Synthesis of Functionalized Acetophenones by Formal [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes with 3-Alkoxyand 3-Silyloxy-2-acetyl-2-en-1-ones

Rüdiger Dede ${ }^{\mathrm{a}}$, Abdolmajid Riahi ${ }^{\mathrm{a}, \mathrm{b}}$, Mohanad Shkoor ${ }^{\text {a }}$, Mirza A. Yawer ${ }^{\text {a }}$, Ibrar Hussain ${ }^{\text {a }}$, Nazken Kelzhanova ${ }^{\text {a,c }}$, Zharylkasyn A. Abilov ${ }^{\text {c }}$, Abiodun Falodun ${ }^{\text {a,d }}$, Helmar Görls ${ }^{\mathrm{e}}$, and Peter Langer ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
${ }^{\text {b }}$ Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
${ }^{\text {c }}$ Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040 Almaty, Kazakhstan
${ }^{\text {d }}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
${ }^{\mathrm{e}}$ Universität Jena, Institut für Anorganische und Analytische Chemie, Humboldtstr. 8, 07743 Jena

Reprint requests to Prof. Peter Langer. E-mail: peter.langer@uni-rostock.de
Z. Naturforsch. 2013, 68b, 1021-1030 / DOI: 10.5560/ZNB.2013-3123

Received April 29, 2013

Abstract

The TiCl_{4}-mediated cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 2-acetyl-1-silyloxybut-1-en-3-one and 3-acetyl-4-silyloxypent-3-en-2-one, readily available from 3-(formyl)acetylacetone and 3-(acetyl)acetylacetone (triacetylmethane), afforded a variety of functionalized acetophenones.

Key words: Cyclizations, Arenes, Regioselectivity, Acetophenones, Silyl Enol Ethers

Introduction

Highly functionalized benzene derivatives, such as hydroxylated benzoates, benzodioates and acetophenones, are of considerable interest as lead structures and synthetic building blocks in medicinal and agricultural chemistry [$1-14$]. Classical syntheses of such compounds are based on electrophilic substitution and oxidation reactions. Despite their great utility, electrophilic substitutions have several drawbacks (e.g., low regioselectivity and low reactivity of electronpoor substrates). Oxidations of toluene to benzoic acid derivatives often require drastic conditions. Transition metal-catalyzed functionalizations of functionalized benzene derivatives proceed under relatively mild conditions [15-20]. However, the synthesis of the required starting materials, highly functionalized or sterically encumbered benzene derivatives, can be a difficult task.

Functionalized benzene derivatives have been prepared also by application of a 'building block'
strategy. Examples include base-mediated cyclizations of acetone-1,3-dicarboxylates [21, 22]. Harris et al. reported reactions of 1,3-dicarbonyl dianions with carboxylic acid derivatives and subsequent intramolecular cyclocondensations [23-27]. In addition, $[4+2]$ cycloadditions have been reported [28, 29]. Salicylates are available [30] by formal $[3+3]$ cyclocondensations of 1,3-bis(silyloxy)-1,3butadienes [31] with 1,3-dielectrophiles. This strategy has been widely applied in recent years [32, 33]. We have reported preliminary results related to the synthesis of acetophenones by formal [3+ 3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 2-acetyl-1-(trimethylsilyloxy)but-1-en-3-one which is derived from 3-formylacetylacetone [34]. Herein, we report full details of this study and an extension of the scope. In this context, we report the synthesis of related functionalized benzene derivatives based on cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with a triacetylmethane derivative.

Scheme 1. Synthesis of 2a and 2b.

Results and Discussion

3-Formylacetylacetone (1a) is available by reaction of acetylacetone with triethyl orthoformate and acetic anhydride [35-37]. Its reactivity towards various nucleophiles has been previously reported [$38-47$]. Although the molecule is known for a long time, its detailed structure in solution was not studied until recently [48].
The reaction of an ether solution of 1a with $\mathrm{Me}_{3} \mathrm{SiOTf} / \mathrm{NEt}_{3}$ afforded 2-acetyl-1-silyloxybut-1-en-3-one 2a in 85% yield (Scheme 1). The formyl rather than the acetyl group was regioselectively silylated. Likewise, 2b [48] was prepared by silylation of 3-(acetyl)acetylacetone (1b) which is available by reaction of acetylacetone with acetyl chloride. The known 1,3-bis(trimethylsilyloxy)-1,3-buatdienes $\mathbf{3 a}-\mathbf{m}$ were prepared following literature procedures [30,50-52].

The TiCl_{4}-mediated formal $[3+3]$ cyclization of 2a with 1,3-bis(silyloxy)-1,3-butadiene 3a afforded acetophenone $4 \mathbf{a}$ with very good regioselectivity

Scheme 2. Synthesis of 4a-r.
(Scheme 2). The reaction proceeded by regioselective attack of the more nucleophilic terminal carbon atom of the diene onto the sterically less hindered carbon atom of 2a attached to the silyloxy group and the hydrogen atom. Subsequently, the cyclization proceeded by attack of the central carbon atom of the diene onto the acetyl group. The cyclization of $\mathbf{2 a}$ with other 1,3-bis(silyloxy)-1,3-butadienes $\mathbf{3 a - m}$ followed the same pattern of selectivity and afforded acetophenones 4a-m (Scheme 2, Table 1). The cyclization of dienes containing an alkyl group located at the terminal carbon atom of the diene ($\mathbf{3 f}-\mathbf{h}$ and $\mathbf{3 j}$, but not $\mathbf{3 i}$) tends to proceed in higher yields as compared to unsubstituted dienes. The yield of product 4a, prepared from the acetylacetone-derived diene 3a, was, in many (but not all) cases, lower as compared to the yields of products derived from β-ketoesters, due to its lower nucleophilicity. Rather low yields were obtained for products $\mathbf{4 d}$ and $\mathbf{4 e}$ derived from dienes containing a benzyloxy and 2-methoxethoxy group. This might be explained by the low stability of these groups in the presence of TiCl_{4}.

The cyclization of dienes $\mathbf{3 a}-\mathbf{c}, \mathbf{f}, \mathbf{h}$ with $\mathbf{2 b}$ afforded products $\mathbf{4 n}-\mathbf{r}$. The yields of the reactions of diene 3a were lower than those of the other dienes. This can again be explained by the higher reactivity of β -ketoester-derived dienes as compared to 1,3 -diketonederived dienes. In contrast to the situation for substrate 2a, the best yields were obtained for those products which are derived from dienes which contain no substituent located at carbon C-4 of the diene, presumably due to steric reasons.

