis: UV/Vis (CH\(_2\)Cl\(_2\)): \(\lambda_{max} = 441, 537\), and 571 nm. – HRMS (MALDI): \(m/z = 836.1964\) (calcld. 839.1824 for \([\text{C}_{60}\text{H}_{36}\text{N}_{2}\text{O}_{2}\text{Zn}]\)).

\[3,5\text{-Dibromophenyl-10,20-bis(3-methoxyphenyl)porphyrinato-zinc(II)}\] (3d)

Bromoporphyrin 1d (25 mg, 0.04 mmol), diphenylethylnyl (10 mg, 0.06 mmol) and (o-Tol)\(_2\)P (3 mg, 0.01 mmol) were added to a 25 mL Schlenk tube and dried under a pressure of 10\(^{-2}\) mbar for 20 min. Toluen (3 mL) was added, and the solution was degassed via three freeze-pump-thaw cycles. Pd\(_2\)(dba)\(_3\) (2 mg, 0.002 mmol) and N,N-dicyclohexylmethyamine (37 mg, 0.17 mmol) were added, and the reaction mixture was heated to 110 °C and stirred at this temperature for 19 h, shielded from ambient light. The reaction mixture was filtered through a short plug of silica using CH\(_2\)Cl\(_2\) as eluent. Solvents were removed to yield a crude dark-orange solid containing 2d as confirmed by UV/Vis and HRMS analysis: UV/Vis (CH\(_2\)Cl\(_2\)): \(\lambda_{max} = 441, 537\), and 571 nm. – HRMS (MALDI): \(m/z = 836.1853\) (calcld. 839.1817 for \([\text{C}_{60}\text{H}_{36}\text{N}_{2}\text{O}_{2}\text{Zn}]\)).

\[3,5\text{-Dibromophenyl-10,20-bis(3-methoxyphenyl)porphyrinato-zinc(II)}\] (3d)

