Cobalt(III)-Binding of Gluconate and 2-Amino-2-Deoxy-Gluconate

Max Pfister, Sarah Illi and Peter Klüfers Department Chemie der Ludwig-Maximilians-Universität, Butenandtstraße 5 – 13, D-81377 München, Germany

Reprint requests to Prof. Dr. P. Klüfers. Fax: ++49-89-2180-77407.

E-mail: kluef@cup.uni-muenchen.de

Z. Naturforsch. **2013**, 68b, 739 – 742 DOI: 10.5560/ZNB.2013-3082 Received March 6, 2013

Dedicated to Professor Heinrich Nöth on the occasion of his 85th birthday

Two isomers of the [Co(tren)(D-Glc1A1,2H₋₂-κ²O^{1,2})]⁺ (1) chelate are formed in equal parts in the reaction of [Co(tren)Cl₂]Cl and sodium gluconate. In contrast, the gluconate's 2-amino-2-deoxy derivative glucosaminate formed a single isomer of [Co(tren)(D-Glc1A2N1H₋₁-κ²N, O²)]²⁺ (2). Crystals of the *OC*-6-34 isomer of 1, [1a]PF₆·H₂O, showed the support of the metal-binding site by intramolecular hydrogen bonds. Due to the inertness of the cobalt(III) chelates, spectroscopy on redissolved crystals of [1a]PF₆·H₂O allowed the separation of the two ¹³C NMR signal sets of the isomeric mixture. In a DFT approach, a small energy difference explained the formation of two isomers in the case of the gluconate. A larger difference was obtained for the glucosaminate, in line with the known rules for the stereospecific amino acid-Co(tren) chelation.

Key words: Gluconate, 2-Amino-2-deoxy-gluconate, Glucosaminate, Cobalt(III)

Introduction

D-Gluconate (Scheme 1) is a widely used chelator for di- and trivalent metal centres. Despite this fact, our knowledge of the structural principles of its chelates is sparse. In terms of X-ray analyses, only four crystal structures have been described as yet with the central metals being Pb^{II}, Mn^{II} and Cu^{II} [1–4]. To the best of our knowledge, no single-crystal X-ray data are available in the case of trivalent central metals. As a consequence, highly speculative formulae have been assigned to the medically used ferric gluconates, for example, which serve as iron-supplementing preparations in anemia therapy [5]. With this work we contribute to this issue by reporting the first crystal

Scheme 1. Stereochemical drawings and IUPAC-style abbreviations of D-gluconic acid (left) and the serine homologue 2-amino-2-deoxy-D-gluconic acid (D-glucosaminic acid), the latter in its zwitterionic form (right).

structure analysis of a gluconato chelate of a trivalent metal centre. Specifically, we describe gluconate chelation of the $[Co^{III}(tren)]^{2+}$ residue [tren = tris(2-aminoethyl)amine]. To highlight the peculiarities of gluconate coordination, the investigation was extended to a related ligand, the 2-amino-2-deoxy derivative of D-gluconate, D-glucosaminate (Scheme 1). Glucosaminic acid is a so-called 'sugar amino acid' which may be regarded as a higher homologue of serine.

Results and Discussion

The reaction of equimolar amounts of gluconic acid and the CoN₄ (N = amine function) source [Co(tren)Cl₂]Cl resulted, in the presence of sodium hydroxide, in a solution whose ¹³C NMR spectrum showed two sets of gluconate-chain signals arranged pairwise, together with twelve well-resolved signals for the tren carbon atoms (two sets of the three CH2-NH2 carbons at lower field and two sets of the three CH₂-NR₂ carbons at higher field). After the addition of hexafluoridophosphate, one component crystallised within six weeks. Fig. 1 shows the structure of the complex monocation in the crystals of $[Co(tren)(D-Glc1A1,2H_{-2}-\kappa^2O^{1,2})]PF_6\cdot H_2O$ ([1a]PF₆·H₂O). In 1a, the free *cis*-coordination site of the Co(tren) moiety is occupied by the doubly deprotonated α -alkoxy-carboxylate function of gluconic acid, which forms a flat, almost unpuckered, five-membered chelate ring. The carboxylate oxygen atom is attached trans to the tertiary amine nitrogen atom. In terms of IUPAC's configuration index, 1a thus resembles the notation OC-6-34 [6]. A second isomer of similar sta740 Note

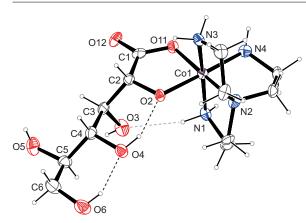


Fig. 1 (color online). The structure of the cation in crystals of $[1a]{\rm PF}_6\cdot{\rm H}_2{\rm O}$ (ORTEP representation with 50% probability ellipsoids). Distances (Å) from Co1 to: O2 1.896(2), O3 1.898(2), N1 1.960(3), N2 1.939(3), N3 1.956(3), N4 1.946(3); torsion angle O11–C1–C2–O2 -8.4° . The <code>intra-and inter-molecular hydrogen bonds</code> are specified in Table 2.

