Preparation of 1,2,5,6,9,10-Hexaalkoxyhexahelicenes

Manfred Schwertel, Sabine Hillmann and Herbert Meier
Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany

Reprint requests to Prof. Dr. H. Meier. Fax: +49 (0)6131-3925396. E-mail: hmeier@uni-mainz.de
Z. Naturforsch. 2013, 68b, 1347-1355 / DOI: 10.5560/ZNB.2013-3170

Received June 26, 2013
1,2,5,6,9,10-Hexaalkoxyhexahelicenes $\mathbf{3}$ represent [3]star compounds with a helical core. A multistep synthetic concept for $\mathbf{3}$ is discussed, in which the final step $\mathbf{1 6} \rightarrow \mathbf{3}$ is a twofold oxidative photocyclization. The linearly conjugated compounds $\mathbf{1 6}$ contain stilbene and vinylnaphthalene units.

Key words: Helicenes, Photocyclization, Wittig-Horner Reaction, Siegrist Reaction

Introduction

[3]Star compounds, which consist of conjugated aromatic cores and three, six or nine alkoxy groups, represent interesting structures for materials science [1]. 2,3,6,7,10,11-Hexaalkoxytriphenylenes (1) are prominent examples (Fig. 1). From their first preparations [2,3] till our days [4-9], a large variety of compounds 1 have been thoroughly studied. Much less is known about $1,2,5,6,9,10$-hexaalkoxycoronenes (2) $[10,11]$, and nothing is known about 1,2,5,6,9,10hexaalkoxyhexahelicenes (3). In contrast to $\mathbf{1}$ and 2, compound 3 has a non-planar, chiral polycyclic core. Many mesophases are known for compounds 1, some for systems 2. This arises the question: Do chiral thermotropic liquid crystalline phases (LC) exist for 3? Due to the lack of symmetry, the usual synthesis of hexahelicenes on the basis of 2,7-distyrylnaphthalenes [12], is not useful
in this case. We conceived a multi-step procedure, which starts from benzene and naphthalene derivatives.

Results and Discussion

Scheme 1 summarizes the preparation of the 2-\{2-[4-(2-phenylvinyl)phenyl]vinyl\}naphthalenes 16a, b, which were chosen as precursors for the desired hexahelicenes 3.

3-Methylbenzene-1,2-diol (4) was alkylated twice under phase transfer conditions [13, 14]. We used long alkyl chains to get high solubilities throughout the whole reaction sequence. The obtained 3-methyl-1,2-dialkoxybenzenes 6a, b were subjected to a Bouveault formylation to $\mathbf{7 a}, \mathbf{b}$. The formylation was neither regioselective nor chemoselective; the CH_{3} group was also attacked by DMF $[15,16]$. Consequently the yields of $\mathbf{7 a}, \mathbf{b}$ were low. In a second reaction se-

1

2

3

Fig. 1.

Scheme 1. Preparation of the 2-\{(E)-2-[4-((E)-2-phenylvinyl)phenyl]vinyl $\}$ naphthalenes 16a, b: i) KOH, Aliquat 336, 1,4dioxane; ii) 1. BuLi , TMEDA, 2. DMF; iii) $\mathrm{NBS}, \mathrm{CCl}_{4}$; iv) $\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}, 160{ }^{\circ} \mathrm{C}$; v) NaH , DME ; vi) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone; vii) LiAlH_{4}; viii) DDQ, 1,4-dioxane; ix) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}_{2}, \mathrm{CHCl}_{3}$; x) $\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$, DMF.
quence, $\mathbf{6 a}, \mathbf{b}$ were transformed to the phosphonates 9a, b via the bromides 8a, b [14]. Wittig-Horner reactions $\mathbf{7 a} \mathbf{+ 9 a}$ and $\mathbf{7 b + 9 b}$ gave the (E)-configured stilbenes 10a and 10b, respectively.

The naphthalene moiety of $\mathbf{1 6 a}, \mathbf{b}$ was synthesized on the basis of the ester $\mathbf{1 1}$ [17, 18], which was alkylated with the bromoalkanes 5a, b to obtain 12a, b. Reduction with LiAlH_{4} yielded the alcohols 13a,
(E, E)-16a, \mathbf{b}

$(E, Z) \mathbf{- 1 6 a}, \mathbf{b},(Z, Z) \mathbf{- 1 6 a}, \mathbf{b}$

Scheme 2. Photoisomerization of $(E, E) \mathbf{- 1 6 a}, \mathbf{b}$ and subsequent cyclizations and oxidations to the hexahelicenes $\mathbf{3 a}, \mathbf{b}:$ i) I_{2},』。
b, which were gently oxidized by 2,3-dicyano-5,6-dichloro-1,4-benzoquinone (DDQ) to the aldehydes 14a, b. The reaction with aniline gave then the Schiff bases $\mathbf{1 5 a}, \mathbf{b}$. In contrast to the left branch of the synthetic Scheme 1, all yields in the right branch are very high. The four steps from 11 to 15a have for example an overall yield of $88 \times 0.94 \times 0.95 \times 100=78.6 \%$. Siegrist reactions [19] of $\mathbf{1 0 a}+\mathbf{1 5 a}$ and $\mathbf{1 0 b}+\mathbf{1 5 b}$ gave then 16a and 16b, respectively. The stereoselectivity
in favor of the (E)-configuration is so high that the (Z)isomers could not be detected in the NMR spectra of the crude reaction products $\mathbf{1 6 a}, \mathbf{b}$ [20].

