Orthoamides and Iminium Salts, LXXX [1]. C-Glycosyl Alkynecarboxylic Acid Orthoamides. Versatile Intermediates in the Synthesis of New Types of Highly Substituted \boldsymbol{C}-Nucleoside Analogs

Konstantin Drandarov ${ }^{\text {a }}$ and Willi Kantlehner ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
${ }^{\mathrm{b}}$ Fakultät Chemie/Organische Chemie, Hochschule für Technik und Wirtschaft, Beethovenstr. 1, D-73430 Aalen, Germany

Reprint requests to Prof. Dr. Willi Kantlehner. Fax: $+49(7361) 5762250$.
E-mail: willi.kantlehner@htw-aalen.de
Z. Naturforsch. 2012, 67b, 699-716 / DOI: 10.5560/ZNB.2012-0108

Received April 24, 2012

Dedicated to Professor Christian Vogel on the occasion of his $60^{\text {th }}$ birthday

The C-glycosyl alkynecarboxylic acid orthoamides 22 and $\mathbf{2 3}$ are proposed as versatile precursors for the synthesis of new types of C-nucleoside analogs. The new synthetic strategy includes alkynylation of protected aldoses $\mathbf{1 3}$ or ketoses by Grignard ethynylation or Barbier propargylation, O-protection of the resulting alkynols $\mathbf{1 4 - 1 6}$, and nucleophilic addition of the metalated protected terminal alkynes $\mathbf{2 0}$ and $\mathbf{2 1}$ to peralkylguanidinium salt $\mathbf{2}$ to afford the corresponding alkynecarboxylic acid orthoamides 22 and 23, which in reactions with mono or bis-nucleophiles could serve as building blocks for the construction of a wide variety of C-nucleoside-like binary conjugates. All the steps are demonstrated on 2,4,3,5-bis(4-methoxybenzylidene)-protected L-xylose 11 as a model compound. The synthesis of a representative series of C-glycosidic conjugates of highly substituted "push-pull" 1,3-butadienes 32-35, pyrimidines 24-31, and 2-pyridones $\mathbf{3 6 - 3 9}$ is included. The stereochemistry of all described compounds is established by 2D-NMR techniques. A general character of the proposed synthetic strategy, when applied to different appropriately protected sugar derivatives, is suggested, and a biomedical applicability of the described type of conjugates is expected.

Key words: $N, N, N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-Hexamethylguanidinium Chloride, Alkynecarboxylic Acid Orthoamides, O-Protected Aldose, Ethynylation, Propargylation, Stereochemical Assignment, C-Nucleosides

Introduction

The antibacterial, antiviral and cytostatic activities observed in a number of naturally occurring C nucleosides triggered considerable interest in the design, synthesis and biological evaluation of new C nucleoside analogs. Thus, the combinatorial $\mathrm{C}-\mathrm{C}$ bond fusion of natural or chemically modified, cyclic or open-chain sugar moieties to diverse biomedically interesting aglycones has become a valuable source of new, C-nucleoside-like derivatives that are potentially applicable in therapy. In this regard, new synthetic strategies for the construction of a C-nucleoside type of binary conjugates are continuously well appreciated [2-16].

Previous studies highlighted alkynecarboxylic acid orthoamides 3 (Scheme 1) as very useful reagents in organic synthesis. They are readily accessible by nucleophilic addition of metalated terminal alkynes $\mathbf{1}$ to peralkylated guanidinium salts 2 (Scheme 1) [17-21]. Alkynecarboxylic acid orthoamides $\mathbf{3}$ behave as electrophilic reagents, equivalent to the corresponding resonance-stabilized propiolamidinium species $\mathbf{3 b}$. Due to delocalization of the positive charge, both $\mathrm{C}(1)$ and/or $\mathrm{C}(3)$ atoms in the resonance forms $\mathbf{3 a} \leftrightarrow \mathbf{3 b}$ can be involved in reactions with monoand bis-nucleophiles. These chemical features of the alkynecarboxylic acid orthoamides have been already utilized in the synthesis of a variety of "push-pull" 1,3-butadienes $\mathbf{4 a}$ and $\mathbf{4 b}$, and in reactions with CH_{2}

Scheme 1. Diversity of some previously described condensation products from alkynecarboxylic acid orthoamides $\mathbf{3}$ [17-21] $(\mathrm{EWG}=$ electron withdrawing group).
acids and various heterocyclic compounds. Thus, orthoamides $\mathbf{3}$ reacted with enamines to form pyridines 5 and $\mathbf{6}$, with amidines to pyrimidines 7 , with cyanoacetamide to 2 -pyridones $\mathbf{8}$, with hydrazines to pyrazoles 9 , etc. [17-21].
The fact that terminal alkyne derivatives of sugars are easily available by direct Grignard ethynylation [2-16, 22-29] or Barbier propargyla-
tion [30-32] of protected aldoses or ketoses led to the idea that sugar-derived alkynecarboxylic acid orthoamides 3 (Scheme 1), where R is a protected sugar residue, could serve as potentially convenient precursors in the synthesis of new types of C-nucleoside-like conjugates with literally unexplored biological activity (similar to the types of derivatives highlighted in Scheme 1, where R is a sugar residue). A previous
study illustrating this approach on one protected ketose example was encouraging [33]. Herein we describe the results of our efforts to expand this methodology to protected aldoses.

Results and Discussion

Earlier reports have emphasized the antiviral activity of some benzylidene-protected aldopentoses and their derivatives [34, 35], which motivated us to choose
the 4-methoxybenzylidene protected L-xylose $\mathbf{1 3}$ as the starting material for the present study. Compound 13 was prepared by a published reaction sequence [36] (Scheme 2). A practical improvement was achieved in the first step where the acetalization of D-sorbitol (10) was performed more conveniently in acetic acid as catalyst and reaction medium, from which the desired 4-methoxybenzylidene-protected compound $\mathbf{1 1}$ separates in practically pure state and higher yield. The periodate oxidation of the vicinal diol 11 led to the

Scheme 2. Synthesis of 4-MeO-benzylidene-protected L-xylose $\mathbf{1 3}$ and its alkynylated derivatives 14-16. Some of the H atoms are omitted for clarity. Reagents and conditions: (a) 4-MeO-benzaldehyde, acetic acid, r.t., $48 \mathrm{~h}, 56 \%$; (b) $\mathrm{NaIO}_{4}, 80 \% \mathrm{aq}$. dioxane, r.t. 48 h , quant.; (c) toluene reflux with a Dean-Stark trap, 86%; (d) ethynylmagnesium chloride, THF, r. t., 2.5 h ; (e) propargyl bromide, Zn dust, DMF-diethyl ether, $35^{\circ} \mathrm{C}$ to r.t. 84%; (f) 4-nitrobenzoyl chloride, TEA, MeCN, r. t. overnight, 72%; (g) $\mathrm{NaH}, \mathrm{DMF}$, MeI, r.t., $3 \mathrm{~h}, 94 \%$. The long-range heteronuclear correlation (2D HMBC) between $\mathrm{C}(3) \mathrm{H}, \mathrm{C}(1)$ and $\mathrm{C}(5)$ and between $\mathrm{C}(8) \mathrm{H}$ and $\mathrm{C}(10)$ atoms is illustrated on the structure of compound $\mathbf{1 5}$.
aldehyde hydrate 12, which according to [36] was dehydrated by azeotropic distillation with toluene to the desired protected aldopentose 13.

The reaction of aldehyde $\mathbf{1 3}$ with ethynylmagnesium chloride was almost quantitative, but showed poor diastereoselectivity and led to a mixture of two epimeric alkynols $\mathbf{1 4}$ and $\mathbf{1 5}$ in $c a .1: 1.8$ ratio (Scheme 2). Fortunately, we succeeded in the convenient large-scale separation of this mixture by simple recrystallization from methanol where the $1^{\mathrm{I}} S$-epimer 14 (27% isol.) crystallized almost quantitatively. The major $1^{\mathrm{I}} R$-epimer 15 was isolated from the mother liquor in 49% yield and used further in our study.

