Ca₂Pd₂Cd with W₂B₂Co-type Structure Michael Johnscher and Rainer Pöttgen Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de Z. Naturforsch. **2013**, 68b, 95 – 98 DOI: 10.5560/ZNB.2013-2314 Received November 29, 2012 Ca₂Pd₂Cd was synthesized by high-frequency melting of the elements in a sealed niobium ampoule. Its structure was refined from single-crystal X-ray diffractometer data: W₂B₂Co type, *Immm*, a = 444.58(6), b = 590.25(6), c = 863.07(10) pm, wR2 = 0.0252, 305 structure factors, 13 variables. The palladium and cadmium atoms build up two-dimensional [Pd₂Cd] networks which consist of Pd₄Cd₂ hexagons and Pd₂Cd₂ rectangles with 272.7 pm Pd–Pd and 273.2 pm Pd–Cd. The calcium atoms are coordinated by one Pd₄Cd₂ and one Pd₂Cd₂ unit. The structure of Ca₂Pd₂Cd is compared to that of Ce₂Pd₂Cd with its tetragonal Mo₂B₂Fe type. Key words: Cadmium, Intermetallics, Crystal Chemistry, Palladium, Calcium ### Introduction The Mo₂B₂Fe-type structure [1], a ternary ordered version of U₃Si₂ [2, 3], has more than 200 representatives for element combinations RE_2T_2X (RE = rare earth element, T = transition metal; X = Mg, Zn, Cd, In, Sn, Pb) [4]. Since T elements from the Fe, Co, Ni, and Cu group can be used and the X component can be a di-, tri- or tetravalent element, significant variations of the valence electron concentration (VEC) are possible, leading to a broad variety of magnetic and electric properties in this family of compounds [4]. In the case of indides and stannides it is sometimes even possible to substitute the rare earth atoms by titanium, zirconium or hafnium [5-8]. Synthesis attempts for indides with the divalent alkaline earth elements or europium with lower VEC also led to compounds A₂Pd₂In and A_2 Pt₂In (A = Ca, Sr, Eu) [9 – 11], however, these intermetallics crystallize with the monoclinic HT-Pr₂Co₂Al type [12, 13], similar to Ca₂Ir₂Si [14], with distinctly different polyanionic networks. In continuation of our systematic studies of AE_2T_2X intermetallics (AE = alkaline earth element) we obtained the cadmium compound Ca_2Pd_2Cd which again crystallizes with another structure, the orthorhombic W_2B_2Co type [15]. Parallel to our work the isotypic phase Ca_2Pt_2Cd was published by Samal and Corbett [16]. The synthesis and structure of Ca_2Pd_2Cd are reported in this Note. # **Experimental** Synthesis Ca₂Pd₂Cd was synthesized directly from the elements. Starting materials were sublimed calcium ingots (Johnson Matthey, >99.5%), palladium plates (Allgemeine Gold- und Silberscheideanstalt, Pforzheim, >99.9%), and a cadmium rod (Johnson Matthey, >99.9%). The moisture-sensitive calcium pieces were kept under argon in a Schlenk tube prior to the reaction. The argon was purified with titanium sponge (870 K), silica gel and molecular sieves. A starting composition of 2Ca: 2Pd: 1Cd was arc-welded [17] in a niobium tube (ca. 1.5 cm³ volume) under an argon pressure of about 700 mbar. The tube was placed in a water-cooled quartz sample chamber of an induction furnace (Hüttinger Elektronik, Freiburg, type TIG 1.5/300) [18] and first rapidly heated to ca. 1320 K. The temperature was then lowered to 870 K within 10 min, kept at that temperature for another four hours, followed by rapid cooling (switching off the power supply). The temperature was controlled through a Sensor Therm Methis MS09 pyrometer with an accuracy of ± 30 K. The Ca₂Pd₂Cd sample could easily be separated from the niobium tube by mechanical fragmentation. Ca₂Pd₂Cd is slightly sensitive to moisture and was kept in a Schlenk tube under argon. The powdered sample is dark gray, and single crystals exhibit metallic luster. EDX data Semiquantitative EDX analyses of several single crystals were carried out in variable pressure