Irradiation of (E, E) - $\mathbf{1 6 a}, \mathbf{b}$ led to the formation of the two possible (E, Z)-isomers and the (Z, Z)-isomer, which subsequently underwent cyclization and oxidation to $\mathbf{1 7 a}, \mathbf{b}$ and/or 18a, b (Scheme 2). The second photocyclization and oxidation gave 3a and 3b, respectively, in good overall yields. In principle, an

Fig. 2. DSC curves of $\mathbf{3 a}$ and $\mathbf{3 b}$, measured at a rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$: H heating curve, C cooling curve.
unsubstituted system 16 would have four cyclization modes, which can lead to four different condensed benzenoid aromatics; however, the alkoxy groups in 16a, b block three cyclization routes, so that only the route $\mathbf{1 6 a}, \mathbf{b} \rightarrow \mathbf{3 a}, \mathbf{b}$ remains. Iodine served as oxidant and methyloxirane as scavenger for the generated hydrogen iodide [21]. At the stage of the not isolated intermediates $\mathbf{1 7}$ and/or 18, photoisomerizations have to be assumed.

The racemates 3a and 3b are pale-yellow oils which solidify below $-20^{\circ} \mathrm{C}$. Both compounds exhibit very different DSC curves (Fig. 2); however, the formation of thermotropic mesophases could be excluded by polarization microscopy. Liquid crystals are very rare in the series of hexahelicenes [22, 23]. The broad peak in the heating and cooling curve of $\mathbf{3 a}$ is unusual. It can be possibly due to a superposition of several closelying phase transitions in the solid state. Impurities and

Table 1. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a}$ and $\mathbf{3 b}$ in CDCl_{3}, TMS as internal standard. (δ values in ppm, coupling constants J in Hz)

Proton (spin system)	3a	3b
3-H/4-H (AB)	8.27 / 8.29	8.26 / 8.30
${ }^{3} J$	8.7	8.8
7-H/8-H (AB)	8.35 / 8.39	8.32 / 8.38
${ }^{3} \mathrm{~J}$	8.8	8.8
11-H (A)	6.33	6.32
${ }^{3} J$	9.3	9.2
12-H (B)	7.15	7.13
13-H (A)	7.49	7.48
${ }^{3} J$	8.5	8.5
14-H (B)	6.60	6.58
15-H (C)	7.17	7.16
16-H (D)	8.13	8.11
${ }^{3} J$	7.9	8.0
$10-\mathrm{OCH}_{2}(\mathrm{t})$	3.86	3.83
1-, 2-, 5-, 6-, 9-OCH2 (m)	3.84-4.43	3.95-4.45
$\beta-\mathrm{CH}_{2}$ (m)	1.86-2.03	1.80-2.06
$\gamma-\mathrm{CH}_{2}$ (m)	1.55-1.75	1.51-1.80
$\delta-\mathrm{CH}_{2}(\mathrm{~m})$ and higher	1.20-1.48	1.15-1.51
$\mathrm{CH}_{3}(\mathrm{~m})$	0.84-0.97	0.81-1.00

of course any decomposition between -20 and $-55^{\circ} \mathrm{C}$ could be excluded.

The hexahelicenes $\mathbf{3 a}, \mathbf{b}$ belong to the point group C_{1}, they are chiral. Consequently they show ten aromatic CH signals, ten C_{q} and six $C_{q} \mathrm{O}$ signals in the ${ }^{13} \mathrm{C}$ NMR spectra. Most characteristic are their ${ }^{1} \mathrm{H}$ NMR signals (Table 1). The aromatic protons give three AB and one $A B C D$ spin patterns. The signals at highest field in the aromatic region were found for $11-\mathrm{H}$ at $\delta=6.33$ and 6.32 ppm , respectively. The overlap of the terminal benzene rings and the high electron density, induced by the $10-$ OR groups, are the reason for the resonance at unusually high field.

Conclusion

The hexahelicenes $\mathbf{3 a}$ and $\mathbf{3 b}$ are the first examples of [3]star compounds with a helical core consisting of a hexahelicene structure. Their preparation in a multistep synthesis was based on the twofold oxidative photocyclization of the linearly conjugated 2-(4-styrylstyryl)naphthalenes 16a and 16b (Schemes 1 and 2).

Experimental Section

NMR spectra were recorded on a Bruker AM 400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$.

FD MS (5 kV) and EI MS (70 eV) measurements were performed with a Finnigan MAT 95 spectrometer. UV/Vis spectra were obtained with a Zeiss MCS 320/340 diode array spectrometer. Melting points were taken on a Büchi apparatus and are uncorrected. A Perkin-Elmer DSC 7 instrument served for the differential scanning calorimetry (DSC). Polarization microscopy was performed with a Leitz Ortholux II microscope. Elemental analyses were determined in the microanalytical laboratory of the Chemistry Department of the University of Mainz.
The synthetic sequence $\mathbf{4} \rightarrow \mathbf{6 a}, \mathbf{b} \rightarrow \mathbf{8 a}, \mathbf{b} \rightarrow \mathbf{9 a}, \mathbf{b}$ is described elsewhere [14].