Additionally, with propargyl bromide and activated Zn dust in DMF-diethyl ether ($1: 1$) mixture, analogously to a described procedure [30-32], the 4-methoxybenzylidene-protected L-xylose 13 was converted to the homoalkynol 16 in 84% yield. The reaction showed excellent diastereoselectivity, and the $1^{\mathrm{I}} R$ epimer was practically the sole product.

Stereochemical assignment

Similar to cis-decalin, the unsubstituted cis-2,4,7,9tetraoxabicyclo[4.4.0]decane is expected to undergo conformational ring flip around the $\mathrm{C}(1)-\mathrm{C}(6)$ bond giving rise to a mixture of two conformers (12a and $\mathbf{1 2 b}, \mathrm{R}=\mathrm{H}$, Scheme 2, highlighted in rectangle). Earlier studies demonstrated that the "O-inside" conformer 12a ($\mathrm{R}=\mathrm{H}$) is thermodynamically favored [37]. An equatorial substitution at $C(5)$ in 12a $(\mathrm{R} \neq \mathrm{H})$ would restrict additionally the ring inversion $\mathbf{1 2 a} \rightarrow \mathbf{1 2 b}$ due to steric repulsion between the axial substituents in 12b $(\mathrm{R} \neq \mathrm{H})$. All compounds in the present study are 3,5,8-trisubstituted cis-2,4,7,9tetraoxabicyclo[4.4.0]decane derivatives. Thus, the "O-inside" structures with axial $\mathrm{C}(1) \mathrm{H}$ and $\mathrm{C}(5) \mathrm{H}$ and equatorial $\mathrm{C}(6) \mathrm{H}$ are preferred. The crystal structure of the closely related compound 12c (Scheme 2, highlighted in rectangle) has been described and confirms such a molecular arrangement [38].
In order to determine the absolute configuration of the newly formed stereogenic center at $\mathrm{C}\left(1^{\mathrm{I}}\right)$ in the epimeric alkynols $\mathbf{1 4}, \mathbf{1 5}$, and $\mathbf{1 6}$, their 4 nitrobenzoyl derivatives 17,18 and 19 were prepared (Scheme 2 and Fig. 1). The entirely reverse magnetic anisotropy characteristics in the close proximity over the aromatic 4-nitrobenzoyl (shielding) and around the ethynyl (deshielding) [39] groups and
their inverted orientation in both epimeric derivatives 17 and 18 and the homologous 19 were expected to alter the chemical shifts of the eclipsed protons in a predictable manner. The long-range heteronuclear correlations ($2 \mathrm{D} H M B C$) between $\mathrm{C}(3) \mathrm{H}$, $\mathrm{C}(1)$ and $\mathrm{C}(5)$ and between $\mathrm{C}(8) \mathrm{H}$ and $\mathrm{C}(10)$ atoms (shown in Scheme 2), which were observed in all here reported 5 -substituted 3,8-bis(4-methoxyphenyl)-cis-2,4,7,9-tetraoxabicyclo[4.4.0]decane derivatives, were particularly useful key spectral features for the identification of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of the studied compounds. In the ${ }^{1} \mathrm{H}$ NMR spectra of all three compounds 17,18 and 19 , the $\mathrm{C}(3) \mathrm{H}$ signals are shifted downfield compared with the $\mathrm{C}(8) \mathrm{H}$ signals.

The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 7}, \mathbf{1 8}$ and 19 show a $\mathrm{C}(5) \mathrm{H}-\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}$ vicinal coupling constant $\left({ }^{3} J_{\mathrm{H}, \mathrm{H}}\right)$ of 8.8 Hz for $\mathbf{1 7}$ and $\mathbf{1 8}$, and 8.5 Hz for $\mathbf{1 9}$, which strongly indicates that in solution the almost antiperiplanar orientation of these protons in each of these compounds is favored. In such an arrangement the 4-nitrobenzoyl and the ethynyl substituents at $\mathrm{C}\left(1^{\mathrm{I}}\right)$ would diverge around the $\mathrm{C}(5)-\mathrm{C}\left(1^{\mathrm{I}}\right)$ bond axis eclipsing the benzylidene groups at $\mathrm{C}(3)$ and $\mathrm{C}(8)$. In the $1^{\mathrm{I}} R$-epimer 18 the 4 -nitrobenzoyl group (shielding) would be situated over $\mathrm{C}(8) \mathrm{H}$ and the ethynyl group (deshielding) over $\mathrm{C}(3) \mathrm{H}$, which would cause divergence of the chemical shifts of these signals whereas in the $1^{1} S$-epimer 17 the 4 -nitrobenzoyl group eclipsing $\mathrm{C}(3) \mathrm{H}$ and ethynyl group eclipsing $\mathrm{C}(8) \mathrm{H}$ should cause their convergence.

Fig. 1 shows fragments of the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 17, 18 and 19, including the most indicative benzylidene $\mathrm{C}(3) \mathrm{H}, \mathrm{C}(8) \mathrm{H}$ and $\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}$ signals. The $\mathrm{C}(3) \mathrm{H}(\delta=5.80 \mathrm{ppm})$ and $\mathrm{C}(8) \mathrm{H}(5.50 \mathrm{ppm})$ signals of the 4-nitrobenzoyl derivative $\mathbf{1 8}$ are significantly divergent (Fig. 1b) compared to the analogous signals of its epimeric compound 17 (Fig. 1a). Thus, compound $\mathbf{1 8}$ and its precursor $\mathbf{1 5}$ could be assigned the $1^{\mathrm{I}} R$-configuration.

The significant upfield shift of the $\mathrm{C}(8) \mathrm{H}$ signal (at 5.51 ppm) of compound $\mathbf{1 9}$ and the large divergence between $\mathrm{C}(3) \mathrm{H}$ and $\mathrm{C}(8) \mathrm{H}$ signals (Fig. 1c) resemble the spectral features of compound $\mathbf{1 8}$ and are consistent with a 4-nitrobenzoyl moiety eclipsing the $\mathrm{C}(8)$ benzylidene group, which suggests that compound 19 has the same configuration at $\mathrm{C}\left(1^{\mathrm{I}}\right)$ as compound 18 and together with its precursor $\mathbf{1 6}$ also has $1^{1} R$ configuration. The presence of a methylene linker at $\mathrm{C}\left(1^{\mathrm{I}}\right)$ in compound 19 alters the spacial orientation

Fig. 1. Stereochemical assignment of the 4-nitrobenzoyl derivatives $\mathbf{1 7 , 1 8}$ and $\mathbf{1 9}$ based on the specific through-space influence of the 4-nitrobenzoyl (shielding) and ethynyl (deshielding) groups on the ${ }^{1} \mathrm{H}$ NMR chemical shift of the eclipsed protons at $\mathrm{C}(3)$ and $\mathrm{C}(8)$. Some of the H atoms are omitted for clarity.
of the alkyne group, which questions the degree of its through-space influence on the $\mathrm{C}(3) \mathrm{H}$ chemical shift.

Synthesis of the C-nucleoside analogs

Our preliminary attempts to use a trimethylsilylprotected derivative of compound $\mathbf{1 5}$ (Scheme 2, where R is SiMe_{3}) as starting material for the orthoamide preparation failed due to the instability of the protective group under the reaction conditions. Therefore the alkynols $\mathbf{1 5}$ and $\mathbf{1 6}$ were protected by O-methylation, and the corresponding 1^{I}-OMe derivatives 20 and 21 were used as starting material in the preparation of the orthoamides $\mathbf{2 2}$ and $\mathbf{2 3}$ (Scheme 3).

Under strictly anhydrous conditions in THF under N_{2} atmosphere the in situ-lithiated compounds 20 and 21 were introduced into the reactions with freshly dried $\left(110^{\circ} \mathrm{C}, 0.1\right.$ Torr, 2 h$)$ hexamethylguanidinium chloride (2), carried out for 7 days at r.t., similar to a previously reported procedure [17-21] (Scheme 3). The water sensitivity of the alkynecarboxylic acid orthoamides reduces the choice of isolation methods to distillation or occasionally crystallization. Extraction or chromatographic methods are inapplicable [17-21]. Unfortunately, our attempts to isolate the orthoamides $\mathbf{2 2}$ and $\mathbf{2 3}$ (Scheme 3) by crystallization were unsuccessful. Therefore we used the in situ prepared solutions of these compounds for further transformations.