The structures of products $\mathbf{4 a - e}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=H\right)$ were elucidated simply by the neighborhood of two aromatic protons which was established by the presence of coupling constants in the range of ${ }^{3} J=8.7-8.8 \mathrm{~Hz}$. For

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	R^{1}	R^{2}	R^{3}	Yield (\%)(4) $^{\text {a }}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	H	H	Me	35
\mathbf{a}	\mathbf{b}	\mathbf{b}	H	H	OMe	55
\mathbf{a}	\mathbf{c}	\mathbf{c}	H	H	OEt	40
\mathbf{a}	\mathbf{d}	\mathbf{d}	H	H	OBn	33
\mathbf{a}	\mathbf{e}	\mathbf{e}	H	H	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$	14
\mathbf{a}	\mathbf{f}	\mathbf{f}	H	Me	OMe	72
\mathbf{a}	\mathbf{g}	\mathbf{g}	H	Et	OEt	59
\mathbf{a}	\mathbf{h}	\mathbf{h}	H	$n \mathrm{Bu}$	OMe	77
\mathbf{a}	\mathbf{i}	\mathbf{i}	H	$n \mathrm{Hex}$	OMe	38
\mathbf{a}	\mathbf{j}	\mathbf{j}	H	Allyl	OEt	74
\mathbf{a}	\mathbf{k}	\mathbf{k}	H	OMe	OMe	35
\mathbf{a}	\mathbf{l}	\mathbf{l}	H	OEt	OEt	30
\mathbf{a}	\mathbf{m}	\mathbf{m}	H	$\mathrm{O}(4-\mathrm{Tol})$	OEt	35
\mathbf{b}	\mathbf{a}	\mathbf{n}	Me	H	Me	30
\mathbf{b}	\mathbf{b}	\mathbf{o}	Me	H	OMe	41
\mathbf{b}	\mathbf{c}	\mathbf{p}	Me	H	OEt	33
\mathbf{b}	\mathbf{f}	\mathbf{q}	Me	Me	OMe	24
\mathbf{b}	\mathbf{h}	\mathbf{r}	Me	$n \mathrm{Bu}$	OMe	21

${ }^{\text {a }}$ Yields of isolated products.

Table 2. Characteristic NOE effects.

$4 f$

4h

4k
$\mathbf{4 f}-\mathbf{k}$, the structure elucidation was more difficult and had to rely on NOESY experiments (Table 2). In $\mathbf{4 f}$ the aromatic hydrogen atom ($\delta=7.47$) correlates with the aromatic methyl group ($\delta=2.25$) and with the acetyl

Fig. 1 (color online). Molecular structure of $\mathbf{4} \mathbf{j}$ in the crystal (ellipsoids at the 50% probability level).
group ($\delta=2.53$). In $\mathbf{4 g}$ the aromatic hydrogen atom ($\delta=7.46$) correlates with the ethyl group attached to the benzene moiety and with the acetyl group. In $\mathbf{4 h}$ the aromatic hydrogen atom ($\delta=7.45$) correlates with the acetyl group ($\delta=2.53$) and with the CH_{2} group attached to the benzene moiety. In $4 i$ the aromatic hydrogen atom $(\delta=7.47)$ correlates with the acetyl group ($\delta=2.54$) and with the CH_{2} group ($\delta=3.42$). In addition, the methyl group ($\delta=2.60$) was found to correlate with the ethoxy group. In $\mathbf{4 k}$ the aromatic
hydrogen atom ($\delta=7.15$) correlates with the acetyl group ($\delta=2.53$) and with the ethoxy group ($\delta=4.13$). For products $\mathbf{4 l}-\mathbf{p}$, no regioisomers are expected. The structure of $\mathbf{4 j}$ was confirmed by X-ray crystal structure analysis (Fig. 1) [53].
In conclusion, we have reported the synthesis of various functionalized acetophenones by formal $[3+3]$ cyclization of 1,3-bis(silyloxy)-1,3-butadienes.

Experimental Section

General comments: All solvents were dried by standard methods, and all reactions were carried out under an inert atmosphere. For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). For preparative scale chromatography silica gel 60 ($0.063-0.200 \mathrm{~mm}, 70-230$ mesh) was used. 1,3-Bis(silyloxy)-1,3-butadienes $\mathbf{3 a - m}$ were prepared according to the literature from the corresponding β-ketoesters in two steps [30,50-52].

3-Formyl-4-hydroxypent-3-en-2-one (1a)

A mixture of acetylacetone ($25.2 \mathrm{~g}, 252 \mathrm{mmol}$), triethyl orthoformate ($37.8 \mathrm{~g}, 255 \mathrm{mmol}$), and acetic acid anhydride $(43.2 \mathrm{~g}, 423 \mathrm{mmol})$ was refluxed for 3 h and then cooled to $0^{\circ} \mathrm{C}$. Water (10 mL) was added, and the reaction mixture was refluxed for 10 min . Volatile compounds were removed in vacuo, and the residue was distilled to yield 1a as a colorless solid quickly developing an oily surface (17.8 g , 55%, ratio of tautomers $=4: 1$ in CDCl_{3} at $25^{\circ} \mathrm{C}$); b. p. $57{ }^{\circ} \mathrm{C}$ (0.1 mbar). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.34$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$, minor), 2.54 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$, major), 2.57 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}, minor), $8.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$, minor), 10.03 (s, 1H, CHO, major), $17.20\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right.$, minor), 18.36 (s, 1H, OH, major). - ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.0\left(\mathrm{CH}_{3}\right.$, major), $28.4\left(\mathrm{CH}_{3}\right.$, minor), $114.8(\mathrm{C}$, major), 117.2 (C, minor), $184.5(\mathrm{CHOH}$, minor), $187.2(\mathrm{CO}$, COH , major), 194.3 (CO, minor), 200.3 (CHO, major), 202.7 (CO, minor). - IR (neat, cm^{-1}): $\tilde{v}=3443$ (br, w), 1787 (m), 1771 (m), 1723 (m), 1674 (s), 1614 (s), 1568 (s), 1411 (s), 1363 (m), 1029 (m). MS (EI, 70 eV): $m / z(\%)=128$ (20) $[\mathrm{M}]^{+}, 100(41), 72(35), 68(32), 43(100)$. The spectroscopic data (IR) are in accordance with those reported in the literature [35].

Triacetylmethane (1b)

$\mathrm{NaH}(8.11 \mathrm{~g}, 338 \mathrm{mmol})$ was suspended in dry ether $(300 \mathrm{~mL})$, and the suspension was cooled to $0^{\circ} \mathrm{C}$. Acetylacetone ($33.7 \mathrm{~g}, 337 \mathrm{mmol}$) was added dropwise. Freshly destilled acetyl chloride ($26.4 \mathrm{~g}, 336 \mathrm{mmol}$) was added drop-
wise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to $20^{\circ} \mathrm{C}$ within 3 h . After stirring for further 12 h the reaction mixture was filtered and the solid washed with ether. The precipitate was dissolved in water $(100 \mathrm{~mL})$ and extracted with ether $(3 \times 75 \mathrm{~mL})$. The filtrate and organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The filtrate was concentrated in vacuo. A small amount of sodium tritylate was added for stabilization and distillation yielded $\mathbf{1 b}$ as a clear yellow liquid ($25.6 \mathrm{~g}, 53 \%$); b. p. $60{ }^{\circ} \mathrm{C}$ (0.1 mbar). $-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 17.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. The spectroscopic data are in accordance with those presented in the literature [49].