Zinc bromoporphyrin 1c (202 mg, 0.30 mmol) and diphenylethynyl (79 mg, 0.44 mmol) were added to a 25 mL Schlenk flask and were dried under a pressure of 10\(^{-2}\) mbar for 20 min. Anhydrous toluene (10 mL) and (o-Tol)\(_2\)P (18 mg, 0.06 mmol) were added, and the solution was degassed by three freeze-pump-thaw cycles. Pd\(_2\)(dba)\(_3\) (14 mg, 0.02 mmol), and N,N-dicyclohexylmethyamine (0.32 mL, 0.15 mmol) were added, and the flask was sealed and the mixture stirred at 120 °C for 24 h in the dark. The solution was evaporated under reduced pressure, and the crude reaction mixture was purified by column chromatography in the dark using n-hexane-ethyl acetate = 20 : 1 (v/v). The solvents were removed in vacuo, to yield the desired product as the second fraction 2e (brown spot). R\(_f\) = 0.22 (n-hexane-ethyl acetate = 9 : 1, v/v). – UV/Vis (CHCl\(_3\)): \(\lambda_{max} = 401, 413, 490, 624, 684\) nm. – HRMS (MALDI): \(m/z = 776.1896\) (calcld. 776.1918 for \([\text{C}_{60}\text{H}_{36}\text{N}_{2}\text{Zn}]\)). Crude 2c was dissolved in CHCl\(_3\) (4 – 5 L) and was allowed to stir exposed to ambient light and air for 48 h. The solven was removed in vacuo, and 3e was isolated as a green powder (204 mg, 0.25 mmol, 85%). M. p. > 300 °C. – R\(_f\) = 0.33 (n-hexane-ethyl acetate = 9 : 1, v/v). – \(^1\)H NMR (400 MHz, CDC\(_3\)): \(\delta = 7.20\) (t, \(J = 7.8\) Hz, 2H, Ph-H), 7.41 (m, 3H, Ph-H), 7.57 (t, \(J = 7.5\) Hz, 1H, Ph-H), 7.72 – 7.78 (m, 9H, Ph-H), 7.95 (d, \(J = 7.6\) Hz, 2H, Ph-H), 8.20 (d, \(J = 6.2\) Hz, 4H, Ph-H), 8.24 (d, \(J = 6.2\) Hz, 2H, Ph-H), 8.88 (d, \(J = 4.8\) Hz, 1H, Hg), 8.94 – 8.98 (m, 5H, Hg), 9.01 ppm (d, \(J = 4.8\) Hz, 1H, Hg). – \(^{13}\)C NMR (100 MHz, CDC\(_3\)): \(\delta = 121.8, 123.1, 123.3, 126.6, 126.7, 127.7, 127.8, 128.1, 130.5, 131.5, 131.8, 132.4, 132.5, 132.6, 132.9, 133.0, 134.4, 134.4, 135.6, 138.2, 141.8, 142.1, 142.2, 142.9, 149.0, 150.6, 150.8, 151.8, 194.4 (C=O), 198.8 ppm (C=O). – UV/Vis (CH\(_2\)Cl\(_2\)): \(\lambda_{max} (\log \epsilon) = 429\) (5.02), 555 (3.77), 596 nm (3.46). – HRMS (MALDI): \(m/z = 808.1826\) (calcld. 808.1817 for \([\text{C}_{62}\text{H}_{32}\text{N}_{2}\text{O}_{2}\text{Zn}]\)).
Porphyrin 1e (200 mg, 0.26 mmol), diphenylacetylene (69 mg, 0.39 mmol) and (o-Tol)P (16 mg, 0.05 mmol) were dried under high vacuum for 1 h. Dry toluene (15 mL) was added under argon. The solution was degassed via three freeze-pump-thaw cycles. The Schlenk tube was shielded from light. Pd2 (dba)3 (12 mg, 0.01 mmol) and N,N-dicyclohexylmethylamine (0.28 mL, 1.30 mmol) were added to the Schlenk tube, and the reaction mixture was heated to the room temperature, for 2 h. The reaction mixture was cooled to 0°C for 1 h. The mixture was dissolved in CH2Cl2 and the residue was filtered through silica gel using a mixture of CH2Cl2-hexane (2:1, v/v) to give two fractions, the second of which contained 3f. The solvents were removed to yield porphyrin 3f (62 mg, 0.07 mmol, 76%). M.p. > 300°C – 1H NMR (400 MHz, CDCl3): δ = 3.97 (s, 3H, OCH3), 3.94 (s, 3H, OCH3), 7.14 (t, J = 7.6 Hz, 2H, C6H4−H), 7.23 (m, 1H, C6H4−H), 7.32 – 7.37 (m, 5H, Ph-H), 7.52 – 7.70 (m, 8H, C6H4−Ph-H), 7.76 – 7.83 (m, 6H, C6H4−Ph-H), 8.87 – 9.00 ppm (m, 7H, Hg) ppm. – 13C NMR (100 MHz, CDCl3): δ = 55.4, 55.5, 55.5, 113.5, 113.7, 120.4, 121.4, 122.8, 122.9, 127.4, 127.5, 127.6, 127.7, 128.0, 130.4, 131.5, 131.7, 132.4, 132.5, 132.9, 133.0, 135.6, 138.1, 141.5, 142.8, 143.4, 143.6, 143.7, 145.5, 146.0, 148.9, 150.4, 150.5, 150.7, 150.9, 151.7, 157.7, 157.9, 194.3, 198.8 ppm. – UV/Vis (CH2Cl2): λmax (log ε) = 428 (5.36), 554 (4.14), 594 nm (3.82), – HRMS (MALDI): m/z = 898.2118 (calcd. 898.2134 for [C48H36N6O2Zn]n). – 13C NMR (100 MHz, CDCl3): δ = 55.4, 55.5, 55.5, 113.5, 113.7, 120.4, 121.5, 122.8, 122.9, 127.4, 127.5, 127.6, 127.7, 128.0, 130.4, 131.4, 131.7, 132.4, 132.5, 132.9, 133.0, 135.6, 138.1, 141.5, 142.8, 143.4, 143.6, 143.7, 145.5, 146.0, 148.9, 150.4, 150.5, 150.7, 150.9, 151.7, 157.7, 157.9, 194.3, 198.8 ppm. – UV/Vis (CH2Cl2): λmax (log ε) = 428 (5.36), 554 (4.14), 594 nm (3.82), – HRMS (MALDI): m/z = 898.2118 (calcd. 898.2134 for [C48H36N6O2Zn]n).