bility might have been expected with the gluconate ligand turned 180° around the chelate ring's twist axis running through the cobalt atom. The IUPAC configuration index of this second isomer of the [Co(tren)(D-Glc1A1,2H₋₂- $\kappa^2 O^{1,2}$)] cation (**1b**) is OC-6-43. Since both isomers should have about the same energy, both should form in about the same molar amount [the N1···O3 hydrogen bond (Fig. 1) that provides another link between the gluconate and the Co(tren) moiety, in addition to the Co-O bonds, would be maintained via the N3 atom due to the Co(tren) residue's apparent C_s symmetry]. With a crystalline isomer in hand, a final assignment of the ¹³C NMR spectrum was tangible since cobalt(III) complexes are normally inert towards ligand substitution. In fact, redissolved crystals of the salt of 1a showed a single set of signals in its ¹³C NMR spectrum and thus allowed the assignment of both species in the reaction mixture. The obtained δ and $\Delta\delta$ values (Table 1) underline the similarity of the species including the common $\kappa^2 O^{1,2}$ bonding mode. It thus seems reasonable to consider **1b** the *OC*-6-43 isomer.

Further characteristics of the gluconato ligand are highlighted in Fig. 1. Most notably, two of the four hydrogen bond-donating hydroxy functions establish intramolecular bonds. Thus, a short cooperative sequence O6–H···O4–H···O2 stabilises the cobalt-binding alkoxy function. As with the N···O3 bonds, these interactions can be maintained in the second

Table 1. ^{13}C NMR chemical shifts (δ) of 1 and 2 relative to $\delta(\text{MeOH})=49.5$, and coordination-induced shift (CIS) values defined by $\Delta\delta=\delta(\text{complex})-\delta(\text{free ligand})$ in aqueous solution. CIS values for 1 and 2 refer to the gluconate anion and the glucosamine zwitterion as the free species, respectively.

-	C1	C2	C3	C4	C5	C6
$\delta(1a)$	191.3	80.8	76.6	72.0	70.3	63.7
$\Delta \hat{\delta}(1a)$	12.1	6.1	3.2	0.2	-1.2	0.4
$\delta(1b)$	190.0	82.4	74.7	71.7	69.9	63.5
$\Delta\delta(1\mathbf{b})$	10.9	7.7	1.5	-0.1	-1.6	0.2
$\delta(2)$	184.2	62.4	68.7	72.7	71.2	62.9
$\Delta\delta(2)$	10.7	3.1	0.5	-1.1	-0.5	-0.8

Table 2. Hydrogen bonds in [1a]PF₆·H₂O. No standard deviation is given for values derived from calculated H atom positions; D: hydrogen bond donor, A: hydrogen bond acceptor. Symmetry codes: ${}^{i}x+1/2, -y+3/2, -z;$ ${}^{ii}x+1, y+1, z;$ ${}^{iii}x-1/2, -y+3/2, -z;$ ${}^{iv}x, y-1, z;$ ${}^{v}-x+1, y+1/2, -z+1/2;$ ${}^{vi}x-1/2, -y+3/2, -z.$

D	Н	A	D-H	H-A	D···A	D–H···A
			(Å)	(Å)	(Å)	(deg)
О3	H83	O7i	0.84	1.95	2.749(4)	159
O4	H84	O2	0.84	1.85	2.592(3)	147
O5	H85	F6 ⁱⁱ	0.84	2.41	3.191(4)	154
O5	H85	F3 ⁱⁱ	0.84	2.62	3.295(5)	138
O6	H86	O4	0.84	1.95	2.633(3)	138
N1	H711	O3	0.92	2.28	3.164(4)	161
N1	H712	O12 ⁱⁱⁱ	0.92	2.07	2.969(4)	164
N3	H731	$O6^{iv}$	0.92	1.93	2.829(4)	165
N3	H732	F5 ^v	0.92	2.41	3.185(4)	141
N3	H732	F4 ^v	0.92	2.53	3.403(4)	158
N4	H741	O12 ⁱⁱⁱ	0.92	2.18	2.978(4)	144
N4	H742	$O6^{iv}$	0.92	2.33	3.115(4)	143
O7	H871	O4 ^{iv}	0.81(3)	2.16(3)	2.959(4)	165(4)
O7	H872	O5 ^{vi}	0.82(3)	2.17(3)	2.881(4)	146(4)