It was not necessary to isolate the intermediate bromo compounds 8a, b. However, the oily compound 2,3bis(hexyloxy)benzylbromide (8a) was checked for its purity by NMR control. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.88-1.01$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 1.25-1.45 (m, 8 H, CH $)$), $1.45-1.61$ (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75-1.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $4.13\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.83(\mathrm{dd}$, $\left.{ }^{3} J=6.8 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 6.89-7.02(\mathrm{~m}, 2 \mathrm{H}, 5-$ $\mathrm{H}, 6-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=13.9,14.0\left(\mathrm{CH}_{3}\right), 22.5$, $22.6,25.7,25.8,29.7,30.3,31.5,31.7\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, 113.7 (C-4), 122.3, 123.7 (C-5, C-6), 131.9 (C-1), 146.7, 152.3 (C-2, C-3). The only visible impurity was the starting compound 6a, which does not react with triethyl phosphite.

Bouveault formylation of $\mathbf{6} \boldsymbol{a}, \boldsymbol{b}$ to $7 \boldsymbol{a}, \boldsymbol{b}$

Benzene derivative 6a, b $(22.0 \mathrm{mmol})$ and $N, N^{\prime}-$ tetramethylethylendiamine (TMEDA, $3.0 \mathrm{~mL}, 33.0 \mathrm{mmol}$) were dissolved in 100 mL of dry and deoxygenated diethyl ether. A 2.7 M solution of n-butyllithium in hexane $(21.0 \mathrm{~mL}, 33.0 \mathrm{mmol})$ was added and the mixture stirred for 3 h at ambient temperature, before dimethylformamide (DMF, $2.3 \mathrm{~mL}, 33.0 \mathrm{mmol}$) was added. After a further hour at room temperature, first $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then 2 M HCl $(10 \mathrm{~mL})$ were slowly dropped into the mixture. The organic layer and the extract of the water layer (50 mL diethyl ether) were unified, neutralized $\left(\mathrm{NaHCO}_{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column filtration $\left(5 \times 40 \mathrm{~cm} \mathrm{SiO} \mathrm{O}_{2}\right.$, toluene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

2,3-Bis(hexyloxy)-4-methylbenzaldehyde (7a)

Colorless oil, yield $0.92 \mathrm{~g}(13 \%) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=0.85-0.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.40-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70-1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.92\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.08(\mathrm{t}$, $\left.{ }^{3} J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.95 / 7.45\left(\mathrm{AB},{ }^{3} J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $5-\mathrm{H}, 6-\mathrm{H}), 10.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .-{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta=$ $14.0,16.4\left(\mathrm{CH}_{3}\right.$, partly superimposed), $22.5,22.6,25.7,25.7$, $29.0,30.2,31.4,31.6\left(\mathrm{CH}_{2}\right), 73.3,75.3\left(\mathrm{OCH}_{2}\right), 122.6(\mathrm{C}-5)$, 125.1 (C-6), 129.0 (C-1), 140.3 (C-4), 150.9 (C-3), 155.8 (C2), 189.5 (CHO). - MS (FD): $m / z(\%)=320(100)[\mathrm{M}]^{+} .-$
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ (320.5): calcd. C 74.96, H 10.06; found C 74.79, H 9.82.

2,3-Bis(dodecyloxy)-4-methylbenzaldehyde (7b)

Colorless oil, yield $1.29 \mathrm{~g}(12 \%) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=0.84-0.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.40\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.40-1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.92\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.07\left(\mathrm{t},{ }^{3} \mathrm{~J}=\right.$ $\left.6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.94 / 7.45\left(\mathrm{AB},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right.$, $6-\mathrm{H}), 10.32$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$) $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.0$, $16.6\left(\mathrm{CH}_{3}\right.$, partly superimposed), 22.6, 26.0, 26.1, 29.3, 29.4, 29.6, 30.1, 30.4, $31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed), 73.1, 75.2 $\left(\mathrm{OCH}_{2}\right), 122.4(\mathrm{C}-5), 125.9(\mathrm{C}-6), 128.8(\mathrm{C}-1), 140.3(\mathrm{C}-$ 4), 150.9 (C-3), 155.6 (C-2), 189.6 (CHO). - MS (EI): m / z $(\%)=488(14)[\mathrm{M}]^{+}, 152(100) .-\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{3}(488.8):$ calcd. C 78.63, H 11.55; found C 78.51, H 11.60

Wittig-Horner reaction of $7 \boldsymbol{a}, \boldsymbol{b}$ and $9 \boldsymbol{a}, \boldsymbol{b}$ for the preparation of 10a, b

Phosphonic acid ester 9a, b (2.1 mmol) in 40 mL of dry dimethoxyethane (DME) was dropped under nitrogen to $\mathrm{NaH}(420 \mathrm{mg}, 10.5 \mathrm{mmol}, 60 \%$ in paraffin) suspended in 120 mL of dry DME. Aldehyde $7 \mathbf{7 a}, \mathbf{b}(2.1 \mathrm{mmol})$ was slowly added and the reaction mixture heated to reflux for 6 h . Then 40 g crushed ice was added and the aqueous phase extracted with 100 mL of diethyl ether. The unified organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography ($3 \times 40 \mathrm{~cm}$ SiO_{2}, petroleum ether, b. p. $40-70^{\circ} \mathrm{C} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$).