3-(Trimethylsilyloxy-methylidene)-pentane-2,4-dione (2a)

To an ether solution $(50 \mathrm{~mL})$ of $\mathbf{1 a}(3.49 \mathrm{~g}, 27.2 \mathrm{mmol})$ was added $\mathrm{NEt}_{3}(2.82 \mathrm{~g}, 27.9 \mathrm{mmol})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(5.93 \mathrm{~g}, 26.7 \mathrm{mmol}$) was added within 20 min . under vigorous stirring. The reaction was stirred for 6 h at $0^{\circ} \mathrm{C}$. The ether phase was isolated, and the residue was washed with ether $(20 \mathrm{~mL})$. The ether phases were combined and concentrated in vacuo to yield 2a as a clear orange liquid ($4.82 \mathrm{~g}, 88 \%$). A detailed NMR spectroscopic study has been reported [47].

3-(1-Trimethylsilyloxy-ethylidene)-pentane-2,4-dione (2b)

To an ether solution (50 mL) of triacetylmethane $\mathbf{1 b}$ $(3.58 \mathrm{~g}, 25.2 \mathrm{mmol}) \mathrm{NEt}_{3}(2.61 \mathrm{~g}, 25.7 \mathrm{mmol})$ was added. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{Me}_{3} \mathrm{SiOTf}$ $(5.49 \mathrm{~g}, 24.7 \mathrm{mmol})$ was added within 15 min . under vigorous stirring. The reaction mixture was stirred for 4.5 h at $0{ }^{\circ} \mathrm{C}$. The ether phase was isolated, and the residue was washed with ether (20 mL). The ether phases were combined and concentrated in vacuo to yield $\mathbf{2 b}$ as a clear yellow liquid ($4.52 \mathrm{~g}, 84 \%$). - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.26$ (s, $\left.9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.6\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.4,30.5$ $\left(\mathrm{CH}_{3}\right), 127.2,165.4(\mathrm{C}), 199.1(\mathrm{CO})$. Due to the unstable nature of this molecule, no further spectroscopic data were obtained. The spectroscopic data are in accordance with those reported in the literature [49].

General procedure for the preparation of acetophenones

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2 a}$ or $\mathbf{2 b}$ was added TiCl_{4} at $-78^{\circ} \mathrm{C}$ in the presence of molecular sieves ($4 \AA$). The appropriate 1,3-bis(silyl enol ether) $\mathbf{3}$ was subsequently added. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ in about 20 h and was stirred for another 4 h (in case of 2a) or for $2-7 \mathrm{~d}$ (in case of $\mathbf{2 b}$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the molecular sieves were removed, and a saturated aqueous solution of NaHCO_{3} was added. The organic layer was separated, and the aqueous layer was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ether. The aqueous layer was acidified by hydrochloric acid (10%) and again extracted. All organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel) to give salicylates 4.
1-(3-Acetyl-4-hydroxy-2-methylphenyl)-ethanone (4a)
Starting with $\mathbf{2 a}(212 \mathrm{mg}, \quad 1.06 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.5 \mathrm{~mL})$, molecular sieves $(4 \AA, 0.4 \mathrm{~g}), \mathrm{TiCl}_{4}(0.13 \mathrm{~mL}$, 1.2 mmol), and $\mathbf{3 a}(385 \mathrm{mg}, 1.57 \mathrm{mmol}), 4 \mathbf{a}$ was isolated by column chromatography (silica gel; n-hexane$\mathrm{EtOAc}=10: 1 \rightarrow 3: 1$) as an orange solid ($71 \mathrm{mg}, 35 \%$). M. p. $152-153{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.14$ (n-hexane-EtOAc $=3: 1$). Reaction time: $25 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.56$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.87$ (dd, $\left.{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.71\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{Ar}), 10.75$ (br, $1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1\left(\mathrm{ArCH}_{3}\right), 30.1,33.1\left(\mathrm{COCH}_{3}\right), 115.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 126.3, $131.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 140.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 161.2$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 200.9,207.2(\mathrm{CO}) .-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3037$ (br, m), 2926 (m), 1695 (s), 1643 (m), 1557 (s), 1441 (m), 1364 (m), 1267 (m), 1215 (m), 818 (w). - MS (EI, 70 eV): $m / z(\%)=192(65)[M]^{+}, 177(100), 159(20), 103(11)$, 77 (20). - Anal. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ (192.21): calcd. C 68.74, H 6.29; found C 68.56, H 6.54.

Methyl 3-acetyl-6-hydroxy-2-methylbenzoate (4b)

Starting with 2a ($863 \mathrm{mg}, 4.31 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, molecular sieves ($4 \AA, 2.0 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.47 \mathrm{~mL}, 4.3 \mathrm{mmol})$, and $\mathbf{3 b}(1.56 \mathrm{~g}, 5.98 \mathrm{mmol}), \mathbf{4 b}$ was isolated by column chromatography (silica gel; n-hexane- $\mathrm{EtOAc}=3: 1$) as a yellow solid ($495 \mathrm{mg}, 55 \%$). M. p. $112-113{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.30$ (n-hexane-EtOAc $=3: 1$). Reaction time: $22 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.54$ (s, $3 \mathrm{H}, \mathrm{CCH}_{3}$), 2.61 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right)$, $7.62\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 11.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.9\left(\mathrm{ArCH}_{3}\right), 30.2\left(\mathrm{COCH}_{3}\right)$, $52.4\left(\mathrm{COOCH}_{3}\right), 114.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.9,132.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.9$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 162.9,171.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{3}\right)$, $201.6\left(\mathrm{COCH}_{3}\right) .-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=3068(\mathrm{br}, \mathrm{s}), 2932$ (s), 2852 (m), 2787 (m), 2712 (m), 1729 (s), 1643 (s), 1563 (s), 1437 (s), 1292 (s), 1235 (s), 1102 (s), 822 (m). - MS (EI, 70 eV): $m / z(\%)=208$ (38) $[\mathrm{M}]^{+}, 193$ (19), 176 (36), 161 (100), 77 (13). - Anal. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ (208.21): calcd. C 63.45, H 5.81; found C 63.32; H 5.87.

Ethyl 3-acetyl-6-hydroxy-2-methylbenzoate (4c)

Starting with $\mathbf{2 a}(195 \mathrm{mg}, 0.97 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.6 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.11 \mathrm{~mL}, 1.0 \mathrm{mmol})$, and $3 \mathbf{c}(386 \mathrm{mg}, 1.41 \mathrm{mmol}), 4 \mathbf{c}$ was isolated by column chromatography (silica gel; n-hexane- $\mathrm{EtOAc}=5: 1$) as an orange solid ($83 \mathrm{mg}, 39 \%$). M. p. $130-132{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.63$
$(n$-hexane-EtOAc $=1: 1)$. Reaction time: $23 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.44\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.47\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{4} J=0.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.61$ (d, $\left.{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 11.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.3\left(\mathrm{ArCH}_{3}\right)$, $30.5\left(\mathrm{COCH}_{3}\right), 62.3\left(\mathrm{CH}_{2}\right), 115.1\left(\mathrm{CH}_{\text {Ar }}\right), 115.2,133.1$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 163.4,171.3\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right.$, COOEt), $201.9\left(\mathrm{COCH}_{3}\right) .-\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3173(\mathrm{br}$, s), 2992 (s), 1731 (s), 1650 (s), 1568 (s), 1445 (m), 1359 (m), 1293 (s), 1232 (s), 1098 (s), 822 (m). - MS (EI, 70 eV): $m / z(\%)=222(33)[M]^{+}, 207(12), 177(18), 176(46), 161$ (100). - Anal. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ (222.24): calcd. C 64.85 ; H , 6.35. Found: C, 64.91; H, 6.64.