mode with a Zeiss EVO® MA10 scanning electron microscope with wollastonite, palladium and cadmium as standards. The experimentally observed average compositions were close to the ideal one. No impurity elements were detected, except some niobium traces (only on the surface of some of the polycrystalline pieces) that resulted from a reaction with the crucible material. Table 1. Crystallographic data and structure refinement of $\text{Ca}_2\text{Pd}_2\text{Cd}$. | Ca ₂ Pd ₂ Cd | |------------------------------------| | 405.36 | | W_2B_2Co | | Immm; 2 | | a = 444.58(6) | | b = 590.25(6) | | c = 863.07(10) | | V = 0.2265 | | $60 \times 70 \times 100$ | | 5.94 | | 0.605 / 0.358 | | 60 | | 5 | | -59.9-43.9; 0.3 | | 7.0 / -6.1 / 0.013 | | MoK_{α} ; 71.073 | | 14.6 | | 360 | | 4–35 | | $\pm 7, \pm 9, \pm 13$ | | 5282 | | 305 / 0.0305 | | 295 / 0.0086 | | 305 / 13 | | 1.233 | | 0.0121 / 0.0251 | | 0.0125 / 0.0252 | | 0.0143(5) | | 0.45 / -0.66 | | | ## X-Ray diffraction The polycrystalline $\text{Ca}_2\text{Pd}_2\text{Cd}$ sample was characterized by powder X-ray diffraction on a Guinier camera (equipped with a Fuji-film image plate system, BAS-1800) using $\text{Cu}K_{\alpha 1}$ radiation and α -quartz (a=491.30, c=540.46 pm) as an internal standard. The orthorhombic lattice parameters (Table 1) were refined from the powder data. The experimental pattern was compared to a calculated one [19] in order to ensure correct indexing. Selected single crystals of Ca₂Pd₂Cd were glued to thin quartz fibers, and their quality was checked by Laue photographs on a Buerger camera (white Mo radiation). Intensity data were collected at room temperature by use of a Stoe Stadi Vari diffractometer equipped with a Mo micro focus source and a Pilatus detection system and scaled subsequently following the Gaussian-shaped profile of the X-ray source. A numerical absorption correction was applied to the data set. All relevant details concerning the data collection and evaluation are listed in Table 1. ### **Results and Discussion** Structure refinement of Ca₂Pd₂Cd Isotypism of Ca₂Pd₂Cd with the orthorhombic W₂B₂Co type was already evident from the Guinier powder data and from our recent investigation of Pr₂Ni₂Sn [20]. Careful examination of the data set revealed a body-centered orthorhombic lattice and no further systematic extinctions, in agreement with space group *Immm*. The atomic sites of Pr₂Ni₂Sn [20] were taken as starting values, and the structure was refined with anisotropic displacement parameters for all atoms with SHELXL-97 (full-matrix least-squares on F_0^2) [21, 22]. Separate refinement of the occupancy parameters revealed no deviation from the ideal composition. All sites were fully occupied within one standard deviation. A final difference Fourier synthesis showed no significant residual peaks. The refined atomic positions, the displacement parameters, and the interatomic distances are given in Tables 2 and 3. Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; E-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on quoting the deposition number CSD-425471. ## Crystal chemistry Ca₂Pd₂Cd crystallizes with the orthorhombic W₂B₂Co-type structure, space group *Immm*, similar to Ca₂Pt₂Cd [16] and Ca₂Cu₂Ga [23]. A view of Table 2. Atomic coordinates and anisotropic displacement parameters (pm²) for Ca₂Pd₂Cd. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. $U_{23} = U_{13} = U_{12} = 0$. | Atom | Wyckoff
