High-pressure Synthesis and Characterization of the Alkali Metal Borate HP-RbB₃O₅

Gerhard Sohr^a, Stephanie C. Neumair^b and Hubert Huppertz^a

^a Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-

Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria

^b Tyrolit Schleifmittelwerke Swarovski K.G., Swarovskistraße 33, A-6130 Schwaz, Austria

Reprint requests to H. Huppertz. E-mail: Hubert.Huppertz@uibk.ac.at

Z. Naturforsch. **2012**, 67b, 1197–1204 / DOI: 10.5560/ZNB.2012-0248 Received August 4, 2012

The rubidium triborate HP-RbB₃O₅ (HP = high-pressure) was synthesized under highpressure/high-temperature conditions of 6 GPa and 1000 °C in a Walker-type multianvil apparatus. The precursor was gained from a mixture of rubidium carbonate Rb₂CO₃ and boric acid H₃BO₃ heated at 850 °C under normal pressure conditions. The single-crystal structure determination showed that HP-RbB₃O₅ is isotypic to HP-KB₃O₅, crystallizing monoclinically with eight formula units in the space group C2/c possessing the lattice parameters a = 982.3(2), b = 885.9(2), c = 919.9(2) pm, and $\beta = 104.0(1)^{\circ}$. The boron-oxygen framework consists of trigonal-planar BO₃ groups as well as corner- and edge-sharing BO₄ tetrahedra that are connected to a three-dimensional framework. Therein, the rubidium cations are surrounded by 10 oxygen anions. IR- and Raman-spectroscopic investigations were performed on single crystals of the compound.

Key words: High Pressure, Borate, Crystal Structure

Introduction

In the literature, the system Rb-B-O exhibits twelve different oxoborates with nine different constitutions. With the composition RbB₅O₈, three different polymorphs are known: a high-temperature modification α -RbB₅O₈ [1], a low-temperature phase β -RbB₅O₈ [2], and the metastable phase γ -RbB₅O₈ [3], which was obtained by quenching samples from 380 °C. With the formula RbB₃O₅, a low-temperature phase α -RbB₃O₅ [4] and a high-temperature phase β -RbB₃O₅ [5] are known. For all other compositions, solely one compound exists in each case: Rb₅B₁₉O₃₁ [6], Rb₃B₃O₆ [7], Rb₂B₄O₇ [8], RbB₉O₁₄ [3], Rb₂B₈O₁₃ [3], Rb₄B₁₀O₁₇ [9], and Rb₃BO₃ [10]. Four different synthetic strategies were used to obtain these phases. A common route is drying an aqueous solution of rubidium carbonate and boric acid until dehydrated products are obtained. A second alternative is the direct reaction of a mixture of dried Rb₂CO₃ with pure B₂O₃ in a solid-state reaction. The third option is the crystallization of a glass, and as a fourth variant, one can find the synthesis of α -RbBO₂

from rubidium carbonate and boron nitride [7]. Interestingly, none of the known rubidium borates was obtained through high-pressure experiments.

Generally, the structures of these normal-pressure borates are built up from trigonal BO3 groups and BO4 tetrahedra. In contrast, high-pressure borates often exhibit an increasing amount of tetrahedrally coordinated boron atoms. Even the structural motif of two edge-sharing BO_4 tetrahedra forming a B_2O_6 group is possible under high-pressure conditions, as first discovered in Dy₄B₆O₁₅ [11]. Meanwhile several other high-pressure phases are known to contain this B_2O_6 group, e. g. $RE_4B_6O_{15}$, (RE = Dy, Ho) [11, 12], α -*RE*₂B₄O₉ (*RE* = Sm, Eu, Gd, Tb, Ho) [13, 14], HP- MB_2O_4 (M = Ni [15], Co [16]), β -FeB₂O₄ [17], Co₇B₂₄O₄₂(OH₂)·2H₂O [18], and HP-KB₃O₅ [19]. Besides these high-pressure phases, the recently discovered compound $KZnB_3O_6$ [20, 21] is the only normal-pressure phase exhibiting the structural element of two edge-sharing BO4 tetrahedra. Accordingly, high-pressure conditions favor the formation of tetrahedrally coordinated boron atoms, the edgesharing of BO₄ tetrahedra, an increased coordination

© 2012 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

number of the bridging oxygen atoms $(O^{[3]})$, and often an enhanced coordination of the metal cations as can be expected from the pressure coordination rule [22]. The new compound HP-RbB₃O₅ fulfills these expectations being isotypic to HP-KB₃O₅ [19] and representing the fourteenth borate containing edge-sharing BO₄ tetrahedra. Furthermore, HP-RbB₃O₅ is the fourth highpressure alkali metal borate in the recently synthesized series HP-LiB₃O₅ [23], HP-Na₂B₄O₇ [24] and HP-KB₃O₅ [19]. This paper reports about the synthesis, the single-crystal structure determination, and the vibrational spectroscopic investigations of HP-RbB₃O₅ in comparison to the isotypic phase HP-KB₃O₅.