The reactions of orthoamides 22 and 23 with 1,3bisnucleophiles of the type $\mathrm{RC}(=\mathrm{NH}) \mathrm{NH}_{2}$ (amidines and guanidines) in THF at $65^{\circ} \mathrm{C}$ (external) for 3 h led to smooth heterocyclization yielding the corresponding 6-dimethylamino-pyrimidine derivatives $\mathbf{2 4}$ - $\mathbf{3 1}$ in fair to good yields.

The reactions of orthoamides $\mathbf{2 2}$ and $\mathbf{2 3}$ with malononitrile in THF for 24 h at r.t. yielded the intensively yellow-orange ketene aminals $\mathbf{3 2}$ and $\mathbf{3 3}$ in good yields.

In the ambient-temperature (297 K) ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32, with a ketene aminal functionality directly attached to $\mathrm{C}\left(1^{\mathrm{I}}\right)$, the two NMe_{2} groups appear as a singlet at $\delta=2.90 \mathrm{ppm}$ and both display long range correlations (2D HMBC) with carbon atom $\mathrm{C}\left(4^{\mathrm{IV}}\right)$. Additionally, there is evidence for long range correlations between $\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}$ and the butadiene quaternary $\mathrm{C}\left(1^{\mathrm{IV}}\right)$ and between $\mathrm{C}\left(3^{\mathrm{IV}}\right) \mathrm{H}$ and $\mathrm{C}\left(1^{\mathrm{IV}}\right)$. These spectral data indicate that the nucleophilic attack of the malononitrile takes place on the β-C atom of the or-
thoamide 22 with the exclusive formation of the ketene aminal 32 (similar to $\mathbf{4 a}$ in Scheme 1), and that at ambient temperature there is facile rotation around the $\mathrm{C}\left(3^{\mathrm{IV}}\right)-\mathrm{C}\left(4^{\mathrm{IV}}\right)$ bond of the butadiene residue, which is explicable by the fact that in the "push-pull" ketene aminals of this type all three $\mathrm{C}-\mathrm{C}$ bonds of the butadiene chain are equalized due to electron delocalization.

However, the ambient-temperature (296 K) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the homologous compound 33 show the presence of two sets of analogous signals with nearly equal intensity, which clearly indicates that at this temperature in solution ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$) compound 33 exists in two almost equally populated slowly interchangeable rotameric forms. The presence of a methylene linker group at $\mathrm{C}\left(1^{\mathrm{I}}\right)$ in this compound keeps the plane of the attached ketene aminal moiety nearly parallel to the $\mathrm{C}\left(1^{\mathrm{I}}\right)-\mathrm{OMe}$ bond axis, which apparently strongly restricts the free rotation around the $\mathrm{C}\left(2^{\mathrm{L}}\right)$ $\mathrm{C}\left(2^{\mathrm{IV}}\right)$ bond at ambient temperature. Here again, the long range correlation between both NMe_{2} groups with carbon atom $\mathrm{C}\left(4^{\mathrm{IV}}\right)$ confirms the ketene aminal structure of compound 33 .

The addition of cyanoacetamide to the THF solutions of orthoamides $\mathbf{2 2}$ and $\mathbf{2 3}$ at r.t. causes instant deep yellow-orange colorization of the mixtures. Presumably this is a result of the rapid formation of the ketene aminals 34 and 35 , respectively. However, in both cases the TLC analyses of the reaction mixtures showed, beside the intensively yellow ketene aminal spots, the presence of colorless products as single spots of blue fluorescence at 365 nm . After longer reaction times at r.t., the initial concentration of the yellow ketene aminal decreased at the expense of a constantly increasing concentration of the colorless products. Due to their spontaneous transformation, the isolation of the initial ketene aminals $\mathbf{3 4}$ and $\mathbf{3 5}$ was impossible. Therefore the solvent (THF) was removed under reduced pressure, replaced by 2-propanol, and the mixtures were heated for additional 2 h at $80^{\circ} \mathrm{C}$ for completion of the reaction. The elemental analyses and MS spectra of the isolated colorless terminal products were consistent with the expected 2-pyridone derivatives 36 and 37 . However, since cyanoacetamide is an unsymmetrical 1,3-bis-nucleophile with CH_{2} and NH_{2} acidic groups, under the strongly basic reaction conditions two plausible constitutional isomeric 2-pyridone structures for the products $\mathbf{3 6}$ and $\mathbf{3 7}$ were possible (Scheme 3, square and round brackets). The ${ }^{1} \mathrm{H}$ NMR spectra confirmed the presence of 2-pyridone moieties

24, $n=0, R=\operatorname{Me}(70 \%)$
25, $n=1, R=M e(75 \%)$
26, $n=0, R=P h \quad(70 \%)$
27, $n=1, R=P h \quad(41 \%)$
28, $n=0, R=N H_{2}(44 \%)$
29, $n=1, R=\mathrm{NH}_{2}(47 \%)$
$30, n=0, R=N(70 \%)$
$31, n=1, R=N(62 \%)$

(c)
$-\mathrm{HNMe}_{2}$
$32, n=0(76 \%)$
$33, n=1 \quad(63 \%)$
(d) $/-\mathrm{HNMe}_{2}$