site | х | у | z | U_{11} | U_{22} | U_{33} | $U_{ m eq}$ | |------|-----------------|-----|------------|------------|----------|----------|----------|-------------| | Ca | 4 <i>j</i> | 1/2 | 0 | 0.29864(6) | 229(2) | 204(2) | 192(2) | 208(2) | | Pd | 4h | 0 | 0.23098(4) | 1/2 | 190(1) | 191(1) | 214(1) | 198(1) | | Cd | 2a | 0 | 0 | 0 | 179(1) | 187(1) | 275(1) | 214(1) | Fig. 1. View of the Ca₂Pd₂Cd (W₂B₂Co type) and Ce₂Pd₂Cd (Mo₂B₂Fe type) [28] structures approximately along the *a* axis. Calcium (cerium), palladium, and cadmium atoms are drawn as medium grey, black filled, and open circles, respectively. The two-dimensional [Pd₂Cd] networks are emphasized. Table 3. Interatomic distances (pm) in the structures of Ca₂Pd₂Cd and Ce₂Pd₂Cd [28]. All distances of the first coordination spheres are listed. Standard deviations are all smaller or equal than 0.2 pm. | $^{2}d_{2}C$ | d | | Ce ₂ I | Ce ₂ Pd ₂ Cd | | | | | | |--------------|--|---|---|---|---|---|--|--|--| | 2 | Pd | 302.7 | Ce: | 2 | Pd | 293.1 | | | | | 4 | Pd | 313.4 | | 4 | Pd | 308.8 | | | | | 2 | Cd | 340.4 | | 4 | Cd | 348.2 | | | | | 2 | Cd | 342.5 | | 1 | Ce | 383.9 | | | | | 1 | Ca | 347.6 | | 2 | Ce | 393.3 | | | | | 4 | Ca | 378.9 | | 4 | Ce | 406.3 | | | | | 1 | Pd | 272.7 | Pd: | 1 | Pd | 281.5 | | | | | 2 | Cd | 273.2 | | 2 | Ce | 293.1 | | | | | 2 | Ca | 302.7 | | 2 | Cd | 306.1 | | | | | 4 | Ca | 313.4 | | 4 | Ce | 308.8 | | | | | 4 | Pd | 273.2 | Cd: | 4 | Pd | 306.1 | | | | | 4 | Ca | 340.4 | | 8 | Ce | 348.2 | | | | | 4 | Ca | 342.5 | | | | | | | | | | 2
4
2
2
1
4
1
2
2
4
4
4
4
4
4
4
4
4
4
4 | 4 Pd 2 Cd 2 Cd 1 Ca 4 Ca 1 Pd 2 Cd 2 Cd 4 Ca | 2 Pd 302.7 4 Pd 313.4 2 Cd 340.4 2 Cd 342.5 1 Ca 347.6 4 Ca 378.9 1 Pd 272.7 2 Cd 273.2 2 Ca 302.7 4 Ca 313.4 4 Pd 273.2 4 Ca 340.4 | 2 Pd 302.7 Ce: 4 Pd 313.4 2 Cd 340.4 2 Cd 342.5 1 Ca 347.6 4 Ca 378.9 1 Pd 272.7 Pd: 2 Cd 273.2 2 Ca 302.7 4 Ca 313.4 4 Pd 273.2 Cd: 4 Ca 340.4 | 2 Pd 302.7 Ce: 2 4 Pd 313.4 4 2 Cd 340.4 4 2 Cd 342.5 1 1 Ca 347.6 2 4 Ca 378.9 4 1 Pd 272.7 Pd: 1 2 Cd 273.2 2 2 Ca 302.7 2 4 Ca 313.4 4 4 Pd 273.2 Cd: 4 4 Ca 340.4 8 | 2 Pd 302.7 Ce: 2 Pd 4 Pd 313.4 4 Pd 2 Cd 340.4 4 Cd 2 Cd 342.5 1 Ce 1 Ca 347.6 2 Ce 4 Ca 378.9 4 Ce 1 Pd 272.7 Pd: 1 Pd 2 Cd 273.2 2 Ce 2 Ca 302.7 2 Cd 4 Ca 313.4 4 Ce 4 Pd 273.2 Cd: 4 Pd 4 Ca 340.4 8 Ce | | | | the Ca₂Pd₂Cd structure approximately along the *a* axis is presented in Fig. 1. The palladium and cadmium atoms build up two-dimensional networks which are composed of Pd₂Cd₂ rectangles and elongated Pd₄Cd₂ hexagons. The Pd–Cd distances within these rings are 273 pm long, and they compare well with the sum of the covalent radii of 269 pm [24]. Similar Pd–Cd distances occur in the three-dimensional [Pd₃Cd] network of Pr₆Pd₁₃Cd₄ [25] (274 pm), while they are slightly longer in the [PdCd₂] network of LaPdCd₂ [26] (284–285 pm). Besides the covalent Pd–Cd bonding, the [Pd₂Cd] network is also stabilized by Pd–Pd bonds (272 pm), even slightly shorter than in *fcc* palladium (275 pm) [27]. Due to the body-centered structure, every other $[Pd_2Cd]$ network is shifted by 1/2 1/2 1/2. The networks are separated and charge-balanced by the calcium atoms. In contrast to Ca_2Pd_2Cd , all RE_2Pd_2Cd intermetallics [28–31] crystallize in the tetragonal Mo_2B_2Fe type. The Ce_2Pd_2Cd structure is shown for comparison in Fig. 1. Again the palladium and cadmium atoms build up a two-dimensional [Pd_2Cd] network, however, the latter solely consists of distorted Pd_3Cd_2 pentagons with much longer Pd-Cd (306 pm) and Pd-Pd (282 pm) distances [28]. These layers are stacked in AA sequence, and they are separated and charge-balanced by the cerium atoms. The near-neighbor coordination of the calcium and cerium atoms in both structures is shown in Fig. 2. In total each metal cation has six palladium and Fig. 2. Coordination of the calcium and cerium atoms in the structures of Ca₂Pd₂Cd and Ce₂Pd₂Cd [28]. Calcium (cerium), palladium, and cadmium atoms are drawn as medium grey, black filled, and open circles, respectively. The site symmetries are