Experimental Section

Synthesis

HP-RbB₃O₅ was obtained by a two-stage synthesis during a systematic scanning of the system Rb-B-O under high-pressure/high-temperature conditions. A stoichiometric mixture of 1 mol Rb₂CO₃ (99.9%, ChemPUR, Karlsruhe/Germany) and 6 mol H₃BO₃ (99.5%, Merck, Darmstadt/Germany) was filled into a FKS 95/5 (feinkornstabilisiert, 95% Pt, 5% Au) crucible (No. 21, Ögussa, Wien/Austria), heated to 850 °C in 6 h, cooled down to 600 °C in 12 h, and then quenched to room temperature. The resulting product was finely ground, filled into a crucible made of hexagonal boron nitride (HeBoSint[®] P100, Henze BNP GmbH, Kempten/Germany), built into an 18/11assembly and compressed by eight tungsten carbide cubes (TSM-10, CERATIZIT Austria GmbH, Reutte/Austria). A hydraulic press (mavo press LPR 1000-400/50, Max Voggenreiter GmbH, Mainleus/Germany) and a Walker-type module (also Max Voggenreiter GmbH) were used to apply the pressure. Details of the assembly are described in the references [25-29]. The precursor was compressed to 6 GPa within three hours and kept at this pressure during the heating period. The sample was heated to 1000 °C in 10 min and kept at this temperature for 10 min. After cooling to 480 °C within 40 min, the reaction mixture was guenched to room temperature. The decompression of the assembly lasted nine hours.

The octahedral pressure medium (MgO, Ceramic Substrates & Components Ltd., Newport, Isle of Wight/UK) was recovered and broken apart. The sample was separated from the surrounding boron nitride crucible showing two phases: the first containing colorless crystals and a second, dark phase (presumably carbon). The colorless crystals were found to be HP-RbB₃O₅. This compound is stable in air for several days.

Crystal structure analysis

The powder diffraction pattern was obtained in transmission geometry, using a Stoe Stadi P powder diffractometer with Ge(111)-monochromatized Mo K_{α_1} radiation ($\lambda =$ 70.93 pm). The diffraction pattern showed reflections of HP-RbB₃O₅ and hexagonal BN from the crucible that could not be removed completely. Fig. 1 shows the experimental powder pattern that matches well with the theoretical pattern simulated from the single-crystal data. Single crystals of HP-RbB₃O₅ were isolated by mechanical fragmentation. The single-crystal intensity data were collected at room temperature using a Nonius Kappa-CCD diffractometer with graphite-monochromatized Mo K_{α} radiation ($\lambda =$ 71.073 pm). A semi-empirical absorption correction based on equivalent and redundant intensities (SCALEPACK [30]) was applied to the intensity data. All relevant details of the data collection and evaluation are listed in Table 1. The monoclinic space group C2/c was derived from the systematic extinctions. The structural refinement was performed with the positional parameters of HP-KB₃O₅ as starting values, since the two phases are isotypic (full-matrix least-squares on F^2 , SHELXL-97 [31, 32]). All atoms were

Table 1. Crystal data and structure refinement of HP-RbB₃O₅ (standard deviations in parentheses).

Empirical formula	HP-RbB ₃ O ₅
Molar mass, g mol ⁻¹	197.9
Crystal system	monoclinic
Space group	C2/c
Single crystal diffractometer	Enraf-Nonius Kappa CCD
Radiation; wavelength, pm	Mo K_{α} ; 71.073
Single-crystal data	
<i>a</i> , pm	982.3(2)
<i>b</i> , pm	885.9(2)
c, pm	919.9(3)
β , deg	104.0(1)
V, Å ³	776.7(3)
Formula units per cell, Z	8
Calculated density, $g cm^{-3}$	3.39
Crystal size, mm ³	0.05 imes 0.10 imes 0.11
Temperature, K	293(2)
<i>F</i> (000), e	736
Absorption coefficient, mm ⁻¹	12.7
Absorption correction	multi-scan [30]
θ range, deg	3.1-37.8
Range in <i>hkl</i>	$-16 \rightarrow 14, \pm 15, \pm 15$
Total no. of reflections	6894
Independent reflections/ $R_{\rm int}/R_{\sigma}$	2083/0.0464/0.0391
Reflections with $I > 2\sigma(I)$	1724
Data/ref. parameters	2083/83
Goodness-of-fit on F^2	1.035
Final $R1/wR2$ [$I > 2\sigma(I)$]	0.0343/0.0778
R1/wR2 (all data)	0.0452/0.0825
Largest diff. peak/hole, e $Å^{-3}$	1.42/-1.53