or ,

$-\mathrm{HNMe}_{2}$

Scheme 3. Synthesis of orthoamides $\mathbf{2 2}$ and $\mathbf{2 3}$ and their condensation reactions with different nucleophiles. Some of the H atoms are omitted for clarity. Reagents and conditions: (a) 1) n - $\mathrm{BuLi}, \mathrm{THF},-40^{\circ} \mathrm{C} \rightarrow$ r.t., 2) hexamethylguanidinium chloride (2), 7 d, r.t.; (b) $\mathrm{R}(=\mathrm{NH}) \mathrm{NH}_{2}, \mathrm{THF}, 65^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) malononitrile, THF, 24 h, r.t.; (d) cyanoacetamide, 1) THF, 24 h , r.t., 2) $2 \mathrm{-PrOH}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (e) EtOH-aq. $37 \% \mathrm{HCl}, 48 \mathrm{~h}$, r.t. Note: In order to unify the description and discussion of the stereochemical and spectroscopic features, in both series of homologous $3,5,8$-trisubstituted cis-2,4,7,9-tetraoxabicyclo[4.4.0]decane-derived binary conjugates presented here, the conjunctive C atom is labelled as $\mathrm{C}\left(1^{1}\right)$. However, in compounds $\mathbf{2 5}, \mathbf{2 7}, \mathbf{2 9}, \mathbf{3 1}, \mathbf{3 3}$, and $\mathbf{3 7}$, this atom is part of an conjunctive ethyl chain and according to the UPAC nomenclature should be correctly numbered as $\mathrm{C}\left(2^{\mathrm{I}}\right)$. The correct UPAC names of those compounds are given with the corresponding procedures in the Experimental Section.
in both compounds $\mathbf{3 6}$ and $\mathbf{3 7}$ displaying $\mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}$ (at $\delta=5.87$ and 5.65 ppm , respectively), NH (at 11.27 and 11.13 ppm , respect.), and NMe_{2} (at 3.05 and 2.95 ppm , respect.) signals. The infrared spectra, containing bands for $\mathrm{C} \equiv \mathrm{N}$ (at 2208 and $2211 \mathrm{~cm}^{-1}$) and $\mathrm{C}=\mathrm{O}$ groups (at 1599 and $1603 \mathrm{~cm}^{-1}$) were also in full agreement with the 2-pyridone structures but not sufficient to distinguish between the two possible isomers for compounds 36 and 37 . Surprisingly, at this point we were confronted with a problem that was nonsolvable by 2D NMR techniques, because in the ${ }^{13} \mathrm{C}$ NMR spectra of both compounds the signals for the C atoms of the 2 -pyridone moieties were missing. Only very weak signals of CN groups were observed. The NMe_{2} signals were overlapped by the solvent ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$) signal. According to consulted NMR experts, the problem was attributed to a cross-relaxation phenomenon. However, the registration of the ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{3 6}$ and $\mathbf{3 7}$ with longer relaxation times from 1 s to 10 and 20 s and a larger number of scans, as recommended, did not improve the signal intensity. Spectral comparison with unsubstituted- and 4 -phenyl-substituted 2-pyridone [17] and 4-methyl-6-dimethylamino-2-pyridone and 4-dimethylamino-6-methyl-2-pyridone [40] was not sufficient for the unambiguous structural identification of compounds 36 and 37.
The treatment of compounds 36 and 37 with an ethanol-aq. $37 \% \mathrm{HCl}$ mixture for 48 h at r.t. yielded the unprotected open-chain nucleoside analogs, namely the L-xylose derivative $\mathbf{3 8}$ and the 6 -deoxy-D-sorbitol derivative 39, respectively. Fortunately, the ${ }^{13} \mathrm{C}$ NMR spectra of compounds 38 and 39 clearly display all C atom signals of the 2-pyridone moieties, which were completely assigned by 2D NMR techniques. The evident long range heteronuclear correlations between $\mathrm{C}(5) \mathrm{H}$ and $\mathrm{C}\left(5^{\mathrm{I}}\right) \mathrm{H}$ with $\mathrm{C}\left(3^{\mathrm{I}}\right)$ in the case of compound $\mathbf{3 8}$ and between $\mathrm{C}(6) \mathrm{H}_{2}$ and $\mathrm{C}\left(5^{\mathrm{I}}\right) \mathrm{H}$ with $\mathrm{C}\left(3^{\mathrm{I}}\right)$ in the case of compound 39 unquestionably demonstrated that in both $\mathbf{3 8}$ and $\mathbf{3 9}$ and their parent compounds $\mathbf{3 6}$ and $\mathbf{3 7}$ the 2-pyridone ring is attached to the sugar moieties at the $\mathrm{C}(4)$ position, as shown in Scheme 3. This fact illuminates the complete pattern of the reactions of orthoamides 22 and 23 with cyanoacetamide, which apparently involves initial nucleophilic attack from the cyanoacetamide acidic CH_{2} group exclusively at the β-C atom of the orthoamides 22 and 23 (which unambiguously proves the ketene aminal structures of the transient intermediates 34 and 35) and
secondary ring closure reactions from the amide NH_{2} groups to the terminal ketene aminal groups of the transient 34 and 35 . These reactions presumably operate via intermediate $\mathrm{C}\left(2^{\mathrm{IV}}\right)-\mathrm{C}\left(3^{\mathrm{IV}}\right)$-s-cis conformers (not shown) of the corresponding ketene aminals 34 and 35 .

In conclusion, the present study has demonstrated the applicability of alkynecarboxylic acid orthoamide chemistry as a potent road for the synthesis of a new type of $\mathrm{C}-\mathrm{C}$ bond sugar-conjugated heterocyclic compounds of potential biomedical interest. We have shown this with 2,4,3,5-bis(4-methoxybenzylidene)protected L-xylose as a model compound, but variations in the appropriately protected sugar derivatives are possible. Some of the new conjugated compounds reported herein were submitted for biological screening. The tests are in progress.

Experimental Section

General procedures

FT-IR spectra were recorded on a Perkin-Elmer 457 instrument. NMR spectra were recorded on Bruker AC 250 (operating at 250.13 MHz for ${ }^{1} \mathrm{H}$ and at 62.9 MHz for ${ }^{13} \mathrm{C}$) or Bruker ARX 500 (operating at 500.1 MHz for ${ }^{1} \mathrm{H}$ and 125.7 MHz for ${ }^{13} \mathrm{C}$) instruments. The spectra were calibrated using the solvent signal according to [41] or TMS as internal standard unless stated otherwise. For the assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals, DEPT and two-dimensional ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlation spectra (HSQC and HMBC) were recorded. Analytical thin-layer chromatography (TLC) was performed on pre-coated POLYGRAM ${ }^{\circledR}$ SIL G/UV 254 plastic sheets (Machery-Nagel), detection by UV light. Column chromatography was carried out on silica gel 60 ($0.063-0.20 \mathrm{~mm}$), Macherey-Nagel. Melting points were determined with a Büchi 510 apparatus (Büchi Laboratoriumstechnik AG, Flawil/Switzerland) and are uncorrected. Elemental analyses were performed by the service of the Institut für Organische Chemie, University of Stuttgart. ESIMS spectra were measured on a micrOTOF-Q (Bruker Daltonics) instrument. Solvents and liquid reagents were purified and dried according to recommended procedures.
(1R)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-2,4, 7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-ethane-1,2-diol (11)

A mixture of D-sorbitol (10, $80 \mathrm{~g}, 0.44 \mathrm{~mol}), 4$-methoxybenzaldehyde $(240 \mathrm{~g}, 1.8 \mathrm{~mol})$, and acetic acid (800 mL) was stirred at $70^{\circ} \mathrm{C}$ until a clear solution was obtained, and then at $\mathrm{r} . \mathrm{t}$. for 48 h . Ether ($c a .200 \mathrm{~mL}$) was added. The jelly-like material was suspended, isolated by filtration, washed several times with an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$
and with hot water and air-dried overnight to yield compound 11. Yield $102 \mathrm{~g}(56 \%)$, colorless powder; m. p. 220$222^{\circ} \mathrm{C}$ (lit.: m.p. $185-187^{\circ} \mathrm{C}$ [36]). $-R_{\mathrm{f}}=0.5\left(\mathrm{CHCl}_{3}-\right.$ dioxane, 1:1). - FT-IR (ATR): $v=3514(\mathrm{OH}), 3311(\mathrm{OH}$ assoc.), 2972, 2932, 2837, 1614, 1517, 1246, 1089, 1061, 1035, $979,825,778,660 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, [D ${ }_{6}$]DMSO): $\delta=7.39$ and $7.37[2 \mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\left.\mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right)\right], 6.92[\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.59[\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}$ and $\mathrm{C}(8) \mathrm{H}], 4.82\left[\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OH}\right], 4.41(\mathrm{t}$, $\left.J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{OH}\right], 4.23-4.13[\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(1) \mathrm{H}+$ $\left.\mathrm{C}(10) \mathrm{H}_{2}\right], 3.89$ [bs, $\left.1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}\right], 3.84-3.65[\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}(5) \mathrm{H}$, $\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}$ and $2 \mathrm{ArOCH}_{3}$ as s at $\left.3,75 \mathrm{ppm}\right)$], $3.64-3.52[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{Ha}, 3.48-3.37\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{Hb}\right] .-{ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=159.37,159.32\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\text {IIII }}\right)\right]$, 131.16, $130.90\left[\mathrm{C}\left(1^{\text {II }}\right)\right.$ and $\left.\mathrm{C}\left(1^{\text {III }}\right)\right]$, 127.47, 127.43 $\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.25,113.19\left[\mathrm{C}\left(3^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.25,99.20[\mathrm{C}(3)$ and $\mathrm{C}(8)], 77.58$ [C(5)], 69.95 [C(1)], 69.24 [C(10)], 68.27 [C(6)], 67.67 $\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 62.58\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right], 55.08\left(\mathrm{OCH}_{3}\right) .-\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8}(418.43)$: calcd. C 63.15, H 6.26; found C 63.04, H 6.21 .
(1S,3S,5S,6R,8R)-3,8-Bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decane-5-carboxaldehyde (13)