isomer. Table 2 shows a comprehensive list of the hydrogen bonds in the solid. The graph-set analysis showed the relevant patterns [7, 8]: S(6) (unitary graph set C4-O4-H84···O2-C2-C3), S(6) (unitary graph set C6-O6-H86···O4-C4-C5), S(7) (unitary graph set O2-Co-N1-H711···O3-C3-C2), C(10) (unitary graph set H731···O6-C6-C5-C4-C3-C2-O2-Co-N3), $C_2^2(7)$ (binary graph set H501···O4-C4-C3-O3···H83···O7), C_2^2 (13) (binary graph set H731···O6-C6-C4-C3-C2-C1-O12···H712-N1-Co-N3), R_2^2 (8) (binary graph set O3-H83···O7-H872···O5-C5-C4-C3), and $R_2^1(6)$ (binary graph set N3-H731···O6···H742-N4-Co).

Energetic equivalence of the isomers is not shared by the Co(tren) chelate of the gluconate derivative 2-amino-2-deoxy-gluconate (glucosaminate). Under similar conditions (one more mole of base added), Note 741

according to 13 C NMR data, a single major $\kappa^2 O^1 N$ chelated product instead of two isomers was formed (Table 1). Being a 'sugar amino acid' and thus an amino acid, glucosaminic acid follows the rules of amino acid-Co(tren) chelation. Already in 1976, Mitsui et al. described the existence of two isomers of the $[Co(tren)(GlyH_{-1})]^{2+}$ ion (Gly = glycine) of different stability, a stable orange one and an unstable red one. The stable isomer has the amino acid NH₂ function trans to the tertiary nitrogen atom of the tren ligand (OC-6-43 in terms of the IUPAC configuration index), and the unstable isomer bears its carboxy function trans to N^{tert} (OC-6-34). The energy of the latter isomer was determined to be 2.8 kcal mol⁻¹ (11.7 kJ mol⁻¹) higher by means of a force-field approach [9]. In agreement with the result for glucosaminate, other amino acids have been found to form the same stable isomer stereoselectively as the only product [10-12].

To explain the divergent result – two major isomers for the gluconate but a single major isomer in the case of the sugar amino acid – a comparative DFT approach was chosen. For the calculation, glucosaminate was truncated to glycinate, and gluconate to glycolate. The result is in agreement with the ¹³C NMR-spectroscopic findings. Hence, at the BP/def2-TZVP level of theory, the glycinate isomers show an energy difference of 15.5 kJ mol⁻¹, close to the force-field value of ref. [9], with the *OC*-6-43 isomer as the stable species. In contrast, the glycolate isomers differed in energy by only 6.3 kJ mol⁻¹, which we interpret to be small enough to understand the presence of the two isomers in equal parts in the real-world experiment.

Conclusions

Different rules are valid for the chelation of the Co(tren) residue to gluconate and glucosaminate. Since the Co(tren) probe lacks C_2 symmetry, two isomers may be formed by the chelation of a specific metal-binding site by a 180° turn of the ligand. In line with energies calculated in a DFT approach, both isomers were detected with the gluconato ligand, whereas the glucosaminato ligand followed the known rules of amino acid-Co(tren) chelation and stereoselectively formed one isomer (2). Unfortunately, we did not succeed in isolating crystals of a salt of 2. However, it seems reasonable to suppose that the observed species

follows the rule and bears the amino acid nitrogen donor *trans* to the tren ligand's tertiary amine function.

Experimental Section

 $[Co(tren)Cl_2]Cl$ was prepared according to a protocol for $[Co(en)_2Cl_2]Cl$ [13].

 $[Co(tren)Cl_2]Cl(1)$

(0.31 g, 1.0 mmol) was dissolved in water (8 mL). D-Gluconic-acid δ -lactone (0.18 g, 1.0 mmol), NaOH (0.080 g, 2.0 mmol) and charcoal (0.8 g) were added. The dark-red solution was heated for 1 h at 75 °C. The charcoal was filtered off. 0.1 M KPF₆ solution was allowed to diffuse into the filtrate at 4 °C. Red crystals of [1a]PF₆·H₂O formed within six weeks in 0.213 g yield (38%). – Elemental analyis for C₁₂H₂₆CoF₆N₄O₇P·H₂O: calcd. C 25.72, H 5.04, N 10.00; found: C 25.50, H 5.23, N 10.01; %.