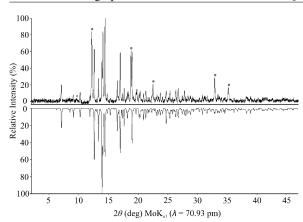


Fig. 1. Experimental powder pattern (top), compared with the theoretical powder pattern of HP-RbB₃O₅ (bottom), simulated from single-crystal data. Additional reflections marked with an asterisk are caused by hexagonal boron nitride from the crucible that could not be removed completely. The reflection marked with a circle could not be explained.

refined with anisotropic displacement parameters. The final difference Fourier syntheses did not reveal any significant peaks. Tables 2-4 list the positional parameters, anisotropic displacement parameters, and selected interatomic distances.

Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; E-mail: crysdata@fiz-karlsruhe.de, http://

Table 2. Atomic coordinates (Wyckoff positions 8*f* for all atoms) and equivalent isotropic displacement parameters U_{eq} (Å²) of HP-RbB₃O₅ (space group: C2/c) with standard deviations in parentheses. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	z	$U_{\rm eq}$
Rb1	0.07635(2)	0.34537(2)	0.44463(2)	0.01589(8)
B1	0.2033(2)	0.0073(2)	0.2368(2)	0.0068(3)
B2	0.3206(2)	0.2503(2)	0.1797(2)	0.0076(3)
B3	0.4261(2)	0.4615(2)	0.0673(2)	0.0068(3)
O1	0.0820(2)	0.0085(2)	0.0977(2)	0.0080(2)
O2	0.1553(2)	0.0582(2)	0.3649(2)	0.0077(2)
O3	0.2452(2)	0.3497(2)	0.24301(2)	0.0095(2)
O4	0.3153(2)	0.0975(2)	0.2022(2)	0.0081(2)
O5	0.4089(2)	0.3026(2)	0.0956(2)	0.0093(2)

www.fiz-karlsruhe.de/request_for_deposited_data.html) on quoting the deposition number CSD-424931.

Vibrational spectroscopy

The ATR-FT-IR (Attenuated T otal Reflection) spectra of single crystals of HP-RbB₃O₅ were measured in the spectral range of $600-4000 \text{ cm}^{-1}$ with a Bruker Vertex 70 FT-IR spectrometer (spectral resolution 4 cm^{-1}) equipped with a MCT (Mercury Cadmium Telluride) detector and attached to a Hyperion 3000 microscope. As mid-infrared source, a Globar (silicon carbide) rod was used. A frustum-shaped germanium ATR crystal with a tip diameter of $100 \,\mu\text{m}$ was pressed on the surface of the borate crystal to crush it into small pieces of μm -size. 32 scans of the sample were ac-

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂		U ₁₃	U ₂₃
Rb1	0.0187(2)	0.0138(2)	0.0187(2)	-0.0020)3(6) (0.01147(8)	-0.00022(6)
B1	0.0085(7)	0.0056(7)	0.0072(7)	-0.0006	6(6) (0.0034(6)	0.0005(5)
B2	0.0089(8)	0.0065(7)	0.0080(7)	-0.0001	(6) (0.0032(6)	-0.0008(6)
B3	0.0088(7)	0.0073(7)	0.0055(7)	-0.0003	8(6) (0.0038(6)	0.0008(5)
01	0.0069(5)	0.0125(5)	0.0051(5)	-0.0016	6(4) (0.0022(4)	0.0011(4)
O2	0.0106(5)	0.0066(5)	0.0073(5)	-0.0006	6(4) (0.0047(4)	-0.0012(4)
03	0.0125(6)	0.0060(5)	0.0127(6)	-0.0016	6(4) (0.0080(5)	-0.0021(4)
04	0.0092(5)	0.0054(5)	0.0107(5)	-0.0012	2(4) (0.0048(4)	0.0006(4)
05	0.0121(6)	0.0064(5)	0.0119(6)	0.0003	8(4) (0.0075(5)	0.0010(4)
Rb1-O5	273.1(2)	B1-O2	144.3(3)	B2-O3	136.9(3	B) B3–O2	2 141.5(3)
Rb1–O3	a 277.1(2)	B1-O4	145.6(3)	B2O4	137.2(3	B) B3–O5	5 144.9(3)
Rb1-O2	a 280.8(2)	B1-O3	148.2(3)	B205	137.4(3	B) B3-O1	a 152.4(3)
Rb1-O2	b 291.8(2)	B1-O1	152.3(3)			B301	b 154.6(3)
Rb1–O4	a 294.0(2)						
Rb1–O4	b 320.5(2)	Ø B1–O	147.6	Ø B2–O	137.2	Ø B3–0	D 148.4
Rb1–O3	b 321.2(2)						
Rb1-O1	a 334.5(2)						
Rb1-O1	b 343.1(1)						
Rb1–O3	c 344.7(2)					B3…B3	3 223.1(3)
Ø Rb1–	O 308.1					Rb1…R	b1 339.6(1)