A solution of $\mathrm{NaIO}_{4}(18 \mathrm{~g}, 84 \mathrm{mmol})$ in water $(160 \mathrm{~mL})$ was added to a stirred suspension of finely powdered compound $\mathbf{1 1}(25 \mathrm{~g}, 60 \mathrm{mmol})$ in 80% aqueous dioxane (500 mL). Compound $\mathbf{1 1}$ gradually dissolved, and simultaneously the product (compound 12) began to crystallize. After 48 h stirring at r.t., the resulting suspension was filtered. The colorless crystalline product was washed with water and air-dried. The obtained aldehyde hydrate $\mathbf{1 2}$ was suspended in 400 mL of toluene and the mixture was refluxed with a Dean-Stark trap until complete removal of the water. The hot toluene solution was quickly filtered and left overnight at r.t. The resulting suspension was filtered, the solid material was washed with toluene and dried to yield aldehyde 13. Yield $19.83 \mathrm{~g}(86 \%)$, colorless crystalline powder; m. p. 186-188 ${ }^{\circ} \mathrm{C}$ (lit.: m. p. 167-168 ${ }^{\circ} \mathrm{C}$ [36]). -$R_{\mathrm{f}}=0.23\left(\mathrm{CHCl}_{3}-\mathrm{THF}, 10: 0.5\right)$. - FT-IR (ATR): $v=2968$, 2933, 2838, 1736 (C=O), 1614, 1585, 1515, 1401, 1168, 1246, 1096, 1065, 1032, 993, $829,815 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=9.56$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{O}$), 7.45 and $7.30\left[2 \mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\left.\mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right)\right], 6.97$ and $6.91\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.73$ and $5.61[2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}$ and $\mathrm{C}(8) \mathrm{H}], 4.75[\mathrm{bd}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 4.51[\mathrm{bt}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 4.15\left[\mathrm{bt}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right]$, $4.00[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.76$ and $3.74\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($\left.62.89 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=199.49(\mathrm{C}=\mathrm{O})$, 159.65 and $159.48\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{II}}\right)\right], 130.51$ and 130.23 $\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.74$ and $127.37\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right)\right.$,
$\left.\mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.38$ and $113.32\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right)\right.$, $\mathrm{C}\left(5^{\mathrm{III}}\right)$], 99.31 and 98.88 [$\mathrm{C}(3)$ and $\left.\mathrm{C}(8)\right], 81.57$ [C(5)], $69.38[\mathrm{C}(1)], 69.02[\mathrm{C}(10)], 68.95[\mathrm{C}(6)], 55.13$ and 55.08 (2 ArOCH_{3}). $-\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}$ (386.39): calcd. C 65.28, H 5.74; found C 65.22, H 5.76.
(1S)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-2,4,7, 9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-hydroxy-prop-2-
yne (14) and ($1 R$)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxy-phenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-hydroxy-prop-2-yne (15)

A 0.6 M toluene/THF solution of ethinylmagnesium chloride ($80 \mathrm{~mL}, 48 \mathrm{mmol}$) was added slowly at r.t. under N_{2} atmosphere to a suspension of finely powdered aldehyde 13 ($16.8 \mathrm{~g}, 43.5 \mathrm{mmol}$) in anhydrous THF (10 mL). The resulting clear, yellowish solution was stirred at r.t. for additional 2.5 h , then poured into a 1.5% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (1 L). The precipitated material was isolated by filtration, washed with water and air-dried. The resulting slightly yellowish powder (20 g , water wet) was a mixture of the epimers 14 and 15 . The presence of water in this material seems to play an important role for the following separation of the epimers by recrystallization from methanol. Therefore the still water-wet crystalline mixture of compounds $\mathbf{1 4}$ and 15 was refluxed for 1 h in methanol (1 L). The resulting suspension was cooled to r.t. and filtered. The collected solid material (6.15 g) was once again refluxed for 1 h in methanol $(250 \mathrm{~mL})$, isolated by filtration, washed with methanol and dried to yield the pure epimer 14. The methanol mother liquor from the separation of the epimers was concentrated under reduced pressure. Toluene (300 mL) was added to the solid residue, and the mixture was refluxed with a Dean-Stark trap for removal of the residual water. The clear yellow solution was left at r.t. The crystallized material was collected by filtration, washed with toluene and dried to yield the pure compound 15.

Data for compound 14: Yield 4.88 g (27%), colorless crystals; m. p. $232-234^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.53\left(\mathrm{CHCl}_{3}-\mathrm{THF}, 9: 1\right)$. FT-IR (ATR): $v=3280$ (OH assoc.), 2964, 2932, 2896, 2835 $\left(\mathrm{OCH}_{3}\right), 1615,1585$, and $1515(\mathrm{Ar}), 1247(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1170$, 1091, 1028, $832 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ DMSO): $\delta=7.41$ and $7.34\left[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.94$ and $6.93[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.65[\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}], 5.62$ [s, 1H, C(3)H), $5.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 4.45-4.34$ [m, 1H, C($\left.\left.1^{\mathrm{I}}\right) \mathrm{H}\right], 4.24-4.02\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(1) \mathrm{H}\right.$ and $\left.\mathrm{C}(10) \mathrm{H}_{2}\right]$, $3.97-3.83[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(5) \mathrm{H}$ and $\mathrm{C}(6) \mathrm{H}], 3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$, $3.45[\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}] .-{ }^{13} \mathrm{C}$ NMR (62.89 MHz , [D D_{6}]DMSO): $\delta=159.49$ and $159.40\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right]$, 130.86 and $130.62\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}(1 \mathrm{III})\right], 127.75$ and 127.18 $\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.35$ and $113.24\left[\mathrm{C}\left(3^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.37[\mathrm{C}(3)], 99.20[\mathrm{C}(8)], 82.41$
$\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right], 80.56[\mathrm{C}(5)], 75.98\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 69.45$ and $69.35[\mathrm{C}(1)$ and $\mathrm{C}(6)], 69.06[\mathrm{C}(10)], 60.49\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right]$, $55.10\left(\mathrm{ArOCH}_{3}\right)$. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$ (412.43): calcd. C 66.98, H 5.87; found C 65.31, H 5.87.

Data for compound 15: Yield 8.69 g (48.5%), colorless, cotton-like crystals; m. p. $160-162^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.43\left(\mathrm{CHCl}_{3}-\right.$ THF, $9: 1$). - FT-IR (ATR): $v=3495$ and 3299 (OH assoc.), 2970, 2935, 2912, $2837\left(\mathrm{OCH}_{3}\right), 1614,1586$, and 1516 (Ar), 1245 (C=C-O), 1170, 1090, 1030, 828, $778 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.39$ and 7.38 [2d, $\left.J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.94$ and $6.93\left[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 5.67[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}]$, $5.59[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 4.44-4.34\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 4.2-4.03$ [$\mathrm{m}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ and $\left.\mathrm{C}(10) \mathrm{H}_{2}\right], 3.95-3.84[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(1) \mathrm{H}$ and $\mathrm{C}(5) \mathrm{H}], 3.75$ (s, $6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}$), 3.23 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C} \equiv \mathrm{CH}) .-{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=159.49$ and $159.39\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 130.97$ and $130.65\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{II}}\right)\right], 127.55$ and $127.44\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right)\right.$, $\left.\mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.33$ and $113.27\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right]$, $99.33[\mathrm{C}(3)], 99.24[\mathrm{C}(8)], 84.87\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right], 79.55[\mathrm{C}(5)], 74.90$ [C(3 $\left.\left.{ }^{\text {I }}\right)\right], 69.57[\mathrm{C}(1)], 69.11[\mathrm{C}(10)], 67.65$ [C(6)], 58.01 [C(11)], $55.11\left(\mathrm{ArOCH}_{3}\right) .-\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$ (412.43): calcd. C 66.98, H 5.87; found C 66.94, H 5.90.
(1R)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-hydroxy-but-3-yne (16)