1-\{(E)-2-[2,3-Bis(hexyloxy)phenyl]vinyl\}-2,3-bis(hexyloxy)-4-methylbenzene (10a)

Yield $650 \mathrm{~g}(52 \%)$, viscous oil. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=0.82-0.94\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.38\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.38-1.56\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.88\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26$ (s, $\left.3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 3.95-4.02\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.89\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 7.00$ $\left(\mathrm{t},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.24\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}{ }^{-}\right.$ H), 7.25 ('s', 2 H , olefin. H), $7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\right.$ H). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1,16.2\left(\mathrm{CH}_{3}\right.$, partly superimposed), 22.7, 22.8, 25.9, 30.5, 31.7, $31.8\left(\mathrm{CH}_{2}\right.$, partly superimposed), 68.7, 73.0, 73.7, $73.9\left(\mathrm{OCH}_{2}\right), 112.3,117.5$, $120.3,123.1,123.7,123.8,125.8$ (aromat. and olefin. CH), $130.5,131.8,132.4$ (aromat. C_{q}), 146.4, 150.3, 151.1, 152.7 $\left(\mathrm{C}_{q} \mathrm{O}\right) .-\mathrm{MS}(\mathrm{FD}): m / z(\%)=594(100)[\mathrm{M}]^{+} .-\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{4}$ (594.9): calcd. C 78.74, H 10.50; found C 78.84, H 10.43.

1-\{(E)-2-[2,3-Bis(dodecyloxy)phenyl]vinyl\}-2,3-bis(do-decyloxy)-4-methylbenzene (10b)

Yield $1.29 \mathrm{~g}(66 \%)$, viscous oil. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=0.83-0.94\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.44\left(\mathrm{~m}, 64 \mathrm{H}, \mathrm{CH}_{2}\right)$,
$1.44-1.58\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72-1.88\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.25$ (s, $3 \mathrm{H}, 4-\mathrm{CH}_{3}$), $3.90-4.03\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 6.99(\mathrm{t}$, $\left.{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.24\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $7.31\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.41$ ('s', 2 H , olefin. H). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1,16.1\left(\mathrm{CH}_{3}\right.$, partly superimposed), 22.7, 26.2, 26.4, 29.4, 29.7, 30.4, 30.5, $31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed), 68.6, 73.0, 73.7, $73.9\left(\mathrm{OCH}_{2}\right), 112.1$, 117.4, 120.2, 122.6, 123.7, 123.7, 125.7 (aromat. and olefin. CH), 130.4, 131.7, 132.3 (aromat. C_{q}), 146.3, 150.2, 151.0, $152.6\left(\mathrm{C}_{q} \mathrm{O}\right) .-\mathrm{MS}(\mathrm{FD}): m / z(\%)=931(100)[\mathrm{M}]^{+} .-$ $\mathrm{C}_{63} \mathrm{H}_{110} \mathrm{O}_{4}$ (931.6): calcd. C 81.23, H 11.90; found C 81.14, H 11.81 .

Alkylation of 3,4-dihydroxynaphthalene-2-carboxylic acid methyl ester (11)

To ester $11[17,18](1.30 \mathrm{~g}, 5.96 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g}$, 14.5 mmol) and a trace of KI in 60 mL of dry acetone, 1bromoalkane $5 \mathbf{5}, \mathbf{b}(14.0 \mathrm{mmol})$ was added. The vigorously stirred mixture was heated to reflux under nitrogen for 3 d . After filtration the solvent was evaporated and the residue purified by column chromatography ($4 \times 50 \mathrm{~cm} \mathrm{SiO}_{2}$, toluene) .

3,4-Bis(hexyloxy)naphthalene-2-carboxylic acid methyl ester (12a)

Yield $2.03 \mathrm{~g}(88 \%)$, viscous oil. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=0.83-0.92\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.36\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.36-1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06-4.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.35-7.55(\mathrm{~m}$, $2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H), 8.07 (s, $1 \mathrm{H}, 1-\mathrm{H}), 8.10\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H$) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.0\left(\mathrm{CH}_{3}\right.$, superimposed), 22.6, 25.7, 25.8, $30.2,30.4,31.7\left(\mathrm{CH}_{2}\right.$, partly superimposed), $52.2\left(\mathrm{OCH}_{2}\right)$, $74.1,74.7\left(\mathrm{OCH}_{2}\right), 121.7,125.6,126.9,127.7,128.6$ (aromat. CH), 125.9 (C-4a), 130.0 (C-2), 131.4 (C-4a), 146.6, 147.6 (C-3, C-4), 166.8 (CO). - MS (EI): $m / z(\%)=386$ (21) $[\mathrm{M}]^{+}, 186$ (100). $-\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$ (386.5): calcd. C 74.58, H 8.87; found C 74.27, H 8.57.

3,4-Bis(dodecyloxy)naphthalene-2-carboxylic acid methyl ester (12b)

Yield $2.81 \mathrm{~g}(85 \%)$, viscous oil. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=0.83-0.92\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.42\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.42-1.60(m, 4 H, CH2 $), 1.75-1.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.94$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06-4.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.39-7.58(\mathrm{~m}$, $2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H), 8.07 (s, $1 \mathrm{H}, 1-\mathrm{H}), 8.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H$) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right.$, superimposed), 22.7, 26.1, $26.2,29.3,29.6,30.3,30.5,31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed), $52.2\left(\mathrm{OCH}_{3}\right), 74.1,74.7\left(\mathrm{OCH}_{2}\right), 121.8,125.6,127.0,127.7$, 128.7 (aromat. CH), 125.9 (C-4a), 130.0 (C-2), 131.4 (C8a), 146.7, 147.7 (C-3, C-4), 166.8 (CO). - MS (EI): m / z
$(\%)=554$ (44) $[\mathrm{M}]^{+}, 186$ (100). $-\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{4}$ (554.8): calcd. C 77.93, H 10.54; found C 78.20, H 10.75 .