Table 3. Anisotropic displacement parameters $(Å^2)$ of HP-RbB₃O₅ (space group: C2/c) with standard deviations in parentheses.

Table 4. Interatomic distances (pm) in HP-RbB₃O₅ (space group: C2/c) calculated with the single-crystal lattice parameters (standard deviations in parentheses).

quired. A correction for atmospheric influences using the OPUS 6.5 software was performed.

The single-crystal Raman spectra of HP-RbB₃O₅ were measured in the spectral range of 100–1600 cm⁻¹ with a Raman micro-spectrometer LabRAM HR-800 (HORIBA JOBIN YVON) and hundredfold magnification. The length of the crystal was approximately 0.35 mm. As excitation source, a Nd:YAG laser ($\lambda = 532.22$ nm) was used. To avoid destruction of the crystal, the laser beam was weakened by a D 0.6 filter. The Raman-scattered light was detected through an optical grid with 1800 lines mm⁻¹. Two ranges were measured with a spectral resolution better than 2 cm⁻¹. The measurement time per step was 300 s. A background correction was applied.

Results and Discussion

Synthetic conditions

HP-RbB₃O₅ could be synthesized over a wide range of starting compositions (molar ratio Rb₂CO₃ : H₃BO₃ from 4 : 1 to 1 : 12), a wide pressure range (4–10 GPa), and at temperatures of 700–1000 °C. A detailed schedule of all performed syntheses, including molar ratios, reaction conditions, and products is shown in Table 5. The side product represented by the dark inclusions, which are not detectable *via* powder X-ray diffraction measurements, is presumably carbon, arising from the rubidium carbonate.

Crystal structure of HP-RbB₃O₅

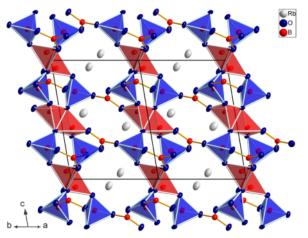
The structure of HP-RbB₃O₅ is built up from BO_3 groups as well as corner- and edge-sharing BO_4 tetrahedra as presented in Fig. 2. A detailed description can

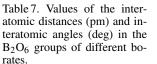
Table 5. List of experiments performed to prepare HP-RbB $_3O_5$.

Rb ₂ CO ₃	: B ₂ O ₃	p (GPa)	<i>T</i> (°C)	Result
8	: 1	4	700	HP-RbB ₃ O ₅
8	: 1	6	1000	HP-RbB ₃ O ₅
1	: 2	2	800	amorphous
1	: 2	3	1000	amorphous
1	: 2	4	800	HP-RbB ₃ O ₅
1	: 2	6	1000	HP-RbB ₃ O ₅
1	: 2	6	700	HP-RbB ₃ O ₅
1	: 2	10	1000	HP-RbB ₃ O ₅
1	: 3	6	1000	HP-RbB ₃ O ₅
1	: 4	10	1000	HP-RbB ₃ O ₅
1	: 6	3	1000	amorphous
1	: 6	6	1000	HP-RbB ₃ O ₅
1	: 6	6	700	$RbB_5O_6(OH)_4 \cdot 2H_2O$
1	: 6	10	1000	HP-RbB ₃ O ₅

Table 6. Comparison of the isotypic structures $HP-KB_3O_5$ and $HP-RbB_3O_5$.