An 80% toluene solution of propargyl bromide $(11.8 \mathrm{~mL}$, $9.44 \mathrm{~g}, 80 \mathrm{mmol}$) was added to a suspension of compound $\mathbf{1 3}$ in a DMF-diethyl ether ($1: 1$) mixture $(230 \mathrm{~mL})$. Zn powder ($7.8 \mathrm{~g}, 120 \mathrm{mmol}$), previously quickly washed with 2 N aqueous HCl , several times with water and dried at $200^{\circ} \mathrm{C}$ under N_{2} for 1 h , was added in small portions to the reaction mixture under stirring at $\mathrm{r} . \mathrm{t}$. After the addition of $c a .1 / 6$ of the Zn powder, the reaction mixture was gently warmed briefly with a fan heater, which initialized an exothermic reaction. The remaining metal powder was added slowly to prevent the reflux of the reaction mixture (less than $35^{\circ} \mathrm{C}$, if necessary the mixture should be externally cooled with ice water). After the addition of the whole amount of Zn powder, the mixture was stirred at r.t. for additional 2 h , then filtered through Celite ${ }^{\circledR}$ and the Celite ${ }^{\circledR}$ washed with DMF. The yellow-orange filtrate was poured into a 4% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~L})$. The precipitated yellowish solid was collected by filtration, washed with water and 70% aqueous ethanol and air dried to yield the crude compound $\mathbf{1 6}$ as an ochre-colored powder ($16 \mathrm{~g}, 97 \%$). The product was further purified by recrystallization from toluene to yield the pure compound 16. Yield 13.9 g (84%), colorless crystals; m. p. $190-192{ }^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.45\left(\mathrm{CHCl}_{3}\right.$-THF, $\left.10: 1\right) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.39$ and $7.38[2 \mathrm{~d}, J=8.6 \mathrm{~Hz}$,
$\left.4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.93$ and 6.92 [2d, $\left.J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.60$ [bs, $2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}$ and $\mathrm{C}(8) \mathrm{H}], 5.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, 4.19-4.09 [m, 3H, C(6)H + C(10) $\left.\mathrm{H}_{2}\right], 3.92-3.84[\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(1) \mathrm{H}, \mathrm{C}\left(1^{1}\right) \mathrm{H}\right], 3.79-3.69\left[\mathrm{~m}, 7 \mathrm{H}, \mathrm{C}(5) \mathrm{H}\right.$ and $2 \mathrm{ArOCH}_{3}$ (s at 3.75 ppm)], 2.73 (bt, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$), 2.46 [dt, $J=17.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{1}\right) \mathrm{Ha}$], 2.30 and 2.28 [2 dd , $\left.J=17.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right] .-{ }^{13} \mathrm{C}$ NMR $(125.76 \mathrm{MHz}$, [D D_{6}]DMSO): $\delta=159.42$ and $159.35\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right]$, 131.08 and $130.74\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.43$ and 127.41 $\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.31$ and $113.22\left[\mathrm{C}\left(3^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}(5 \mathrm{II}), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.33$ and 99.28 [C(3) and $\left.\mathrm{C}(8)\right]$, $82.08\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 79.43[\mathrm{C}(5)], 72.03\left[\mathrm{C}\left(4^{\mathrm{I}}\right)\right], 69.82[\mathrm{C}(1)]$, $69.19[\mathrm{C}(10)], 68.10[\mathrm{C}(6)], 64.90\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 55.10$ and 55.08 (2 ArOCH_{3}), $23.36\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right]$. $-\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{7}(426.46)$: calcd. C 67.59 , H 6.15; found C 67.35, H 6.17.
(1S)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-
2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-prop-2-yne-1-yl 4-nitrobenzoate (17)

4-Nitrobenzoyl chloride ($250 \mathrm{mg}, 1.35 \mathrm{mmol}$) was added to a mixture of the alkynol 14 ($500 \mathrm{mg}, 1.2 \mathrm{mmol}$), triethylamine (3 mL), and acetonitrile (25 mL), and the mixture was stirred at r.t. overnight. The crystalline material was collected by filtration, washed with methanol and dried. The crude product was recrystallized from toluene to yield pure compound 17. Yield 490 mg (72%), pale-yellow cottonlike crystals; m. p. $244-246^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.43\left(\mathrm{CHCl}_{3}\right.$-THF, 10:0.2). - FT-IR (ATR): $v=3269$ (C $\equiv \mathrm{CH}), 2955,2840$ $\left(\mathrm{OCH}_{3}\right), 1734(\mathrm{C}=\mathrm{O}), 1613$ and $1585(\mathrm{Ar}), 1516(\mathrm{Ar}$ and $\left.\mathrm{NO}_{2}\right), 1278\left(\mathrm{NO}_{2}\right), 1249(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1167,1090,1032,827$, $715 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ DMSO $): \delta=8.35(\mathrm{~d}$, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{NO}_{2}-\mathrm{Ph}, m-\mathrm{H}\right), 8.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-$ $\left.\mathrm{NO}_{2}-\mathrm{Ph}, o-\mathrm{H}\right), 7.34$ and $7.30\left[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}\right.$, $\mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}$, and $\left.\mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}\right], 6.93$ and $6.87[2 \mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}$, and $\left.\mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.85$ and $5.84\left[\mathrm{dd}, J=8.8,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 5.72[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}]$, $5.65[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 4.51$ and $4.50[\mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(5) \mathrm{H}], 4.33[\mathrm{bs}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 4.24[\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(10) \mathrm{H} a], 4.17[\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H} b], 4.04[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}(1) \mathrm{H}], 3.90[\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}], 3.75$ and $3.70(2 \mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}$). - ${ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=163.39(\mathrm{C}=\mathrm{O}), 159.49\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{II}}\right)\right]$, 150.47 [4-$\left.\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(4)\right], 134.12\left[4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(1)\right], 130.79\left[4-\mathrm{NO}_{2}-\right.$ $\mathrm{Ph}, \mathrm{C}(2)$ and $\mathrm{C}(6)], 130.56$ and $130.12\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right]$, 127.33 and $127.20\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 124.05$ [4- $\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(3)$ and $\left.\mathrm{C}(5)\right], 113.41$ and 113.28 [C(3 $\left.{ }^{\mathrm{II}}\right)$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.31[\mathrm{C}(8)], 98.98[\mathrm{C}(3)], 79.19$ $\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right], 77.53[\mathrm{C}(5)], 76.78\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 69.18[\mathrm{C}(1)], 69.00$ $[\mathrm{C}(6)], 68.96[\mathrm{C}(10)], 64.33\left[\mathrm{C}\left(1^{1}\right)\right], 55.07\left(\mathrm{ArOCH}_{3}\right)$. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{10}$ (561.53): calcd. C $64.17, \mathrm{H} 4.85, \mathrm{~N} 2.49$; found C 64.05, H 4.86, N 2.42.
(1R)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-prop-2-yne-1-yl 4-nitrobenzoate (18)