Benzyl 3-acetyl-6-hydroxy-2-methylbenzoate (4d)

Starting with 2a ($226 \mathrm{mg}, 1.13 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.4 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.12 \mathrm{~mL}, 1.1 \mathrm{mmol})$, and $3 \mathbf{d}$ ($532 \mathrm{mg}, 1.58 \mathrm{mmol}$), 4 d was isolated by column chromatography (silica gel; n-hexane- $\mathrm{EtOAc}=8: 1$) as a colorless solid ($105 \mathrm{mg}, 33 \%$). M. p. $99-100^{\circ} \mathrm{C}$; $R_{\mathrm{f}}=0.35$ (n-hexane-EtOAc $=3: 1$). Reaction time: 23 h . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 5.36 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.81 ($\mathrm{dd},{ }^{3} J=8.7 \mathrm{~Hz}$, $\left.{ }^{4} J=0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.53(\mathrm{~d}$, $\left.{ }^{3} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 10.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.4\left(\mathrm{ArCH}_{3}\right), 30.4\left(\mathrm{COCH}_{3}\right), 67.9$ $\left(\mathrm{CH}_{2}\right), 114.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.1,128.6,128.7,128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $133.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.6,141.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 163.4,171.0$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{2}\right), 201.7\left(\mathrm{COCH}_{3}\right) .-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $v=3065$ (s), 3036 (s), 2929 (s), 2707 (m), 1732 (s), 1641 (m), 1559 (s), 1450 (m), 1288 (s), 1229 (s), 1102 (m), 820 (m). - MS (EI, 70 eV): $m / z(\%)=284$ (9) [M] ${ }^{+}, 193$ (19), 91 (100), 66 (7), 28 (6). - Anal. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$ (284.31): calcd. C 71.82, H 5.67; found C 71.64, H 5.86.

2-Methoxy-ethyl 3-acetyl-6-hydroxy-2-methylbenzoate (4e)

Starting with 2a ($205 \mathrm{mg}, 1.02 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.5 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.11 \mathrm{~mL}, 1.0 \mathrm{mmol})$, and $3 \mathrm{e}(432 \mathrm{mg}, 1.42 \mathrm{mmol}), 4 \mathrm{e}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=5: 1$) as a slightly yellow solid ($36 \mathrm{mg}, 14 \%$). M. p. $113-115^{\circ} \mathrm{C}$; $R_{\mathrm{f}}=0.20$ (n-hexane-EtOAc $=3: 1$). Reaction time: 22 h . ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$, 2.63 (s, $3 \mathrm{H}, \mathrm{CCH}_{3}$), 3.42 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.73 (m , $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), $4.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right.$), 6.87 (dd, $\left.{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=0.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.62\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}), 10.57$ (br, $1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.0\left(\mathrm{ArCH}_{3}\right), 30.6\left(\mathrm{COCH}_{3}\right), 59.1\left(\mathrm{OCH}_{3}\right)$, $64.7,70.0\left(\mathrm{CH}_{2}\right), 115.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.7,133.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.2$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 162.8,170.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{2}\right)$, $201.8\left(\mathrm{COCH}_{3}\right)$. - IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \tilde{v}=3101(\mathrm{br}, \mathrm{s}), 2934$
(s), 1733 (s), 1645 (s), 1562 (s), 1356 (m), 1296 (s), 1243 (s), $1100(\mathrm{~m}), 814(\mathrm{~m})$. - MS (EI, 70 eV$): m / z(\%)=252(42)$ $[\mathrm{M}]^{+}, 193$ (12), 177 (31), 176 (70), 161 (100). - Anal. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$ (252.26): calcd. C 61.90, H 6.39; found C 61.86, H6.21.

Methyl 3-acetyl-6-hydroxy-2,5-dimethylbenzoate (4f)

Starting with 2a ($206 \mathrm{mg}, 1.03 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL}$), molecular sieves ($4 \AA, 0.4 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.13 \mathrm{~mL}, 1.2 \mathrm{mmol})$, and $\mathbf{3 f}(418 \mathrm{mg}, 1.52 \mathrm{mmol}), \mathbf{4 f}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=10: 1$) as a colorless solid ($164 \mathrm{mg}, 72 \%$). M. p. $65-66^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.56$ (n -hexane-EtOAc $=3: 1$). Reaction time: $24 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.25$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.53 (s, 3 H , CCH_{3}), $2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.47(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar}), 11.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.7,19.8\left(\mathrm{ArCH}_{3}\right), 30.4\left(\mathrm{COCH}_{3}\right), 52.4\left(\mathrm{OCH}_{3}\right)$, $113.9,123.8,132.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 161.7$, $172.1\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{3}\right), 201.9\left(\mathrm{COCH}_{3}\right)$. $-\mathrm{IR}(\mathrm{KBr}$, cm^{-1}): $\tilde{v}=3222(\mathrm{br}, \mathrm{s}), 2951(\mathrm{~m}), 1733(\mathrm{~s}), 1647(\mathrm{~s}), 1561$ (s), 1439 (m), 1362 (m), 1303 (s), 1211 (s), 1149 (s), 1065 (m). - MS (EI, 70 eV): $m / z(\%)=222$ (49) [M] ${ }^{+}, 191(23)$, 190 (84), 175 (100), 162 (24), 91 (23). - Anal. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ (222.24): calcd. C 64.85, H 6.35; found: C 64.94, H 6.28 .

Ethyl 3-acetyl-5-ethyl-6-hydroxy-2-methylbenzoate (4g)

Starting with 2a ($113 \mathrm{mg}, 0.56 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.2 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.07 \mathrm{~mL}, 0.6 \mathrm{mmol})$, and $3 \mathrm{~g}(229 \mathrm{mg}, 0.76 \mathrm{mmol})$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ 4 g was isolated by column chromatography (silica gel; n -hexane-EtOAc $=10: 1$) as a colorless solid ($83 \mathrm{mg}, 59 \%$). M. p. $39-40^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.40$ (n-hexane-EtOAc $=10: 1$). Reaction time: $27 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22$ (t, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{3}\right), 1.43\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.67\left(\mathrm{q},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{3}\right), 4.45\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 11.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8$, $14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $20.2\left(\mathrm{ArCH}_{3}\right), 23.2\left(\mathrm{ArCH}_{2}\right), 30.7\left(\mathrm{COCH}_{3}\right), 62.2\left(\mathrm{OCH}_{2}\right)$, $114.3,129.9,132.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 161.7$, $172.0\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOEt}\right), 202.5\left(\mathrm{COCH}_{3}\right) .-\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $v=3168$ (br, s), 2978 (s), 2937 (s), 1717 (s), 1652 (s), 1558 (s), 1458 (m), 1365 (m), 1298 (s), 1204 (s), 1066 (m), 1027 (m). - MS (EI, 70 eV): $m / z(\%)=250(53)[\mathrm{M}]^{+}, 205(23)$, 204 (100), 189 (43), 176 (99), 28 (71). - Anal. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ (250.29): calcd. C 67.18, H 7.25 ; found C 67.18, H 7.21 .