Empirical formula	HP-KB ₃ O ₅	HP-RbB ₃ O ₅				
Molar mass, g mol ⁻¹	151.53	197.90				
Unit cell dimensions						
<i>a</i> , pm	960.8(2)	982.3(2)				
b, pm	877.0(2)	885.9(2)				
<i>c</i> , pm	909.9(2)	919.9(2)				
β , deg	104.4(1)	104.0(1)				
V, nm ³	0.7428(3)	0.7767(3)				
Coordination number (CN)						
M1 (M = K, Rb)	10	10				
Interatomic distances						
av. $M1$ –O ($M = K$, Rb) distance, pm	300	308.1				
av. B–O distance in [BO ₃] groups, pm	137.3	137.2				
av. B-O distance in [BO ₄] groups, pm	147.7	148.0				
$B \cdots B$ distance in the B_2O_2 ring, pm	221.5(1)	223.1(3)				




Fig. 2 (color online). Projection of the crystal structure of HP-RbB $_3O_5$ along [110]. Spheres: 90% displacement elipsoides.

be found in ref. [19]. The isotypy to HP-KB₃O₅ indicates that there are no large differences between the two structures. Table 6 compares the unit cells, the coordination numbers of the alkali metal ions, and the average bond lengths. The coordination numbers of the specific atoms as well as their connection patterns are the same.

The boron-oxygen distances inside the cornersharing tetrahedra of HP-RbB₃O₅ vary between 144.3(3) and 152.3(3) pm with a mean value of 147.6 pm, being slightly smaller than those in HP-KB₃O₅ (144.7(2)-152.4(2) pm with a mean value of 147.7 pm). With distances of 136.9(3)-137.4(3)pm and a mean value of 137.2 pm, the trigonal BO₃

G. Sohr et al. · High-pressure Rubidium Triborate HP-RbB₃O₅

Compound	OBO _{in}	BOB _{in}	d _{B-O1}	d _{B-O2}	d _{B-O3}	$d_{\text{B-O4}}$	OBO _{out}	d _{B···B}
Dy ₄ B ₆ O ₁₅	94.1	85.9	153.3	150.7	146.1	145.4	109.2	207.2
Ho ₄ B ₆ O ₁₅	94.4	85.6	153.6	151.1	145.6	144.3	109.7	207
α -Sm ₂ B ₄ O ₉	92.7	87.3	150.3	149.8	147.9	142.4	113.6	207.1
α -Eu ₂ B ₄ O ₉	94	86	150.1	148.3	148.6	143	113.6	205.3
α -Gd ₂ B ₄ O ₉	94	86	149.9	148.2	148.3	142.7	113.5	204
α -Tb ₂ B ₄ O ₉	93.9	86.1	149.4	147.7	147.8	142.2	113.5	205.5
α -Ho ₂ B ₄ O ₉	94.2	85.7	150.8	149.1	147.8	142.6	114.2	204
HP-NiB ₂ O ₄	93.6	86.4	153	151.6	144.5	144.3	114.7	208.8
β -FeB ₂ O ₄	93.4	86.6	152.5	151.2	144.3	144.3	113.8	208.3
HP-CoB ₂ O ₄	93.3	86.7	152.8	151.7	144.4	144.2	114.2	209
KZnB ₃ O ₆	92	88	150.9	148.4	145.4	144.9	114	207.9
Co ₇ B ₂₄ O ₄₂ (OH) ₂ ·2H ₂ O	90.6	89	155.4	150.9	148	144.7	110.9	214.8
HP-KB ₃ O ₅	87.2	92.7	154.8	151.4	144.6	141.2	114.8	221.5
HP-RbB ₃ O ₅	86.2	93.2	154.6	152.4	144.9	141.5	113.9	223.1

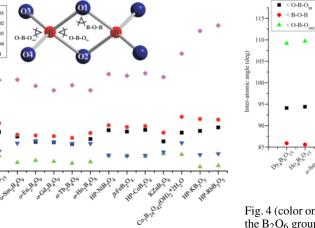


Fig. 3 (color online). Comparison of the interatomic distances in the B_2O_6 groups of different borates with edgesharing BO_4 tetrahedra.

225 220 215

210

203 160 155

groups also show slightly smaller boron-oxygen distances than the corresponding ones in HP-KB₃O₅ (137.1(2) – 137.9(2) pm, mean value 137.3 pm). The edge-sharing tetrahedra exhibit boron-oxygen distances between 141.5(3) and 154.6(3) pm with a mean value of 148.4 pm. All mean values of the boronoxygen distances correspond well with the known average values for B–O distances in BO₄ (147.6 pm) and BO₃ (137.0 pm) groups [33 – 35].