Reduction of the esters 12a, b to the alcohols 13a, b

To $\mathrm{LiAlH}_{4}(190 \mathrm{mg}, 5.0 \mathrm{mmol})$ in 50 mL of dry diethyl ether, ester $\mathbf{1 2 a}, \mathbf{b}(5.0 \mathrm{mmol})$ in 20 mL of diethyl ether was slowly added at a rate, so that the mixture was gently boiling. After heating to reflux for $2 \mathrm{~h}, 10 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ and 20 mL of 2 M HCl were added. The separated organic layer was treated with aqueous NaHCO_{3}, washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column filtration $\left(4 \times 30 \mathrm{~cm} \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[3,4-Bis(hexyloxy)naphthalen-2-yl]methanol (13a)

Yield $1.69 \mathrm{~g}(94 \%)$, colorless solid, which melted at $63-64{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.85-0.97(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.28-1.44\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.73-1.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $4.13\left(\mathrm{t},{ }^{3} J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $7.33-7.48(\mathrm{~m}, 2 \mathrm{H}$, aromat. H), $7.51(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 7.71(\mathrm{~d}$, ${ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromat. H), $8.09\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=13.9\left(\mathrm{CH}_{3}\right.$, superimposed), 22.5, 25.7, 25.8, 30.4, $31.6\left(\mathrm{CH}_{2}\right.$, partly superimposed), $62.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 73.5,73.6\left(\mathrm{OCH}_{2}\right), 121.4,122.0$, 124.9, 125.5, 127.6 (aromat. CH), 129.2, 130.8, 134.7 (aromat. $\left.\mathrm{C}_{q}\right), 145.8,146.4\left(\mathrm{C}_{q} \mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=358$ (22) $[\mathrm{M}]^{+}, 172$ (100). $-\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$ (358.5): calcd. C 77.05, H 9.56; found C 77.27, H 9.73.

[3,4-Bis(dodecyloxy)naphthalen-2-yl]methanol (13b)

Yield $2.52 \mathrm{~g}(91 \%)$, colorless solid, which melted at $54-56{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.85-0.96(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.20-1.40\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.73-1.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.04-4.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.82$ (s, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.36-7.48(\mathrm{~m}, 2 \mathrm{H}$, aromat. H$), 7.52$ (s, $1 \mathrm{H}, 1-\mathrm{H}), 7.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H), 8.07 (d, ${ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromat. H). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=14.1\left(\mathrm{CH}_{3}\right.$, superimposed $), 22.7,26.1,26.2,29.4,29.6$, $30.5,31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed $), 62.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 73.7$, $73.8\left(\mathrm{OCH}_{2}\right), 121.5,122.3,125.1,125.7,127.7$ (aromat. $\mathrm{CH}), 129.4,131.0,134.7$ (aromat. $\left.\mathrm{C}_{q}\right), 146.0,146.7\left(\mathrm{C}_{q} \mathrm{O}\right) .-$ MS (EI): $m / z(\%)=526(35)[M]^{+}, 172(100) .-\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{3}$ (526.9): calcd. C 79.79, H 11.10; found C 80.10, H 10.75.

Oxidation of the alcohols $13 a, b$ to the aldehydes $14 a, b$

4.0 mmol of 13a, b and 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ, $908 \mathrm{mg}, 4.0 \mathrm{mmol}$) were stirred under Ar in 20 mL of 1,4-dioxane at room temperature for 12 h . The filtered reaction mixture was concentrated and purified by column chromatography $\left(3 \times 50 \mathrm{~cm} \mathrm{SiO} 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

3,4-Bis(hexyloxy)naphthalene-2-carbaldehyde (14a)

Yield $1.35 \mathrm{~g}(95 \%)$, colorless solid, which melted at $43-45{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.82-0.93(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.20-1.42\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.75-1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.14\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $4.17\left(\mathrm{t},{ }^{3} J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.41-7.62(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$, $7-\mathrm{H}), 7.89\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right), 8.11\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 5-\mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=13.9\left(\mathrm{CH}_{3}\right.$, superimposed), 22.5, 25.6, $25.7,30.0,30.3,31.5\left(\mathrm{CH}_{2}\right.$, partly superimposed), $73.9,74.9$ $\left(\mathrm{OCH}_{2}\right), 121.7,125.0,125.7,128.4,129.8$ (aromat. CH), 129.2, 130.0, 132.8 (aromat. $\left.\mathrm{C}_{q}\right), 145.8,146.4\left(\mathrm{C}_{q} \mathrm{O}\right), 190.3$ (CHO). - MS (FD): $m / z(\%)=356(100)[\mathrm{M}]^{+} .-\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3}$ (356.5): calcd. C 77.48, H 9.05; found C 77.37, H 8.83.