Porphyrin 3a (50 mg, 0.07 mmol) and hydrazine hydrate (24%, 0.3 mL, excess) were refluxed in acetic acid (6 mL) and toluene (6 mL) for 24 h. The mixture was cooled before being washed using CH2Cl2 and water. The organic layer was dried with sodium sulfate, and after filtration the solvent was removed in vacuo. The residue was then purified by silica gel column chromatography using CH2Cl2- EtOAc (10:1, v/v) as eluent. The targeted compound 4a was the third fraction. Yield: 4 mg (0.005 mmol, 8%). M.p. > 300°C – 1H NMR (400 MHz, CDCl3): δ = 2.64 (s, 6H, C6H4−H), 7.40 – 7.49 (m, 6H, ary-H), 7.53 – 7.56 (m, 4H, aryl-H), 7.75 – 7.83 (m, 4H, tol-H), 7.99 – 8.02 (m, 2H, tol-H), 8.09 – 8.13 (m, 2H, tol-H), 8.45 – 8.46 (m, 2H, Hg), 8.94 (m, 3H, Hg), 9.28 – 9.31 (m, 2H, Hg), 9.88 ppm (s, 1H, Hmeso). – 13C NMR (100 MHz, CDCl3): δ = 29.5, 100.2, 117.8, 121.9, 127.2, 127.5, 127.7, 129.7, 130.8, 131.0, 131.0, 131.1, 131.7, 131.9, 132.2, 132.3, 132.6, 132.7, 132.8, 132.9, 133.1, 133.5, 133.7, 134.2, 134.4, 146.1, 152.2, 152.6, 154.6, 155.5, 158.5, 162.5, 167.6 ppm. – UV/Vis (CH2Cl2): λmax (log ε) = 443 (4.98), 574 (3.79), 608 nm (3.69). – HRMS (MALDI): m/z = 757.2066 (calcd. 757.2058 for [C48H36N6O2Zn]n).
Porphyrin 3f (20 mg, 0.02 mmol) of hydrazine hydrate (0.1 mL) mmol, acetic acid (1 mL), and toluene (1 mL) were placed in a 5 mL flask, and the mixture was irradiated with the microwave source at 110 °C for 7 min. After completion, the reaction mixture was allowed to cool and diluted with CH₂Cl₂. The solution was washed with H₂O (2 × 10 mL), extracted with CH₂Cl₂, dried over Na₂SO₄ and filtered. Solvents were removed to leave a green solid which was redissolved in CH₂Cl₂ and filtered through a short plug of silica. The solvents were removed in vacuo to leave a green solid of 4b (10 mg, 0.01 mmol, 49%). M. p. > 300 °C. – 1H NMR (400 MHz, CDCl₃): δ = 8.56 (s, 3H, OC₆H₅), 3.95 (s, 3H, OCH₃), 7.16 – 7.18 (d, J = 15.7 Hz, 2H, C₆H₄–H), 7.24 – 7.27 (dd, J = 11.0 Hz, 2H, C₆H₄–H), 7.35 (m, 2H, C₆H₄–H), 7.38 – 7.42 (t, J = 15.5 Hz, 2H, C₆H₄–H), 7.55 – 7.58 (t, J = 13.7 Hz, 2H, C₆H₄–H), 7.63 (m, 2H, Ph–H), 7.75 (m, 2H, Ph–H), 7.82 (m, 5H, Ph–H), 7.93 – 7.94 (d, J = 8.0 Hz, 2H, Ph–H), 8.23 (m, 2H, Ph–H), 8.30 – 8.39 (d, J = 4.8 Hz, 2H, Ph–H), 8.96 ppm (m, 5H, H₅). – 13C NMR (100 MHz, CDCl₃): δ = 55.4, 55.5, 113.5, 113.7, 124.0, 124.6, 127.5, 127.6, 127.8, 128.1, 129.3, 130.4, 130.2, 132.4, 132.5, 132.9, 134.3, 135.6, 136.2, 141.7, 142.3, 142.9, 143.4, 143.5, 145.4, 146.0, 149.0, 150.4, 150.6, 150.8, 150.9, 151.6, 157.8, 157.9 ppm. – UV/Vis (CDCl₃): λmax (log ε) = 428, 595, 707 nm. – HRMS (MALDI): m/z = 864.2222 (calcd. 864.2191 for [C₄H₃N₆O₇Zn]⁺).