In Figs. 3 and 4 and in Table 7, the distances, angles, and specific values within the B_2O_6 group of HP-RbB₃O₅ are compared with the corresponding values of all other phases containing such groups. Fig. 3 also shows the assignment used for this comparison. With a value of 223.1(3) pm, HP-RbB₃O₅ reveals the longest B...B distance of all structures possessing edge-sharing BO₄ tetrahedra. Since the B–O distances

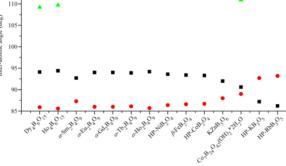


Fig. 4 (color online). Comparison of the interatomic angles in the B_2O_6 groups of different borates possessing edge-sharing BO_4 tetrahedra.

are comparable in all different B_2O_6 groups, the long $B \cdots B$ distance is caused by a shrinking of the angle $O-B-O_{in}$, while the angle $B-O-B_{in}$ is widened. The angle $O-B-O_{out}$ is hardly affected by this scissor motion. The tricoordinated oxygen atom at the common edge, that only occurs in the compounds HP-KB₃O₅ and HP-RbB₃O₅ so far, induces the scissor motion.

The rubidium atoms are situated in channels along [110] and are coordinated by 10 oxygen atoms with interatomic distances between 273.1(2) and 344.7(2) pm and an average distance of 308.1 pm (Fig. 5). The next oxygen atom has a distance of 371.1 pm. The distance between two neighboring Rb⁺ cations is 339.6(1) pm. The shortest Rb–O and Rb…Rb distances are smaller than those reported for other phases in the system Rb–B–O (*e. g.* Rb₂B₄O₇: Rb–O_{min} = 275 pm, Rb…Rb_{min} = 357 pm [8]; β -RbB₃O₅: Rb–O_{min} = 284 pm, Rb…Rb_{min} = 393 pm [5]; Rb₅B₁₉O₃₁: Rb–

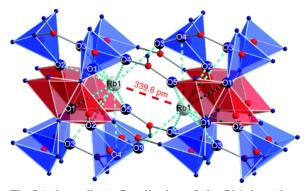


Fig. 5 (color online). Coordination of the Rb1 ion (short dashed bonds) in HP-RbB₃O₅ together with the distance to the neighboring Rb1 atom (long dashed bond).

 $O_{min} = 276.6 \text{ pm}, \text{ Rb} \cdot \cdot \text{Rb}_{min} = 376.5 \text{ pm}$ [6]). The coordination number of 10 is the highest in the system Rb-B-O and so far only achieved in β -RbB₅O₈ [2]. Normally, the coordination number varies between 6 and 9.

The bond-valence sums of the individual cations and anions of HP-RbB₃O₅ were calculated from the crystal structure, using the bond-length/bond-strength concept (ΣV) [36, 37]. The calculation revealed a value of +1.38 for Rb1. For the boron ions, the values are 3.00 (B1), 2.98 (B2), and 3.03 (B3). The oxygen ions show values in the range of -1.84 to -2.12. The values fit to the formal charges of the ions. The bondvalence sums can also be calculated using the CHARDI (*Charge Distribution in Solids*, ΣQ) concept [38, 39], leading to values of +0.98 (Rb1), +3.00 (B1), +2.98 (B2), +3.03 (B3), -1.84 (O1), -2.12 (O2), -2.01 (O3), -2.00 (O4), and -2.04 (O5). These values are in good accordance with the values calculated for HP-KB₃O₅. For both compounds, the values of O1 are slightly lower than expected. This can be explained by the fact that O1 is the tricoordinated oxygen atom at the common edge of the two BO₄ tetrahedra in both compounds.

Furthermore, the MAPLE values (*Ma*delung *P*art of *L*attice *E*nergy) [40–42] of HP-RbB₃O₅ were calculated to compare them with the MAPLE values received from the summation of the binary components Rb₂O [43] and the high-pressure modification B₂O₃-II [44]. The value of 34 156 kJ mol⁻¹ was obtained in comparison to 34 104 kJ mol⁻¹ (deviation = 0.15%), starting from the binary oxides [Rb₂O (2393 kJ mol⁻¹) + B₂O₃-II (21 938 kJ mol⁻¹)].

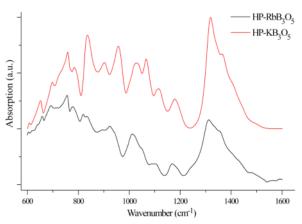


Fig. 6 (color online). Single-crystal ATR-FT-IR spectra of HP-Rb B_3O_5 and HP-K B_3O_5 .

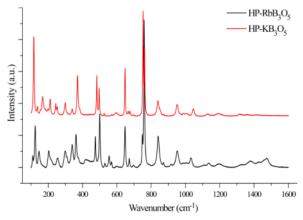


Fig. 7 (color online). Single-crystal Raman spectra of HP-RbB $_3O_5$ and HP-KB $_3O_5$.