3,4-Bis(dodecyloxy)naphthalene-2-carbaldehyde (14b)

Yield $1.81 \mathrm{~g}(86 \%)$, colorless solid, which melted at about $30^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.82-0.92(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.20-1.49\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.75-2.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $4.22\left(\mathrm{t},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.40-7.60(\mathrm{~m}, 2 \mathrm{H}$, aromat. H), $7.89\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H), $8.11(\mathrm{~d}$, ${ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromat. H), $8.13(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 10.51$ (s, $1 \mathrm{H}, \mathrm{CHO}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right.$, superimposed), 22.6, 26.1, 26.2, 29.4, 29.5, 29.6, 30.2, 30.4, $31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed), $74.1,75.1\left(\mathrm{OCH}_{2}\right), 121.8$, 125.2, 125.9, 128.5, 129.9 (aromat. CH), 129.3, 130.1, 133.0 (aromat. C_{q}), 146.9, $148.7\left(\mathrm{C}_{q} \mathrm{O}\right), 190.6(\mathrm{CHO}) . \mathrm{MS}(\mathrm{EI})$: $m / z(\%)=524(13)[M]^{+}, 188(100) .-\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{3}$ (524.8): calcd. C 80.10, H 10.75; found C 80.21, H 10.80 .

Formation of the Schiff bases 15a, b

Aldehyde $\mathbf{1 4 a}, \mathbf{b}(3.40 \mathrm{mmol})$ and aniline $(400 \mathrm{mg}$, 4.30 mmol) were dissolved in 60 mL of CHCl_{3} and heated to reflux for 1 d , so that the formed $\mathrm{H}_{2} \mathrm{O}$ was continuously removed. The volatile parts were distilled off and the residue dried at 0.1 kPa . The obtained oily products were analytically pure.
\{1-[3,4-Bis(hexyloxy)naphthalen-2-yl]methylidene\}-phenylamine (15a)

Quantitative yield: 1.46 g , pale-yellow oil. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.82-0.98\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.42(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65-1.96(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.13-4.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.23-7.57(\mathrm{~m}, 7 \mathrm{H}$, aromat. H), $7.90\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H$), 8.11(\mathrm{~d}$, ${ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromat. H), $8.44(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}$, CHN). - ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=14.4\left(\mathrm{CH}_{3}\right.$, superimposed), $23.0,26.2,30.6,30.8,32.0\left(\mathrm{CH}_{2}\right.$, partly superimposed), 74.3 , $76.7\left(\mathrm{OCH}_{2}\right), 121.4,122.0,123.1,125.8,126.3,127.4,129.5$ (aromat. CH , partly superimposed), 129.6, 130.4, 131.1 (aromat. $\left.\mathrm{C}_{q}\right), 146.4,147.8\left(\mathrm{C}_{q} \mathrm{O}\right), 152.3\left(\mathrm{C}_{q} \mathrm{~N}\right), 157.3(\mathrm{CHN})$.
-MS (FD): $m / z(\%)=431$ (100) $[\mathrm{M}]^{+} .-\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{2}$ (431.6): calcd. C 80.70, H 8.64, N 3.25; found C 80.65, H 8.80, N 3.24.

\{1-[3,4-Bis(dodecyloxy)naphthalen-2-yl]methylidene \}-

 phenylamine (15b)Quantitative yield: 2.04 g , pale-yellow oil. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.84-1.00\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.44(\mathrm{~m}$, $\left.32 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.96(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.11-4.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.23-7.57(\mathrm{~m}$, 7 H , aromat. H), $7.90\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H), $8.12\left(\mathrm{~d},{ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H$), 8.45(\mathrm{~s}, 1 \mathrm{H}, 1-$ H), $8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1$ $\left(\mathrm{CH}_{3}\right.$, superimposed), 22.7, 26.2, 29.4,29.5, 29.7, 30.3, 30.5, $31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed), $74.0,76.4\left(\mathrm{OCH}_{2}\right), 121.1$, $121.7,122.8,125.5,126.0,127.1,129.1$ (aromat. CH , partly superimposed), 129.6, 130.7, 131.3 (aromat. C_{q}), 146.5, $147.9\left(\mathrm{C}_{q} \mathrm{O}\right), 152.5\left(\mathrm{C}_{q} \mathrm{~N}\right), 157.0(\mathrm{CHN}) .-\mathrm{MS}(\mathrm{EI}): m / z$ $(\%)=599$ (17) $[\mathrm{M}]^{+}, 507$ (100). $-\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{NO}_{2}$ (599.9): calcd. C 82.08, H 10.25, N 2.33; found C 82.05, H 10.27, N 2.40 .

Siegrist reaction of the Schiff bases 15a, \boldsymbol{b} and the methylstilbenes 10a, b

Methylstilbene 10a, b (3.0 mmol) and Schiff base 15a, b $(3.3 \mathrm{mmol})$ were treated in 150 mL of dry DMF with 3.8 g $(34.0 \mathrm{mmol}) \mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}$ at room temperature. After 0.5 h the reaction mixture was heated to $90^{\circ} \mathrm{C}$ and stirred for 1.5 h . Then 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and 50 mL of 2 M HCl were slowly added. The mixture was extracted with $3 \times 120 \mathrm{~mL}$ of diethyl ether. The neutralized $\left(\mathrm{NaHCO}_{3}\right)$ ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column filtration ($4 \times 40 \mathrm{~cm} \mathrm{SiO} 2$, toluene).
1,2-Bis(hexyloxy)-3-((E)-2-\{2,3-bis(hexyloxy)-4-[(E)-2-(2,3bis(hexyloxy)phenyl)vinyl]phenyllvinyl)naphthalene (16a)