indicated. four cadmium neighbors, but with different coordination, $2 \times Pd_3Cd_2$ in Ce_2Pd_2Cd vs. $Pd_4Cd_2 + Pd_2Cd_2$ in Ca_2Pd_2Cd . This leads to differences in the Ca–Ca vs. Ce–Ce coordinations. The two Pd_3Cd_2 pentagons in Ce_2Pd_2Cd are separated by 393 pm, and we observe five equatorial cerium neighbors and one above and below. The Pd_4Cd_2 hexagon and the Pd_2Cd_2 rectangle in Ca_2Pd_2Cd show larger separation of 431 pm, and the calcium atoms react on the smaller size of the Pd_2Cd_2 rectangle, a puckering effect in order to optimize bonding with these palladium and cadmium atoms. In summary, the substitution of the rare earth atoms in RE_xT_y Cd_z phases [32] by alkaline earth metals offers interesting new structural possibilities. The change in size and VEC leads to different structural motifs. Currently we systematically investigate the AE-T-Cd systems with respect to phase formation and crystal chemistry. First results show close similarities with the corresponding AE-T-Mg systems [33]. # Acknowledgement This work was financially supported by the Deutsche Forschungsgemeinschaft. - W. Rieger, H. Nowotny, F. Benesovsky, *Monatsh. Chem.* 1964, 95, 1502. - [2] W. H. Zachariasen, Acta Crystallogr. 1949, 2, 94. - [3] K. Remschnig, T. Le Bihan, H. Noël, P. Rogl, J. Solid State Chem. 1992, 97, 391. - [4] M. Lukachuk, R. Pöttgen, Z. Kristallogr. 2003, 218, 767. - [5] R. Pöttgen, R. Dronskowski, J. Solid State Chem. 1997, 128, 289. - [6] R. Pöttgen, G. Kotzyba, Z. Naturforsch. 1996, 51b, 1248. - [7] M. F. Zumdick, R. Pöttgen, R. Müllmann, B. D. Mosel, G. Kotzyba, B. Künnen, Z. Anorg. Allg. Chem. 1998, 624, 251. - [8] F. Hulliger, J. Alloys Compd. 1996, 232, 160. - [9] I. R. Muts, V. I. Zaremba, U. Ch. Rodewald, W. Hermes, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 2725. - [10] I. Muts, T. Nilges, U. Ch. Rodewald, V. I. Zaremba, R. Pöttgen, Z. Naturforsch. 2007, 62b, 1563. - [11] I. Muts, V. I. Zaremba, R. Pöttgen, Z. Anorg. Allg. Chem. 2012, 638, 64. - [12] M. Pani, F. Merlo, M. L. Fornasini, Z. Kristallogr. 2002, 217, 415. - [13] R. M. Rykhal', O. S. Zarechnyuk, V. S. Protasov, Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1985, 72. - [14] S. Schoolaert, W. Jung, Z. Anorg. Allg. Chem. 2002, 628, 1806. - [15] W. Rieger, H. Nowotny, F. Benesovsky, *Monatsh. Chem.* 1966, 97, 378. - [16] S. L. Samal, J. D. Corbett, Z. Anorg. Allg. Chem. 2012, 638, 1963. - [17] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133. - [18] R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143. - [19] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73. - [20] B. Heying, U. Ch. Rodewald, B. Chevalier, R. Pött-gen, Z. Naturforsch. 2013, 68b, 10. - [21] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) **1997**. - [22] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112. - [23] M. L. Fornasini, F. Merlo, J. Less-Common Met. 1988, 142, 289. - [24] J. Emsley, *The Elements*, Oxford University Press, Oxford 1999. - [25] A. Doğan, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 219. - [26] A. Doğan, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 2007, 62b, 610. - [27] J. Donohue, The Structures of the Elements, Wiley, New York (U. S. A.) 1974. - [28] R. Pöttgen, A. Fugmann, R.-D. Hoffmann, U. Ch. Rodewald, D. Niepmann, Z. Naturforsch. 2000, 55b, 155 - [29] S. K. Dhar, R. Settai, Y. Ōnuki, A. Galatanu, Y. Haga, P. Manfrinetti, M. Pani, J. Magn. Magn. Mater. 2007, 308, 143. - [30] S. Rayaprol, A. Doğan, R. Pöttgen, J. Phys.: Condens. Matter 2006, 18, 5473. - [31] A. Doğan, S. Rayaprol, R. Pöttgen, J. Phys.: Condens. Matter 2007, 19, 026209. - [32] F. Tappe, R. Pöttgen, Rev. Inorg. Chem. 2011, 31, 5. - [33] M. Johnscher, M. Kersting, R. Pöttgen, unpublished results.