Synthesis of dimer 6

Bromoporphyrin dimer 5 (30 mg, 0.02 mmol), diphenylacetylene (12 mg, 0.07 mmol) and (o-Tol)₂P (3 mg, 0.01 mmol) were added to a 25 mL Schlenk tube and dried under high vacuum for 0.25 h. Toluene (3 mL) was added, and the solution was degassed via three freeze-pump-thaw cycles. Pd₂(dba)₃ (2 mg, 0.002 mmol) and N,N-dicyclohexylmethylamine (45 mg, 0.23 mmol) were added, and the reaction mixture was heated to 110 °C and stirred at this temperature for 24 h, shielded from ambient light. The reaction mixture was filtered through a short plug of silica using CH₂Cl₂ as eluent. The solvents were removed in vacuo, and the residue was subjected to column chromatography (silica, CH₂Cl₂–hexane, 2:1:4:1, v/v) to yield one main fraction, orange in color. Solvents were removed to give a dark solid 6 (28 mg, 0.02 mmol, 78%). M. p. > 300 °C. – 1H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 6H, OCH₃), 3.85 (s, 6H, OCH₃), 6.93 (s, 1H, H₅), 6.97 (s, 1H, H₅), 7.07 – 7.08 (d, J = 8.2 Hz, 2H, C₆H₄–H), 7.12 – 7.13 (d, J = 8.2 Hz, 2H, C₆H₄–H), 7.23 – 7.27 (m, 4H, aryl-H), 7.38 – 7.41 (m, 2H, aryl-H/Ph–H), 7.59 – 7.60 (d, J = 7.2 Hz, 6H, aryl-H), 7.69 – 7.71 (m, 2H, Ph–H), 7.79 – 7.81 (d, J = 6.8 Hz, 4H, aryl-H), 7.86 – 7.88 (m, 2H, aryl-H), 8.06 – 8.07 ppm (d, J = 4.8 Hz, 2H, H₅). – 13C NMR (150 MHz, CDCl₃): δ = 55.2, 55.3, 113.1, 113.3, 119.1, 119.2, 119.5, 120.0, 123.9, 124.9, 125.5, 126.4, 126.6, 126.9, 127.3, 127.4, 127.5, 127.6, 127.9, 128.1, 128.3, 128.5, 128.7, 128.8, 130.1, 130.4, 132.4, 134.3, 134.5, 135.7, 137.1, 141.2, 142.7, 143.4, 149.7, 150.3, 150.7, 151.5, 152.7, 153.1, 153.8, 154.4, 157.7, 157.9, 163.9 ppm. – UV/Vis (CH₂Cl₂): λmax (log ε) = 410. (5.46),
513 nm (5.54). – HRMS (MALDI): m/z = 1518.3477 (calcld. 1518.3505 for [C_{96}H_{62}N_{8}O_{4}Zn_{2}]).

Synthesis of trimer 11

Bromoporphyrin 10 (48 mg, 0.07 mmol) and dimer 9 (129 mg, 0.07 mmol) were added to a 25 mL Schlenk flask and dried under high vacuum. Anhydrous toluene (7 mL) and (o-Tol)₃P (4.5 mg, 0.01 mmol) were added, and the solution was degassed by three freeze-pump-thaw cycles. Pd₂(dba)₃ (4.3 mg, 0.005 mmol,) and N,N-dicyclohexylmethylamine (0.08 mL, 0.35 mmol) were added to the flask, and the mixture was stirred at 120 °C for 24 h in the dark. The solvent was evaporated, and the residue was dissolved in CH₂Cl₂. This solution was passed through silica gel using n-hexane-CH₂Cl₂ = 10 : 1 (v/v) in order to separate a first orange fraction, the green fraction (dimers in excess) and the brown fraction (trimer). Then, the organic solvents were evaporated. To isolate 11, preparative TLC (silica) was used (n-hexane-CH₂Cl₂ = 5 : 1, v/v). Yield (2 mg, <2%). Rf = 0.31 (n-hexane-CH₂Cl₂ = 3 : 1, v/v). – HRMS (MALDI): m/z = 1802.3781 (calcld. 1802.3750 for [C_{116}H_{68}N_{12}Ni₃]).

Acknowledgement

This work was supported by grants from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650 and 12/TIDA/B2381).