Vibrational spectroscopy

The FTIR-ATR and the Raman spectra of HP-RbB₃O₅ and HP-KB₃O₅ are compared in Figs. 6 and 7. For borates in general, bands in the region of $800-1100 \text{ cm}^{-1}$ usually apply to B–O stretching modes of boron atoms, which are tetrahedrally coordinated to oxygen atoms [45, 46], while absorption bands at $1200-1450 \text{ cm}^{-1}$ are expected for borates containing BO₃ groups [46, 47].

For HP-KB₃O₅, the harmonic vibrational frequencies at the Γ point were calculated [19]. Based on these calculations, a more specific assignment of both, the IR and the Raman bands of HP-RbB₃O₅ was possible. Above 1320 cm⁻¹, mainly the corner-sharing BO₃ groups are oscillating. Between 1215 and 950 cm⁻¹, stretching vibrations of the corner- and edge-sharing BO₄ tetrahedra occur. Bands of bending and complex vibrations of both BO₃ and BO₄ units are located between 905 and 200 cm⁻¹. Below 185 cm^{-1} , lattice vibrations involving the alkali metal ions occur [19].

In the ATR-FTIR spectrum of HP-RbB₃O₅, several groups of absorption bands of the boron-oxygen tetrahedra were detected between 700 and 1135 cm^{-1} . The BO₃ modes appear between 1250 and 1500 cm^{-1} . Furthermore, weak OH or water bands are observed in the range of 3000 to 3500 cm^{-1} . The Raman spectrum shows lattice vibrations between 100 and 185 cm⁻¹, complex and bending vibrations of BO₃ and BO₄ groups from 200 to 700 cm^{-1} , and vibrations of the BO₄ tetrahedra from 950 to 1215 cm^{-1} . Above 1215 cm^{-1} , the oscillation of the BO₃ groups can be seen. It has to be considered that all boron-oxygen units are linked to other boron-oxygen units. Hence, every motion inside of one boron-oxygen unit induces motions in the connected units. However, according to calculations for HP-KB₃O₅, ATR-bands around 1001, 1070, and 1105 cm^{-1} may be assigned to the edgesharing tetrahedra, along with Raman peaks at 1013, 1161, 1205, and 1213 cm⁻¹ [19]. The weak intensity of the ATR bands between 3000 and 3500 cm^{-1} changed

with time. No corresponding bands could be seen in the Raman spectrum, so the bands presumably arise from surface water.

Conclusions

With the synthesis of HP-RbB₃O₅, the first isotypic compound to HP-KB₃O₅ was synthesized and characterized. The structure consists of BO₃ groups as well as corner- and edge-sharing BO₄ tetrahedra. Interestingly, HP-RbB₃O₅ forms at a higher pressure (6 GPa) than HP-KB₃O₅ (3 GPa). It is the second compound possessing all known basic structural motifs of borates in one structure. The system Cs-B-O is the last alkali metal boron oxygen system without any high-pressure borate known so far. Therefore, the synthesis of a highpressure caesium borate will be the subject of our future efforts.

Acknowledgement

Special thanks go to Univ.-Prof. Dr. R. Stalder (University of Innsbruck) for performing the IR measurements, to L. Perfler (University of Innsbruck) for the Raman measurements and to Dr. G. Heymann for the recording of the single-crystal data set.

- R. S. Bubnova, I. G. Polyakova, Y. E. Anderson, S. K. Filatov, *Glass Phys. Chem.* **1999**, *25*, 183.
- [2] N. Penin, L. Seguin, M. Touboul, G. Nowogrocki, J. Solid State Chem. 2001, 161, 205.
- [3] J. Krocher, Bull. Soc. Chim. Fr. 1968, 3, 919.
- [4] M. G. Krzhizhanovskaya, Y. K. Kabalov, R. S. Bubnova, E. V. Sokolova, S. K. Filatov, *Crystallogr. Rep.* 2000, 45, 572.
- [5] M. G. Krzhizhanovskaya, R. S. Bubnova, V. S. Fundamenski, I. I. Bannova, I. G. Polyakova, S. K. Filantov, *Crystallogr. Rep.* **1998**, 43, 21.
- [6] M. G. Krzhizhanovskaya, R. S. Bubnova, I. I. Bannova, S. K. Filatov, *Crystallogr. Rep.* **1999**, *44*, 187.
- [7] S. Schmid, W. Schnick, Acta Crystallogr. 2004, C60, i69.
- [8] M. G. Krzhizhanovskaya, R. S. Bubnova, I. I. Bannova, S. K. Filatov, *Crystallogr. Rep.* **1997**, 42, 226.
- [9] P. Tolédano, Bull. Soc. Chim. Fr. 1966, 7, 2302.
- [10] R. S. Bubnova, M. G. Krzhizhanovskaya, V. B. Trofimov, I. G. Polyakova, S. K. Filatov, *Abstracts VII Conference on Crystal Chemistry of Inorganic and Coordination Compounds* 1995, 97.