4-Nitrobenzoyl chloride ($400 \mathrm{mg}, 2.16 \mathrm{mmol}$) was added to a mixture of the alkynol $15(800 \mathrm{mg}, 1.94 \mathrm{mmol})$, triethylamine $(3 \mathrm{~mL})$, and acetonitrile $(20 \mathrm{~mL})$, and the mixture was stirred at r.t. overnight. A 10% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added, the mixture was extracted with CHCl_{3}, the organic extract was washed with water and concentrated under reduced pressure. The crystalline residue was dissolved in boiling ethanol (ca. 250 mL). After cooling to r.t. the crystallized product was collected by filtration to yield compound 18, which was recrystallized from toluene. Yield 800 mg (73%), yellowish fine needles; m.p. 206$208{ }^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.43\left(\mathrm{CHCl}_{3}-\mathrm{THF}, 10: 0.2\right) .-$ FT-IR (ATR): $v=3294(\mathrm{C} \equiv \mathrm{CH}), 2890,2834\left(\mathrm{OCH}_{3}\right), 1727(\mathrm{C}=\mathrm{O}), 1613$ and $1586(\mathrm{Ar}), 1530$ and $1518\left(\mathrm{Ar}\right.$ and $\left.\mathrm{NO}_{2}\right), 1272$ and $1244\left(\mathrm{C}=\mathrm{C}-\mathrm{O}\right.$ and $\left.\mathrm{NO}_{2}\right),, 1172,1100,1033,997,832,778$, $713 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=8.34$ [d $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{NO}_{2}-\mathrm{Ph}, m-\mathrm{H}\right], 8.24[\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 4$ $\left.\mathrm{NO}_{2}-\mathrm{Ph}, o-\mathrm{H}\right], 7.40$ and $7.22\left[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}\right.$, $\mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}$, and $\left.\mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.95$ and $6.90[2 \mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}$, and $\left.\mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.80$ $\left[\mathrm{s}, 1 \mathrm{H},(\mathrm{C}(3) \mathrm{H}], 5.75\right.$ and $5.74\left[\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right]$, $5.50[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 4.55$ and $4.54(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}$, $\mathrm{C}(5) \mathrm{H}], 4.23$ [bs, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 4.15$ [bs, 2H, C(10) H_{2}], 4.02 [s, C(1)H], 3.76 and $3.75\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.69[\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH})] .-{ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right)$ $\delta=162.75(\mathrm{C}=\mathrm{O}), 159.55$ and $159.28\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right]$, 150.52 [4- $\left.\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(4)\right], 133.89$ [4- $\left.\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(1)\right], 130.88$ $\left(4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(2) \mathrm{H}\right.$ and $\left.\mathrm{C}(6) \mathrm{H}\right], 130.46$ and $130.11\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.47$ and $126.94\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right)\right.$, $\left.\mathrm{C}\left(6^{\mathrm{III}}\right)\right], 123.93\left[4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(3) \mathrm{H}\right.$ and $\left.\mathrm{C}(5) \mathrm{H}\right], 113.34$ and $113.22\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.33[\mathrm{C}(3)], 98.87$ $[\mathrm{C}(8)], 78.89\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right], 77.97[\mathrm{C}(5)], 76.89\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 69.14$ $[\mathrm{C}(1)], 68.88[\mathrm{C}(10)], 67.65[\mathrm{C}(6)], 61.76\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 55.05$ and $54.99\left(2 \mathrm{ArOCH}_{3}\right) .-\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{10}$ (561.53): calcd. C 64.17, H 4.85, N 2.49; found C 64.86, H 4.98, N 2.36.
(1R)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-
2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-but-3-yne-1-yl 4-nitrobenzoate (19)

4-Nitrobenzoyl chloride ($250 \mathrm{mg}, 1.35 \mathrm{mmol}$) was added to a mixture of homoalkynol $16(500 \mathrm{mg}, 1.17 \mathrm{mmol})$, triethylamine $(3 \mathrm{~mL})$, and acetonitrile $(20 \mathrm{~mL})$, and the mixture was stirred at r.t. overnight. The solvent was removed at reduced pressure. The solid residue was suspended in methanol. The crystalline material was collected by filtration, washed with methanol and dried to yield compound 19, which was recrystallized from acetonitrile. Yield

490 mg (72%), slightly pink fine needles; m. p. $196-198^{\circ} \mathrm{C}$. $-R_{\mathrm{f}}=0.58\left(\mathrm{CHCl}_{3}-\mathrm{THF}, 10: 0.2\right) .-$ FT-IR (ATR): $v=3271$ $(\mathrm{C} \equiv \mathrm{CH}), 2933,2841\left(\mathrm{OCH}_{3}\right), 1739(\mathrm{C}=\mathrm{O}), 1608$ and 1586 (Ar), 1531 and $1516\left(\mathrm{Ar}\right.$ and $\left.\mathrm{NO}_{2}\right), 1346,1245\left(\mathrm{NO}_{2}\right)$, 1225 (C=C-O), 1092, 1027, 1010, 827, 778, $719 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=8.37[\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 4-\mathrm{NO}_{2}-\mathrm{Ph}, m-\mathrm{H}\right], 8.23\left[\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{NO}_{2}-\mathrm{Ph}\right.$, $o-\mathrm{H}], 7.40$ and 7.27 [$2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}$, and $\left.\mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.94$ and $6.91[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}$, and $\left.\mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.74[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3)]$, $5.51[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8)], 5.47-5.42\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 4.42$ and $4.41[\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, \mathrm{C}(5) \mathrm{H}], 4.16[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 4.14$ [bs, $\left.2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right], 4.02[\mathrm{bs}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.76$ and 3.75 [2s, $\left.6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right], 2.90[\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}], 2.83$ $\left[\mathrm{dt}, J=17.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a\right], 2.74$ and 2.73 [2 dd , $\left.J=17.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right] .-{ }^{13} \mathrm{C}$ NMR $(125.76 \mathrm{MHz}$, $\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=163.08(\mathrm{C}=\mathrm{O}), 159.47$ and $159.23\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 150.36\left[4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(4)\right], 134.61\left[4-\mathrm{NO}_{2}-\mathrm{Ph}\right.$, $\mathrm{C}(1)], 130.71$ [4- $\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(2)$ and $\left.\mathrm{C}(6)\right], 130.56$ and 130.20 $\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.38$ and $126.94\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 123.92\left(4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{C}(3)\right.$ and $\left.\mathrm{C}(5)\right], 113.30$ and $113.18\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right]$, $99.30[\mathrm{C}(3)]$, $98.81[\mathrm{C}(8)], 79.30\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 76.37[\mathrm{C}(5)], 73.26\left[\mathrm{C}\left(4^{\mathrm{I}}\right)\right]$, $69.30\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 69.05[\mathrm{C}(1)], 68.88[\mathrm{C}(10)], 68.04[\mathrm{C}(6)]$, 55.04 and $54.99\left(2 \mathrm{ArOCH}_{3}\right), 20.29\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right] .-\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{10}$ (575.56): calcd. C 64.69, H(5.08), N 2.43; found C 62.61, H 5.20, N 2.37 .
(1R)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-
2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-methoxy-prop-2-yne (20)
$\mathrm{NaH}(60 \%$ paraffin suspension, $1.85 \mathrm{~g}, 1.11 \mathrm{~g} \mathrm{NaH}$, 46 mmol) was added in small portions at r.t. under N_{2} to a stirred mixture of compound $15(15.9 \mathrm{~g}, 38.6 \mathrm{mmol})$ and $\mathrm{MeI}(10.5 \mathrm{~g}, 74 \mathrm{mmol})$ in anhydrous DMF $(75 \mathrm{~mL})$. The mixture was stirred for additional 3 h at r.t., then poured into cold water (150 mL). The precipitate was collected by filtration, washed with water, and air-dried. The obtained yellowish solid was suspended in methanol (400 mL) and the suspension refluxed for 1 h . After cooling to r.t., the crystalline material was collected by filtration, washed with methanol and diethyl ether and dried to yield compound $\mathbf{8}$. Yield 15 g (91%), colorless crystals; m.p. $176-178^{\circ}$ C. $-R_{\mathrm{f}}=0.65$ $\left(\mathrm{CHCl}_{3}\right.$-THF, $\left.10: 0.2\right) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.38$ and $7.36\left[2 \mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.94$ and $6.93[2 \mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.69[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}]$, $5.62[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 4.20$ and $4.19[\mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 4.13\left[\mathrm{bt}, 2 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{C}(10) \mathrm{H}_{2}\right], 4.07-4.02[\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}(5) \mathrm{H}$ and $\mathrm{C}(6) \mathrm{H}], 3.92[\mathrm{bs}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.75(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{ArOCH}_{3}\right), 3.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 3.35[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$. ${ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=$
159.52 and $159.37\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{II}}\right)\right], 130.85$ and 130.47 $\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.51$ and $127.21 \quad\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.36\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right]$, $99.33[\mathrm{C}(3)], 99.08[\mathrm{C}(8)], 81.06\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right], 77.81$ [C(5)], $77.36\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 69.38[\mathrm{C}(1)], 69.06[\mathrm{C}(10)], 67.87$ and 67.83 $\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right.$ and $\left.\mathrm{C}(6)\right], 56.44\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.11$ and 55.07 (2 ArOCH_{3}). - $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{7}$ (426.46): calcd. C 67.59 , H 6.15; found C 67.31, H 6.13.
(1R)-1-[(1S,3S,5R,6R,8R)-3,8-Bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-methoxy-but-3-yne (21)
$\mathrm{NaH}(60 \%$ paraffin suspension, $0.46 \mathrm{~g}, 0.276 \mathrm{~g} \mathrm{NaH}$, 11.5 mmol) was added in small portions under stirring in N_{2} atmosphere at r.t. to a mixture of compound $\mathbf{1 6}(4.38 \mathrm{~g}$, 10.3 mmol) and MeI ($2.9 \mathrm{~g}, 20 \mathrm{mmol}$) in anhydrous DMF $(30 \mathrm{~mL})$, and the mixture was stirred for additional 3 h at $\mathrm{r} . \mathrm{t}$. The product separated from the reaction mixture as colorless crystals. Water (150 mL) was added and the suspension was filtered. The product was washed with water and methanol and dried to yield compound 21, which was recrystallized from ethyl acetate. Yield $4.25 \mathrm{~g}(94 \%)$, colorless cottonlike crystals; m. p. $196-198^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.29\left(\mathrm{CHCl}_{3}-\mathrm{THF}\right.$, $10: 0.2$). - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.36[\mathrm{~d}$, $\left.J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.92$ and $6.93\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.65[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 5.61[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.15[\mathrm{bt}$, $\left.2 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{C}(10) \mathrm{H}_{2}\right], 4.10[\mathrm{bs}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 3.95[\mathrm{bs}$, $1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.91$ and $3.90[\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}]$, $3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.62-3.56\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.37$ [s, 3H, C $\left.\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 2.78(\mathrm{bt}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.64$ [dt, $\left.J=17.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a\right], 2.31$ and 2.30 [2 dd , $\left.J=17.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right] .-{ }^{13} \mathrm{C}$ NMR $(125.76 \mathrm{MHz}$, [D D_{6}]DMSO): $\delta=159.36$ and $159.26\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right]$, 130.84 and $130.48\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.30$ and 127.10 $\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.28$ and $113.24\left[\mathrm{C}\left(3^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.27[\mathrm{C}(3)], 98.99[\mathrm{C}(8)], 81.10$ $\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 77.48[\mathrm{C}(5)], 74.80\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 72.16\left[\mathrm{C}\left(4^{\mathrm{I}}\right)\right], 69.55$ [C(1)], $69.05[\mathrm{C}(10)], 68.21[\mathrm{C}(6)], 57.76\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, 55.02 and $54.98\left(2 \mathrm{ArOCH}_{3}\right), 19.42\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right] .-\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{7}$ (440.48): calcd. C 68.17, H 6.41; found C 67.50, H 6.36.