Methyl 3-acetyl-5-butyl-6-hydroxy-2-methylbenzoate (4h)

Starting with 2a($198 \mathrm{mg}, 0.99 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.4 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.12 \mathrm{~mL}, 1.1 \mathrm{mmol})$, and $\mathbf{3 h}(469 \mathrm{mg}, 1.48 \mathrm{mmol}), 4 \mathrm{~h}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=10: 1$) as
a colorless solid ($200 \mathrm{mg}, 77 \%$). M. p. $54-55^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.42$ $(n$-hexane-EtOAc $=5: 1)$. Reaction time: $25 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.31-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.64\left(\mathrm{t},{ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{ArCH}_{2}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 11.27(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $20.2\left(\mathrm{ArCH}_{3}\right)$, 22.8, $29.8\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{COCH}_{3}\right), 31.7\left(\mathrm{CH}_{2}\right)$, $52.7\left(\mathrm{OCH}_{3}\right), 114.3,128.7,132.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.6$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 161.8,172.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{3}\right), 202.5\left(\mathrm{COCH}_{3}\right) .-$ IR (nujol, cm^{-1}): $\tilde{v}=3193(\mathrm{br}, \mathrm{s}), 1721$ (s), 1648 (s), 1563 (s), 1298 (s), 1254 (s), 1220 (s), 1145 (m), 1066 (m), 959 (m). - MS (GC-EI, 70 eV): $m / z(\%)=264$ (61) [M] ${ }^{+}, 217(51)$, 204 (100), 190 (81), 189 (61), 175 (20), 162 (36). Anal. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ (264.32): calcd. C 68.16, H 7.63; found: C 68.17, H 7.72.

Methyl 3-acetyl-5-hexyl-6-hydroxy-2-methylbenzoate (4i)

Starting with 2a $(0.400 \mathrm{~g}, 2.0 \mathrm{mmol}), 3 \mathrm{Bi}(0.751 \mathrm{~g}$, $2.18 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.238 \mathrm{~mL}, 2.18 \mathrm{mmol}), 4 \mathbf{i}$ was isolated as a colorless oil $(0.221 \mathrm{~g}, 38 \%) .-{ }^{1} \mathrm{H} \operatorname{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.81\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right)$, 1.18-1.27 (m, $\left.8 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 11.19 (s(br), $1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,19.9\left(\mathrm{CH}_{3}\right), 22.5,28.9,29.1,29.2\left(\mathrm{CH}_{2}\right), 29.8$ $\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{OCH}_{3}\right), 114.0,128.4,132.4(\mathrm{C})$, $133.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.3(\mathrm{C}), 161.5(\mathrm{COH}), 172.2,194.1(\mathrm{CO})$. - GC-MS (EI, 70 eV): $m / z(\%)=292(49)[\mathrm{M}]^{+}, 277(12)$, 261 (11), 245 (37), 232 (100), 217 (26), 203 (18), 190 (74), 175 (18). - HRMS (EI): $m / z=292.16754$ (calcd. 292.16691 for $\left.\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4},[\mathrm{M}]^{+}\right)$.

Ethyl 3-acetyl-5-allyl-6-hydroxy-2-methylbenzoate (4j)

Starting with 2a ($218 \mathrm{mg}, 1.09 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.4 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.14 \mathrm{~mL}, 1.3 \mathrm{mmol})$, and $\mathbf{3 j}(495 \mathrm{mg}, 1.57 \mathrm{mmol}), \mathbf{4} \mathbf{j}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=1: 0 \rightarrow 20: 1$) as a yellow oil $(209 \mathrm{mg}, 74 \%) ; R_{\mathrm{f}}=0.38$ (n-hexane$\mathrm{EtOAc}=10: 1)$. Reaction time: $25 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.44\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.54(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{ArCH}_{2}\right), 4.47\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.06-5.11$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{H}_{\mathrm{B}}\right), 5.12-5.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{\mathrm{A}} H_{B}\right)$, 5.93-6.07 (m, 1H, CHCH H_{B}), $7.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 11.39$ (s, $1 \mathrm{H}, \mathrm{OH}$). $-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.9\left(\mathrm{ArCH}_{3}\right), 30.3\left(\mathrm{COCH}_{3}\right), 33.6\left(\mathrm{ArCH}_{2}\right)$, $62.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 114.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 116.1\left(\mathrm{CH}_{2}\right.$ Alyl $), 125.7,132.5$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.7,135.6(\mathrm{CH}), 138.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 161.2,171.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right.$, COOEt), $201.8\left(\mathrm{COCH}_{3}\right) .-\mathrm{IR}$ (neat, $\left.\mathrm{cm}^{-1}\right): v=3334(\mathrm{br}$, w), 3079 (w), 2982 (m), 2939 (w), 1682 (s), 1658 (s), 1446
(m), 1323 (s), 1230 (s), 1199 (s), 1150 (m), 1018 (m). - MS (GC-EI, 70 eV): $m / z(\%)=262(70)[\mathrm{M}]^{+}, 216$ (49), 201 (67), 188 (89), 173 (100), 115 (30). - HRMS (EI, 70 eV): $m / z=262.12000$ (calcd. 262.11996 for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4},[\mathrm{M}]^{+}$).

Methyl 3-acetyl-6-hydroxy-5-methoxy-
2-methylbenzoate (4k)
Starting with $\mathbf{2 a}(231 \mathrm{mg}, \quad 1.15 \mathrm{mmol}), \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.5 \mathrm{~mL})$, molecular sieves $(4 \AA, 0.4 \mathrm{~g}), \mathrm{TiCl}_{4}(0.14 \mathrm{~mL}$, 1.3 mmol), and $\mathbf{3 k}$ ($468 \mathrm{mg}, 1.61 \mathrm{mmol}$), $\mathbf{4 k}$ was isolated by column chromatography (silica gel; n-hexane$\mathrm{EtOAc}=10: 1 \rightarrow 3: 1$) as a slightly yellow solid $(96 \mathrm{mg}, 35 \%)$. M. p. $143-144^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.12$ (n-hexane$\mathrm{EtOAc}=3: 1)$. Reaction time: $26 \mathrm{~h} .-{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta=2.47$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.54 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.91 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar})$, $9.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.8$ $\left(\mathrm{ArCH}_{3}\right), 30.4\left(\mathrm{COCH}_{3}\right), 52.5,56.3\left(\mathrm{OCH}_{3}\right)$, $114.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $117.3,130.7,131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 145.4,151.4\left(\mathrm{C}_{\mathrm{Ar}}, \mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right)$, $170.4\left(\mathrm{COOCH}_{3}\right), 201.5\left(\mathrm{COCH}_{3}\right)$. - IR (nujol, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=$ 3301 (br, m), 1732 (s), 1667 (s), 1573 (m), 1499 (m), 1291 (s), 1217 (s), 1196 (s), 1077 (s), 887 (w). - MS (GC-EI, $70 \mathrm{eV}): m / z(\%)=238(52)[\mathrm{M}]^{+}, 207(46), 206(100), 191$ (51), 178 (64), 177 (46), 163 (24). - HRMS (EI, 70 eV): $m / z=238.08392$ (calcd. 238.08358 for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5},[\mathrm{M}]^{+}$).