Stilbene 10a (1.8 g, 3.0 mmol) and Schiff base $\mathbf{1 5 a}(1.4 \mathrm{~g}$, $3.3 \mathrm{mmol})$ yielded $1.71 \mathrm{~g}(61 \%) \mathbf{1 6 a}$ as yellow oil. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.83-0.96\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.40$ $\left(\mathrm{m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.59\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75-1.90(\mathrm{~m}$, $\left.12 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95-4.16\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.80\left(\mathrm{~d},{ }^{3} J=\right.$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00\left(\mathrm{t},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}\right.$, 1 H , aromat. H), $7.34-7.48(\mathrm{~m}, 5 \mathrm{H}$, aromat. and olefin. H), $7.53\left(\mathrm{~d},{ }^{3} J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, olefin. H), $7.56 / 7.62(\mathrm{AB}$, ${ }^{3} J=16.5 \mathrm{~Hz}$, olefin. H), $7.77\left(\mathrm{~d},{ }^{3} J=8.3,1 \mathrm{H}\right.$, aromat. H), 7.87 (s, 1 H , aromat. H), 8.06 (d, ${ }^{3} J=7.9,1 \mathrm{H}$, aromat. H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right.$, superimposed), 22.8, $25.9,26.1,29.4,29.7,30.4,31.6,31.8,32.8\left(\mathrm{CH}_{2}\right.$, partly superimposed), 68.7, 73.8, 73.9, 74.0, 74.1, $74.2\left(\mathrm{OCH}_{2}\right)$, $112.4,117.4,119.9,120.7,120.7,121.7,123.4,123.8123 .8$, $123.9,124.4,125.2,125.5,127.8$ (aromat. and olefin. CH), $129.2,131.1,131.6,131.9,132.2,132.5$ (aromat. C_{q}), 146.5,
146.6, 146.7, 150.6, 150.7, 152.7 (aromat. $\mathrm{C}_{q} \mathrm{O}$). - MS (FD): $m / z(\%)=933$ (100) $[M]^{+} .-\mathrm{C}_{62} \mathrm{H}_{92} \mathrm{O}_{6}$ (933.4): calcd. C 79.78, H 9.93; found C 79.91, H 10.03.

1,2-Bis(dodecyloxy)-3-((E)-2-\{2,3-bis(dodecyloxy)-4-[(E)-2-(2,3-bis(dodecyloxy)phenyl)vinyllphenyl/vinyl) naphthalene (16b)

Stilbene 10b ($2.8 \mathrm{~g}, 3.0 \mathrm{mmol}$) and Schiff base $\mathbf{1 5 b}(2.0 \mathrm{~g}$, 3.3 mmol) yielded $3.36 \mathrm{~g}(78 \%) \mathbf{1 6 b}$ as pale-yellow crystals, which melted at $49-51^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ $0.85-0.98\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.50\left(\mathrm{~m}, 96 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.50-1.70\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.83-1.96\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.00-4.24\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.83\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.05\left(\mathrm{t},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43$ (t, ${ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromat. H$), 7.46-7.62(\mathrm{~m}, 5 \mathrm{H}$, aromat. and olefin. H), 7.59 (s, 1 H , aromat. H), 7.64/7.70 (AB, ${ }^{3} J=16.6,2 \mathrm{H}$, olefin. H), $7.82\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromat. H), 7.93 (s, 1 H , aromat. H), 8.14 (d, ${ }^{3} J=7.9 \mathrm{~Hz}$, 1 H , aromat. H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$): $\delta=14.1$ (superimposed), 22.7, 26.3, 26.4, 26.5, 29.4, 29.5, 29.7, 29.8, 30.5, $30.6,31.8,32.0\left(\mathrm{CH}_{2}\right.$, partly superimposed), 68.7, 73.7, 73.9, 74.0, 74.1, $74.2\left(\mathrm{OCH}_{2}\right), 112.6,117.7,120.0,120.8$, 120.9, 121.7, 123.6, 123.7, 124.0, 124.1, 124.6, 125.2, 125.5, 127.8 (aromat. and olefin. CH), 129.3, 131.2, 131.7, 132.0, 132.3, 132.6 (aromat. C_{q}), 146.7, 146.8, 147.8, 150.7, 150.8, 152.8 (aromat. $\mathrm{C}_{q} \mathrm{O}$). - MS (FD): $m / z(\%)=1438$ (100) $[\mathrm{M}]^{+} .-\mathrm{C}_{98} \mathrm{H}_{164} \mathrm{O}_{6}$ (1438.4): calcd. C 81.83, H 11.49; found C 81.88, H 11.45 .

Preparation of the phenanthro[3,4-c]phenanthrenes 3a, b

A solution of $0.7 \mathrm{mmol} \mathbf{1 6 a}, \mathbf{b}$ and $0.35 \mathrm{~g}(1.4 \mathrm{mmol}) \mathrm{I}_{2}$ in 2 L of dry benzene was purged by a stream of oxygenfree nitrogen for 0.5 h . Methyloxirane ($4.9 \mathrm{~mL}, 70 \mathrm{mmol}$) was added and the mixture irradiated with a Hanovia-450 W medium-pressure lamp equipped with a Pyrex filter. The red solution bleaches in the course of the reaction which takes
$10-12 \mathrm{~h}$. The N_{2} stream was maintained till the process came to an end. The reaction mixture was treated with aqueous NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product was purified by a twofold column chromatography ($3 \times 50 \mathrm{~cm} \mathrm{SiO} 2$, petroleum ether, b. p. $40-70^{\circ} \mathrm{C} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $5: 1$ to $2: 1$).