Crystallographic data for [1a] $PF_6 \cdot H_2O$

 $C_{12}H_{30}\text{CoF}_6\text{N}_4\text{O}_8\text{P}, M_{\text{r}} = 562.30$, orthorhombic, $P2_12_12_1$, a = 8.7147(5), b = 10.1638(5), c = 23.5678(10) Å, V = 2087.5(2) Å³, Z = 4, $\rho = 1.79$ g cm⁻³, $\mu = 1.0$ mm⁻¹, no absorption correction applied, crystal size: $0.31 \times 0.25 \times 0.12$ mm³, T = 200(2) K, Oxford Xcalibur KappaCCD, Mo K_α , θ range: $3.99 - 26.37^\circ$, 10236 hkl, 3582 independent, $R_{\text{int}} = 0.0371$, $\sigma(I)/I = 0.0670$, 300 parameters, 3 restraints, $R(F_{\text{obs}}) = 0.0350$, $R_{\text{w}}(F^2) = 0.0662$, S = 0.937, shift/error_{max} = 0.001, max. / min. residual electron density: 0.37 / -0.29 e Å⁻³, Flack absolute-structure parameter x: 0.005(16). Programs used: SHELX, ORTEP [14, 15].

CCDC 927674 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

 $[Co(tren)Cl_2]Cl(2)$

(0.39 g, 1.3 mmol) was dissolved in water (2.5 mL). D-Glucosaminic acid (0.24 g, 1.3 mmol), NaOH (0.10 g, 2.5 mmol) and charcoal (0.1 g) were added. The dark-red solution was heated for 1 h at 50 °C. The charcoal was filtered off. The 13 C NMR spectrum of the solution showed **2** as the single main product besides minute amounts of by-products.

NMR spectra were recorded at room temperature on a Jeol Eclipse 400 NMR (1 H: 400 MHz, 13 C{ 1 H}: 101 MHz) or a Jeol Eclipse 270 spectrometer (1 H: 270 MHz; 13 C{ 1 H}: 68 MHz). When D₂O was used as a solvent, one drop of methanol (referenced to 49.5 ppm) was added to the sample tube (5 mm) in order to obtain a reference signal in the 13 C{ 1 H} NMR spectra. The 1 H and 13 C{ 1 H} NMR signals were assigned by means of 1 H- 1 H COSY, DEPT135, 1 H- 13 C

742 Note

HMQC and ¹H-¹³C HMBC experiments. The values for the free ligands were determined in their neutral aqueous solutions, and were referenced to 49.5 ppm for the ¹³C NMR signal of methanol. The results are listed in Table 1 for the glucose-derived ligands. – ¹³C NMR data for the tren spectator ligand: **1a**: 63.0, 62.6, 60.9, 45.4, 45.0, 44.4; **1b**: 62.9,

62.1, 60.1, 45.2, 44.9, 44.2; **2**: 62.0, 61.6, 59.2, 45.3, 45.2, 44.4; free tren: 63.7, 63.3, 60.2, 45.8, 45.5, 44.1 ppm.

DFT calculations were performed with ORCA at the BP/def2-TZVP level of theory [16]. A solvent model was applied (COSMO with the dielectric constant of water) as well as Grimme's van der Waals correction [17].

- [1] M. Yodoshi, M. Odoko, N. Okabe, Acta Crystallogr. 2006, E62, m2021 – m2023.
- [2] M. Kato, A. K. Sah, T. Tanase, M. Mikuriya, *Inorg. Chem.* 2006, 45, 6646–6660.
- [3] T. Lis, Acta Crystallogr. 1984, C40, 374-376.
- [4] T. Lis, Acta Crystallogr. 1979, B35, 1699 1701.
- [5] B. Michael, S. Fishbane, D. W. Coyne, R. Agarwal, D. G. Warnock, *Nat. Clin. Pract. Neph.* **2006**, 2, 92-100.
- [6] N. G. Connelly, T. Damhus, R. M. Hartshorn, A. T. Hutton, *Nomenclature of inorganic chemistry: IUPAC recommendations 2005*, The Royal Society of Chemistry, Cambridge, 2005.
- [7] M. C. Etter, J. C. MacDonald, J. Bernstein, Acta Crystallogr. 1990, B46, 256 262.
- [8] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 1995, 34, 1555 – 1573.

- [9] Y. Mitsui, J.-I. Watanabe, Y. Harada, T. Sakamaki, Y. Litaka, Y. Kushi, E. Kimura, J. Chem. Soc., Dalton Trans. 1976, 2095 – 2102.
- [10] X. Hu, J. Cai, C. Chen, X.-M. Chen, J. Liang-Nian, Cryst. Eng. 2001, 4, 141–157.
- [11] J. Cai, X. Hu, X. Feng, W. Shao, L. Ji, I. Bernal, Eur. J. Inorg. Chem. 2000, 2000, 2199 – 2205.
- [12] M. K. Saha, U. Mukhopadhyay, I. Bernal, *Dalton Trans.* 2004, 0, 1466–1473.
- [13] B. Heyn, B. Hipler, G. Kreisel, H. Schreer, D. Walther, Anorganische Synthesechemie, Springer, Berlin, 1990.
- [14] G. Sheldrick, Acta Crystallogr. 2008, A64, 112 122.
- [15] L. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
- [16] F. Neese, Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 73 78.
- [17] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154119.