Ethyl 3-acetyl-5-ethoxy-6-hydroxy-2-methylbenzoate (4l)

Starting with 2a ($207 \mathrm{mg}, 1.03 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.5 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.11 \mathrm{~mL}, 1.0 \mathrm{mmol})$, and 31 ($454 \mathrm{mg}, 1.43 \mathrm{mmol}$), 41 was isolated by column chromatography (silica gel; n-hexane-EtOAc $=5$: 1) as a yellow solid ($80 \mathrm{mg}, 29 \%$). M. p. $82-83^{\circ} \mathrm{C}$; $R_{\mathrm{f}}=0.19$ (n-hexane-EtOAc $=3: 1$). Reaction time: 24 h . ${ }_{-}^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.42\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $1.47\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{3}\right)$, 2.49 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.13$ (q, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{3}\right), 4.45\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 9.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3,14.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.0$ $\left(\mathrm{ArCH}_{3}\right), 30.6\left(\mathrm{COCH}_{3}\right), 62.2,65.3\left(\mathrm{CH}_{2}\right), 115.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $118.2,131.0,132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 144.8,151.5\left(\mathrm{C}_{\mathrm{Ar}}, \mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 170.1$ (COOEt), $201.7\left(\mathrm{COCH}_{3}\right)$. - IR (KBr, cm $\left.{ }^{-1}\right): \tilde{v}=3223(\mathrm{br}$, w), 2983 (w), 1726 (s), 1658 (m), 1574 (s), 1295 (s), 1201 (s), 1161 (m), 1077 (m). - MS (EI, 70 eV): $m / z(\%)=266$ (69) $[\mathrm{M}]^{+}, 221$ (37), 220 (92), 205 (89), 192 (92), 177 (100), 148 (27). - Anal. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ (266.29): calcd. C 63.15 , H 6.81; found C 63.07, H 7.04.

Ethyl 3-acetyl-6-hydroxy-2,4-dimethyl-
5-(p-tolyloxy)benzoate (4m)
Starting with 2a ($0.400 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathbf{5 b}(0.829 \mathrm{~g}$, $2.18 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.238 \mathrm{~mL}, 2.18 \mathrm{mmol}), \mathbf{4 m}$ was iso-
lated as a colorless oil ($0.229 \mathrm{~g}, 35 \%)$. ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, CDCl_{3}): $\delta=1.31\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $2.18(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.34$ (q, ${ }^{3} J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.72\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2\right.$ $\mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $6.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.18(\mathrm{~s}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.23(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR $(62 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.3,20.6,30.2\left(\mathrm{CH}_{3}\right), 62.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 117.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 118.1(\mathrm{C}), 123.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.2$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 132.1,132.8,135.4,141.9,154.0$ (C), $154.0(\mathrm{C})$, $154.8(\mathrm{COH}), 170.2,200.9(\mathrm{CO}) .-\operatorname{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=$ 3423 (w), 1654 (s), 1569 (m), 1442 (m), 1329 (m), 1271 (s), 1045 (w), 914 (w), 858 (w), 744 (m). - GC-MS (EI, 70 eV): $m / z(\%)=328(51)[M]^{+}, 282(100), 267(32), 239(30)$, 211 (29), 119 (80), 91 (18), 65 (17), 43 (21). - HRMS (EI): $m / z=328.13039$ (calcd. 328.13053 for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5},[\mathrm{M}]^{+}$).

1-(3-Acetyl-4-hydroxy-2,6-dimethyl)-ethanone (4n)

Starting with 2b ($203 \mathrm{mg}, 0.95 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves $(4 \AA, 0.4 \mathrm{~g}), \mathrm{TiCl}_{4}(0.12 \mathrm{~mL}, 1.1 \mathrm{mmol})$, and $3 \mathbf{3 a}$ ($323 \mathrm{mg}, 1.32 \mathrm{mmol}$), $\mathbf{4 n}$ was isolated by column chromatography (silica gel; n-hexane- $\mathrm{EtOAc}=3$: 1) as an orange-brown oil ($56 \mathrm{mg}, 29 \%$); $R_{\mathrm{f}}=0.23$ $(n$-hexane-EtOAc $=3: 1)$. Reaction time: $3 \mathrm{~d} .-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.18\left(\mathrm{~d},{ }^{4} J=0.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$, ArCH_{3}), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60$ (s, 3H, CH3), 6.66 (s, 1H, Ar), 11.56 (br, 1H, OH). ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.8,19.9\left(\mathrm{ArCH}_{3}\right)$, 32.9, $33.3\left(\mathrm{COCH}_{3}\right), 117.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.5,133.4,136.3$, $139.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 160.9\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right), 205.8,207.9(\mathrm{CO}) .-$ IR (neat, cm^{-1}): $\tilde{v}=3293$ (br, s), 2991 (m), 2927 (m), 1696 (s), 1597 (s), 1356 (s), 1307 (s), 1218 (s), 1188 (s), 1070 (m), 854 (m). - MS (EI, 70 eV): m/z $(\%)=206(39)[M]^{+}, 192(11), 191$ (100), 173 (22). HRMS (EI, 70 eV): $m / z=206.09367$ (calcd. 206.09375 for $\left.\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3},[\mathrm{M}]^{+}\right)$. It has been claimed that this compound was prepared before, but no spectroscopic data were given [53].

Methyl 3-acetyl-6-hydroxy-2,4-dimethylbenzoate (40)

Starting with 2b ($208 \mathrm{mg}, 0.97 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.4 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.12 \mathrm{~mL}, 1.1 \mathrm{mmol})$, and $\mathbf{3 b}$ ($411 \mathrm{mg}, 1.58 \mathrm{mmol}$), $\mathbf{4 0}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=10: 1$) as a slightly yellow solid ($88 \mathrm{mg}, 41 \%$). M. p. $103-105^{\circ} \mathrm{C}$; $R_{\mathrm{f}}=0.31$ (n-hexane-EtOAc $=5: 1$). Reaction time: 1 week. $-{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.19$ (d, ${ }^{4} \mathrm{~J}=0.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.95$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $6.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 11.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13}{ }^{3} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.8,20.0\left(\mathrm{ArCH}_{3}\right), 33.0$ $\left(\mathrm{COCH}_{3}\right), 52.4\left(\mathrm{OCH}_{3}\right), 110.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 117.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.6$, $136.4,140.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 162.4,171.8\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{3}\right), 207.9$ $\left(\mathrm{COCH}_{3}\right)$. IR (nujol, cm^{-1}): $\tilde{v}=1703$ (s), 1662 (s), 1602
(m), 1586 (m), 1320 (s), 1252 (s), 1233 (s), 1178 (m), 1105 (m), 811 (m). - MS (GC-EI, 70 eV): $m / z(\%)=222$ (20) $[\mathrm{M}]^{+}, 207$ (18), 190 (21), 175 (100). - Anal. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ (222.24): calcd. C 64.85, H 6.35; found C 64.72, H 6.53.