1,2,5,6,9,10-Hexakis(hexyloxy)phenanthro[3,4-c] phenanthrene (3a)

Yield 440 mg (68%), light-yellow oil. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.0,14.1\left(\mathrm{CH}_{3}\right.$, superimposed), 22.7, 25.7, 26.0, 29.4, 29.5, 29.7, 30.5, 31.6, 31.8, $31.9\left(\mathrm{CH}_{2}\right.$, partly superimposed), 69.5, 73.8, 73.9, 74.0, 74.1, $74.1\left(\mathrm{OCH}_{2}\right)$, 114.3, 120.1, 120.8, 120.9, 121.0, 121.6, 123.6, 124.1, 125.4, 128.0 (aromat. CH), 121.8, 125.4, 125.7, 126.1, 126.7, 127.3, 128.0, 128.1, 128.4, 129.3 (aromat. C_{q}), 142.4, 142.9, 143.5, 143.6, 144.1, $147.1\left(\mathrm{C}_{q} \mathrm{O}\right)$. - MS (FD): $m / z(\%)=929$ (100) $[\mathrm{M}]^{+}$. - $\mathrm{C}_{62} \mathrm{H}_{88} \mathrm{O}_{6}$ (929.4): calcd. C 80.13, H 9.54; found C 80.15, H 9.86.

1,2,5,6,9,10-Hexakis(dodecyloxy)phenanthro[3,4-c] phenanthrene ($\mathbf{3 b}$)

Yield 700 mg (70%), light-yellow oil. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=14.0,14.1\left(\mathrm{CH}_{3}\right.$, superimposed), 22.7, 26.1, 26.4, 29.4, 29.5, 29.7, 30.6, $32.0\left(\mathrm{CH}_{2}\right.$, partly superimposed), $69.4,73.7,73.8,74.0\left(\mathrm{OCH}_{2}\right.$, partly superimposed), 113.8, 120.1, 120.7, 120.8, 120.9, 121.5, 123.6, 124.0, 125.4, 128.0 (aromat. CH), $121.7,125.3,125.6,126.0,126.6,127.3$, 128.0, 128.1, 128.4, 129.2 (aromat. C_{q}), 142.2, 142.8, 143.5, 143.5, 144.1, $147.4\left(\mathrm{C}_{q} \mathrm{O}\right)$. - MS (FD): $m / z(\%)=1434$ (100) $[\mathrm{M}]^{+} .-\mathrm{C}_{98} \mathrm{H}_{160} \mathrm{O}_{6}$ (1434.4): calcd. C 82.06, H 11.24; found C 82.07, H 11.27.

Acknowledgement

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.
[1] H. Detert, M. Lehmann, H. Meier, Materials 2010, 3, 3218-3330.
[2] F.-H. Marquardt, J. Chem. Soc. 1965, 1517-1518.
[3] M. Piatelli, E. Fatturusso, R. A. Nicolaus, S. Magno, Tetrahedron 1965, 21, 3229-3236.
[4] V. Bhalla, H. Arora, H. Singh, M. Kumar, Dalton Trans. 2013, 42, 969-974.
[5] F. Yang, X. Bai, H. Guo, C. Li, Tetrahedron Lett. 2013, 54, 409-413.
[6] Y.-F. Zhu, X.-L. Guan, Z. Shen, X.-H. Fen, Q.-F. Zhou, Macromolecules 2012, 45, 3346-3355.
[7] K. R. Leight, B. E. Esarey, A. E. Murray, J. J. Reczek, Chem. Mater. 2012, 24, 3318-3328.
[8] Z. Li, X. Chen, Y. Zhang, J. Zhang, Z. Hu, Chem. Lett. 2012, 41, 1588-1590.
[9] D. Wu, H. Zhang, J. Liang, H. Ge, S. H. Liu, J. Yin, C. Chi, J. Wu, J. Org. Chem. 2012, 77, 11319-11324.
[10] R. Rieger, V. Enkelmann, K. Müllen, M. Kastler, Chem. Eur. J. 2008, 14, 6322-6325.
[11] H.-P. Jia, S.-X. Liu, S. Decurtins, L. Sanguinet, E. Levillain, J. Org. Chem. 2009, 74, 5727-5729.
[12] F. B. Mallory, C. W. Mallory, Org. React. 1984, 30, 1456.
[13] H. Meier, H. Kretzschmann, H. Kolshorn, J. Org. Chem. 1992, 57, 6847-6852.
[14] M. Schwertel, S. Hillmann, H. Meier, Helv. Chim. Acta, in print.
[15] C. Huang, N. Ghavtadze, B. Chattopadhyay, V. Gevorgyan, J. Am. Chem. Soc. 2011, 133, 17630-17633.
[16] See also: S. Werle, T. Fey, J. M. Neudoerfl, H.-G. Schmalz, Org. Lett. 2007, 9, 3555-3558.
[17] R. Mählau, F. Kriebel, Ber. Dtsch. Chem. Ges. 1895, 28, 3092.
[18] S. Desai, J. Ind. Chem. Soc. 1951, 28, 213-217.
[19] A. F. Siegrist, Helv. Chim. Acta 1967, 50, 906-957.
[20] See also: H. Meier, Angew. Chem., Int. Ed. Engl. 1992, 31, 1399-1420.
[21] L. Liu, B. Yang, T. J. Katz, M. K. Poindexter, J. Org. Chem. 1991, 56, 3769-3775.
[22] C. Nuckolls, T. J. Katz, J. Am. Chem. Soc. 1998, 120, 9541-9544.
[23] L. Vyklicky, S. H. Eichhorn, T. J. Katz, Chem. Mater. 2003, 15, 3594-3601.