- [11] H. Huppertz, B. von der Eltz, J. Am. Chem. Soc. 2002, 124, 9376.
- [12] H. Huppertz, Z. Naturforsch. 2003, 58b, 278.
- [13] H. Emme, H. Huppertz, Chem. Eur. J. 2003, 9, 3623.
- [14] H. Emme, H. Huppertz, *Acta Crystallogr.* **2005**, *C61*, i29.
- [15] J. S. Knyrim, F. Roessner, S. Jakob, D. Johrendt, I. Kinski, R. Glaum, H. Huppertz, *Angew. Chem. Int. Ed.* 2007, 46, 9097.
- [16] S. C. Neumair, R. Kaindl, H. Huppertz, Z. Naturforsch. 2010, 65b, 1311.
- [17] S. C. Neumair, R. Glaum, H. Huppertz, Z. Naturforsch. 2009, 64b, 883.
- [18] S. C. Neumair, R. Kaindl, H. Huppertz, J. Solid State Chem. 2012, 185, 1.
- [19] S. C. Neumair, S. Vanicek, R. Kaindl, D. M. Többens, C. Martineau, F. Taulelle, J. Senker, H. Huppertz, *Eur. J. Inorg. Chem.* 2011, 27, 4147.
- [20] S. Jin, G. Cai, W. Wang, M. He, S. Wang, X. Chen, Angew. Chem. Int. Ed. 2010, 49, 4976.
- [21] Y. Wu, J. Y. Yao, J. X. Zhang, P. Z. Fu, Y. C. Wu, Acta Crystallogr. 2010, E66, i45.

- [22] A. Neuhaus, *Chimia* **1964**, *18*, 93.
- [23] S. C. Neumair, S. Vanicek, R. Kaindl, D. M. Többens, K. Wurst, H. Huppertz, J. Solid State Chem. 2011, 184, 2490.
- [24] S. C. Neumair, G. Sohr, S. Vanicek, K. Wurst, R. Kaindl, H. Huppertz, Z. Anorg. Allg. Chem. 2012, 638, 81.
- [25] N. Kawai, S. Endo, Rev. Sci. Instrum. 1970, 41, 1178.
- [26] D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. 1990, 75, 1020.
- [27] D. Walker, Am. Mineral. 1991, 76, 1092.
- [28] D. C. Rubie, *Phase Transitions* 1999, 68, 431.
- [29] H. Huppertz, Z. Kristallogr. 2004, 219, 330.
- [30] Z. Otwinowski, W. Minor in *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A (Eds.: C. W. Carter Jr, R. M. Sweet), Academic Press, New York, **1997**, pp. 307.
- [31] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.
- [32] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [33] E. Zobetz, Z. Kristallogr. 1990, 191, 45.
- [34] F. C. Hawthorne, P. C. Burns, J. D. Grice in *Boron: Mineralogy, Petrology and Geochemistry*, (Ed.: E. S. Grew), Mineralogical Society of America, Washington, **1996**.

- [35] E. Zobetz, Z. Kristallogr. 1982, 160, 81.
- [36] N. E. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B47, 192.
- [37] I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.
- [38] R. Hoppe, Z. Kristallogr. 1979, 150, 23.
- [39] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. Bernet, J. Less-Common Met. 1989, 156, 105.
- [40] R. Hoppe, Angew. Chem., Int. Ed. Engl. 1966, 5, 95.
- [41] R. Hoppe, Angew. Chem., Int. Ed. Engl. 1970, 9, 25.
- [42] R. Hübenthal, MAPLE, Program for the Calculation of Distances, Angles, Effective Coordination Numbers, Coordination Spheres, and Lattice Energies, University of Gießen, Gießen (Germany), 1993.
- [43] P. Touzain, M. Caillet, *Rev. Chim. Miner.* **1971**, *8*, 277.
- [44] C. T. Prewitt, R. D. Shannon, Acta Crystallogr. 1968, B24, 869.
- [45] J. P. Laperches, P. Tarte, Spectrochim. Acta 1966, 22, 1201.
- [46] M. Ren, J. H. Lin, Y. Dong, L. Q. Yang, M. Z. Su, L. P. You, *Chem. Mater.* **1999**, *11*, 1576.
- [47] W. C. Steele, J. C. Decius, J. Chem. Phys. 1956, 25, 1184.