Ethyl 3-acetyl-6-hydroxy-2,4-dimethylbenzoate (4p)

Starting with $\mathbf{2 b}(240 \mathrm{mg}, 1.12 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves ($4 \AA, 0.4 \mathrm{~g}$), $\mathrm{TiCl}_{4}(0.14 \mathrm{~mL}, 1.3 \mathrm{mmol})$, and $\mathbf{3 c}(369 \mathrm{mg}, 1.34 \mathrm{mmol}), \mathbf{4 p}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=15: 2$) as a yellow solid ($85 \mathrm{mg}, 33 \%$). M. p. $108-109^{\circ} \mathrm{C}$; $R_{\mathrm{f}}=0.35$ (n-hexane-EtOAc $=5: 1$). Reaction time: 3 d . $-{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~d},{ }^{4} J=0.6 \mathrm{~Hz}, \mathrm{ArCH}_{3}\right), 2.42(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.44\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 11.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.5,19.8$ $\left(\mathrm{ArCH}_{3}\right), 32.7\left(\mathrm{COCH}_{3}\right), 61.7\left(\mathrm{CH}_{2}\right), 110.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 117.1$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.4,136.1,139.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 162.2,171.2\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right.$, COOEt), $207.7\left(\mathrm{COCH}_{3}\right)$. IR (Nujol, $\left.\mathrm{cm}^{-1}\right): \tilde{v}=1703(\mathrm{~s})$, 1655 (s), 1602 (m), 1586 (m), 1355 (s), 1318 (s), 1234 (s), 1186 (s), 809 (m). - MS (GC-EI, 70 eV): $m / z(\%)=236$ (20) $[\mathrm{M}]^{+}, 221$ (16), 191 (13), 190 (28), 175 (100). - Anal. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ (236.26): calcd. C 66.09, H 6.83 . found C 65.94 , H 6.87 .

Methyl 3-acetyl-6-hydroxy-2,4,5-trimethylbenzoate (4q)

Starting with 2b ($234 \mathrm{mg}, 1.09 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves $(4 \AA, 0.4 \mathrm{~g}), \mathrm{TiCl}_{4}(0.14 \mathrm{~mL}, 1.3 \mathrm{mmol})$, and $\mathbf{3 f}(406 \mathrm{mg}, 1.48 \mathrm{mmol}), \mathbf{4 q}$ was isolated by column chromatography (silica gel; n-hexane-EtOAc $=20$: 1) as a colorless oil ($63 \mathrm{mg}, 24 \%$); $R_{\mathrm{f}}=0.25$ (n-hexane$\mathrm{EtOAc}=10: 1)$. Reaction time: $5 \mathrm{~d}\left(T_{\max }=13{ }^{\circ} \mathrm{C}\right) .-{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 11.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.6,17.3,19.8\left(\mathrm{ArCH}_{3}\right), 33.4$ $\left(\mathrm{COCH}_{3}\right), 52.4\left(\mathrm{OCH}_{3}\right), 110.2,123.7,131.8,136.3,137.8$ $\left.\left(\mathrm{C}_{\mathrm{Ar}}\right), 160.5,172.5\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}, \mathrm{COOCH}_{3}\right), 208.8 \mathrm{COCH}_{3}\right)$. - IR (nujol, cm^{-1}): $\tilde{v}=1700$ (m), 1663 (s), 1595 (w), 1325 (m), 1263 (m), 1213 (s), 1149 (m), 1099 (w), 806 (w). - MS (GC-EI, 70 eV): $m / z(\%)=236(35)[\mathrm{M}]^{+}, 221$ (9), 204 (52), 189 (100), 176 (35), 161 (11). - Anal. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ (236.26): calcd. C 66.09, H 6.83; found C 66.05 , H 6.95 .

Methyl 3-acetyl-5-butyl-6-hydroxy-

2,4-dimethylbenzoate (4r)

Starting with $\mathbf{2 b}(174 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, molecular sieves $(4 \AA, 0.4 \mathrm{~g}), \mathrm{TiCl}_{4}(0.10 \mathrm{~mL}, 0.9 \mathrm{mmol})$, and $\mathbf{3 h}(360 \mathrm{mg}, 1.14 \mathrm{mmol})$, $\mathbf{4 r}$ was isolated by column chromatography (silica gel; n-hexane- $\mathrm{EtOAc}=10: 1$) as a slightly yellow oil ($47 \mathrm{mg}, 21 \%$); $R_{\mathrm{f}}=0.25$ (n-hexane$\mathrm{EtOAc}=10: 1)$. Reaction time: $4 \mathrm{~d} .-{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.94\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33-1.52$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.95$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 11.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=14.0,16.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{ArCH}_{3}\right), 19.7\left(\mathrm{ArCH}_{3}\right)$, 23.1, 25.8, $31.0\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{COCH}_{3}\right), 52.2\left(\mathrm{OCH}_{3}\right), 110.2$, $128.4,131.7,136.3,137.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 160.4,172.4\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{OH}\right.$, $\left.\mathrm{COOCH}_{3}\right), 208.9\left(\mathrm{COCH}_{3}\right) .-\mathrm{IR}\left(\mathrm{Nujol}, \mathrm{cm}^{-1}\right): \tilde{v}=1705$ (m), 1662 (s), 1598 (w), 1263 (w), 1215 (s), 1152 (m). - MS (GC-EI, 70 eV$): m / z(\%)=278(48)[\mathrm{M}]^{+}, 263(16), 231$ (99), 218 (100), 204 (35), 203 (47), 176 (27). - Anal. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$ (278.34): calcd. C 69.04, H 7.97; found: C 69.01, H 8.05.

Crystal structure determination

The intensity data were collected on a Nonius KappaCCD diffractometer, using graphite-monochromatized $\operatorname{Mo} K_{\alpha}$ radiation. Data were corrected for Lorentz and polarization effects, but not for absorption $[54,55]$. The structure was solved by Direct Methods (SHELXS-97) and refined by full-matrix least-squares techniques against F_{o}^{2} (SHELXL-97). The hydrogen atoms were located by difference Fourier synthesis and refined isotropically [56]. All non-hydrogen atoms were refined anisotropically [56]. XP [57] was used for structure representations. Crystal Data for $4 j: \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}, M_{\mathrm{r}}=238.23 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless prism, size $0.05 \times 0.05 \times 0.04 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / n, a=8.7850(7), b=7.3091(10), c=18.1530(18) \AA$, $\beta=94.624(6)^{\circ}, \quad V=1161.8(2) \AA^{3}, \quad T=-90^{\circ} \mathrm{C}, \quad Z=4$, $\rho_{\text {calcd. }}=1.36 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu\left(\mathrm{Mo}_{\alpha}\right)=1.1 \mathrm{~cm}^{-1}, \quad F(000)=$ $504 \mathrm{e}, 7822$ reflections in $h k l(-11 \rightarrow 11 ;-9 \rightarrow 8 ;-22 \rightarrow 23)$, measured in the range $3.58^{\circ} \leq \theta \leq 27.48^{\circ}$, completeness $\theta_{\max }=99.5 \%, 2648$ independent reflections, $R_{\text {int }}=0.1095$, 1234 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right), 210$ parameters, 0 restraints, $R 1_{\mathrm{obs}}=0.0586, w R 2_{\mathrm{obs}}=0.1064, R 1_{\text {all }}=0.1668$, $w R 2_{\text {all }}=0.1409, \mathrm{GOOF}=0.961$, largest difference peak $/$ hole: $0.248 /-0.288$ e \AA^{-3}.
[1] W. Steglich, B. Fugmann, S. Lang-Fugmann (Eds.), Römpp Lexikon Naturstoffe, Thieme, Stuttgart, 1997.
[2] S. Cabiddu, C. Fattuoni, C. Floris, G. Gelli, S. Melis, F. Sotgiu, Tetrahedron 1990, 46, 861.
[3] R. Fusco, F. Sannicolo, J. Org. Chem. 1981, 46, 83.
[4] J. T. Pinhey, P. T. Xuan, Aust. J. Chem. 1988, 41, 69.
[5] W. A. Bonner, J. I. De Graw, Tetrahedron 1962, 18, 1295.
[6] H. O. House, C. B. Hudson, J. Org. Chem. 1970, 35, 647.
[7] S. Horii, H. Fukase, E. Mizuta, K. Hatano, K. Mizuno, Chem. Pharm. Bull. 1980, 28, 3601.
[8] A. J. Birch, J. Wright, Aust. J. Chem. 1969, 22, 2635.
[9] K. A. Parker, D. M. Spero, K. A. Koziski, J. Org. Chem. 1987, 52, 183.
[10] R. K. Hill, R. M. Carlson, J. Org. Chem. 1965, 30, 2414.
[11] K. C. Nicolaou, C. F. Claiborne, K. Paulvannan, M. H. D. Postema, R. K. Guy, Chem. Eur. J. 1997, 3, 399.
[12] T. Ziegler, M. Layh, F. Effenberger, Chem. Ber. 1987, 120, 1347.
[13] J. A. Elix, D. O. Chester, K. L. Gaul, J. L. Parker, J. H. Wardlaw, Aust. J. Chem. 1989, 42, 1191.
[14] J. A. Elix, C. E. Barclay, J. H. Wardlaw, A. W. Archer, S.-h. Yu, G. Kantvilas, Aust. J. Chem. 1999, 52, 837.
[15] A. de Meijere, F. Diederich (Eds.), Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 2004.
[16] V. Prelog, J. Würsch, K. Königsbacher, Helv. Chim. Acta 1951, 34, 258.
[17] M. Beringer, I. Kuntz, J. Am. Chem. Soc. 1951, 73, 364.
[18] S. H. Bertz, G. Dabbagh, Angew. Chem., Int. Ed. Engl. 1982, 21, 306.
[19] M. Yamaguchi, K. Hasebe, T. Minabi, Tetrahedron Lett. 1986, 27, 2401.
[20] D. H. R. Barton, G. Dressaire, B. J. Willis, A. G. M. Barrett, M. Pfeffer, J. Chem. Soc., Perkin Trans. 1982, 1, 665 .
[21] T. M. Harris, C. M. Harris, Tetrahedron 1977, 33, 2159.
[22] T. P. Murray, T. M. Harris, J. Am. Chem. Soc. 1972, 94, 8253.
[23] C. M. Harris, J. S. Roberson, T. M. Harris, J. Am. Chem. Soc. 1976, 98, 5380.
[24] T. M. Harris, J. V. Hay, J. Am. Chem. Soc. 1977, 99, 1631.
[25] J. S. Hubbard, T. M. Harris, Tetrahedron Lett. 1978, 47, 4601.
[26] R. M. Sandifer, A. K. Bhattacharya, T. M. Harris, J. Org. Chem. 1981, 46, 2260.
[27] S. G. Gilbreath, C. M. Harris, T. M. Harris, J. Am. Chem. Soc. 1988, 110, 6172.
[28] I. Hussain, M. A. Yawer, B. Appel, M. Sher, A. Mahal, A. Villinger, P. Langer, Tetrahedron 2008, 64, 8003.
[29] M. Sher, H. Reinke, P. Langer, Tetrahedron 2007, 63, 4080.
[30] T.-H. Chan, P. Brownbridge, J. Am. Chem. Soc. 1980, 102, 3534.
[31] For a review of 1,3-bis(silyloxy)-1,3-butadienes, see: P. Langer, Synthesis 2002, 441.
[32] H. Feist, P. Langer, Synthesis 2007, 327.
[33] G. Karapetyan, T. T. Dang, M. Sher, T. V. Ghochikyan, A. S. Saghyan, P. Langer, Curr. Org. Chem. 2012, 16, 557.
[34] R. Dede, P. Langer, Tetrahedron Lett. 2004, 45, 9177.
[35] P. J. Sankar, S. K. Das, V. S. Giri, Heterocycles 1991, 32, 1109.
[36] Z. Yoshida, H. Ogoshi, T. Tokumitsu, Tetrahedron 1970, 26, 5691.
[37] B. D. Akehurst, J. R. Bartels-Keith, J. Chem. Soc. 1957, 4798.
[38] L. Claisen, Justus Liebigs Ann. Chem. 1897, 297, 57.
[39] L. Claisen, Chem. Ber. 1893, 26, 2731.
[40] F. I. Guseinov, Russ. Chem. Bl. 1999, 48, 743; Izv. Akad. Nauk Ser. Khim. 1999, 747.
[41] E. E. Emelina, B. A. Ershov, A. K. Zelenin, S. I. Selivanov, Russ. J. Org. Chem. 1994, 30, 1630; Zh. Org. Khim. 1994, 30, 1548.
[42] D. T. W. Chu, S. N. Huckin, Can. J. Chem. 1980, 58, 138.
[43] L. Kozerski, K. Kamienska-Trela, L. Kanina, W. von Philipsborn, Helv. Chim. Acta 1983, 66, 2113.
[44] J.-C. Zhuo, Magn. Reson. Chem. 1997, 35, 432.
[45] L. Kozerski, R. P. Kawecki, Krajewski, B. Kwiecień, D. W. Boykin, S. Bolvig, P. E. Hansen, Magn. Reson. Chem. 1998, 36, 921.
[46] L. Kozerski, B. Kwiecień, R. Kawecki, Z. UrbańczykLipkowska, W. Bocian, E. Bednarek, J. Sitkowski, J. Maurin, L. Pazderski, P. E. Hansen, New J. Chem. 2004, 28, 1562.
[47] M. Gróf, V. Milata, J. Kozísek, Acta Crystallogr. 2006, E62, o4464.
[48] E. M. B. Janke, S. Schlund, B. Engels, R. Dede, I. Hussain, P. Langer, M. Rettig, K. Weisz, J. Org. Chem. 2009, 74, 4878.
[49] H. Shanan-Atidi, Y. Shvo, Tetrahedron Lett. 1971, 603.
[50] K. Krägeloh, G. Simchen, Synthesis 1981, 30.
[51] G. A. Molander, K. O. Cameron, J. Am. Chem. Soc. 1993, 115, 830.
[52] V. T. H. Nguyen, E. Bellur, B. Appel, Synthesis 2006, 2865.
[53] CCDC $944779(\mathbf{4} \mathbf{j})$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.
[54] R. Hooft, Collect, Nonius KappaCCD Data Collection Software, Nonius BV, Delft (The Netherlands) 1998.
[55] Z. Otwinowski, W. Minor in Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A (Eds.: C. W. Carter Jr, R. M. Sweet), Academic Press, New York, 1997, pp. 307.
[56] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
[57] XP, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin (USA) 1997.