Preparation of THF solutions of (1R)-1-[(1S, 3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]-decan-5-yl]-1-methoxy-4,4,4-tris(dimethylamino)but-2-yne (22) and (1R)-1-[(1S,3S,5R,6R,8R)-3,8-bis(4-methoxyphe-nyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]-1-methoxy-5,5,5-tris(dimethylamino)pent-3-yne (23) - general procedure

A hexane solution (1.6 M) of $n-\mathrm{BuLi}(15 \mathrm{~mL}, 24 \mathrm{mmol})$ was added dropwise under N_{2} at $-40^{\circ} \mathrm{C}$ to a solution of alkyne $\mathbf{2 0}(10 \mathrm{~g}, 23 \mathrm{mmol})$ or alkyne $\mathbf{2 1}(10.1 \mathrm{~g}, 23 \mathrm{mmol})$ in
anhydrous THF (250 mL). The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 30 min , then left to warm to r.t. The yellowish solution was transferred under N_{2} through a connecting glass tube to a flask containing previously dried $\left(110^{\circ} \mathrm{C}, 0.1\right.$ Torr, 2 h$)$ finely powdered hexamethylguanidinium chloride ($\mathbf{2}, 8.3 \mathrm{~g}$, 46 mmol). The suspension was stirred at r.t. under N_{2} for 7 days. Aliquots from the resulting stock solutions of orthoamide $\mathbf{2 2}$ or $\mathbf{2 3}$ were used in the following syntheses.

6-Dimethylamino-4-[(R)-methoxy-[(1S, 3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]-decan-5-yl]methyl]-2-methyl-pyrimidine (24)

Acetamidine hydrochloride ($0.3 \mathrm{~g}, 3 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal $(70 \mathrm{mg}$, $3 \mathrm{mmol})$ to ethanol $(20 \mathrm{~mL})$. The mixture was stirred at r.t. for 20 min , then the solvent was removed under reduced pressure. A solution of the orthoamide 22 (792 mg , 1.4 mmol) in THF (16 mL) was added under N_{2} to the residue, and the mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h . Water was added and the mixture was extracted twice with CHCl_{3}. The organic extract was washed twice with water and concentrated under reduced pressure. The foam-like residue was dissolved in a minimum amount of CHCl_{3} and purified by flash chromatography on silica gel. The product was eluted consecutively with $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}$-ethyl acetate (1:1), ethyl acetate, ethyl acetate-methanol (95:5). After the evaporation of the eluate the residue was triturated with diethyl ether, the solid material was collected by filtration, washed with diethyl ether and dried to yield compound 24. Yield 530 mg (70%), colorless crystals; m. p. 192$194{ }^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.24$ (ethyl acetate). $-{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=7.41$ and $7.18[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.96$ and $6.84[2 \mathrm{~d}, J=$ $\left.8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 6.52[\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right], 5.68[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 5.52[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.37$ and $4.38[\mathrm{dd}, J=9.25,1.5 \mathrm{~Hz}, \mathrm{C}(5) \mathrm{H}], 4.23[\mathrm{~d}, J=9.25 \mathrm{~Hz}$, $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 4.20[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 4.19-4.12\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right]$, $3.96[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.76$ and $3.70\left[2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right]$, $3.18\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OC} H_{3}\right], 3.00\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.36[\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{CH}_{3}\right] .-{ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right)$: $\delta=165.84\left[\mathrm{C}\left(2^{\mathrm{IV}}\right)\right], 164.08\left[\mathrm{C}\left(4^{\mathrm{IV}}\right)\right], 162.12\left[\mathrm{C}\left(6^{\mathrm{IV}}\right)\right]$, $159.36\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 131.03$ and $130.55\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.33$ and $127.25\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right]$, 113.35 and $113.20\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.59$ [C $\left.\left(5^{\mathrm{IV}}\right)\right], 99.15$ and $99.10[\mathrm{C}(3)$ and $\mathrm{C}(8)], 79,72\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right]$, 77.89 [C(5)], 69.67 [C(1)], 69.23 [C(10)], $68.58[\mathrm{C}(6)]$, $56.87\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.08$ and $55.05\left(2 \mathrm{ArOCH}_{3}\right), 36.55$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.95\left[\mathrm{C}\left(2^{\mathrm{IV}}\right) \mathrm{CH}_{3}\right] .-\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7}$ (537.60): calcd. C 64.79, H 6.56, N 7.82; found C 64.57, H 6.58, N 6.73. - HRMS ((+)ESI): $m / z=538.2552$ (calcd. 538.2553 for $\left.\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

6-Dimethylamino-4-[(2R)-2-methoxy-2-[(1S,3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]-decan-5-yllethyl]-2-methyl-pyrimidine (25)

Acetamidine hydrochloride ($470 \mathrm{mg}, 5 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal (120 mg , $5.2 \mathrm{mmol})$ to ethanol $(10 \mathrm{~mL})$. The mixture was stirred at r.t. for 20 min , then the solvent was removed under reduced pressure. A solution of the orthoamide $\mathbf{2 3}(750 \mathrm{mg}, 1.3 \mathrm{mmol})$ in THF (15 mL) was added under N_{2} to the residue, and the mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h . Water was added and the mixture was extracted twice with CHCl_{3}. The organic extract was washed twice with water and concentrated under reduced pressure. The residue was dissolved in a minimum amount of CHCl_{3} and purified by flash chromatography on silica gel. The product was eluted consecutively with CHCl_{3}, ethyl acetate, ethyl acetate-methanol ($9: 1$). The eluate was evaporated to dryness to yield compound 25 . Yield $537 \mathrm{mg}(75 \%)$, colorless solid; m. p. $84-86^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.2$ (ethyl acetate). $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.37$ and $7.36\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.93$ and $6.92\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}\right], 6.29\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right], 5.65$ and $5.64[2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}$ and $\mathrm{C}(8) \mathrm{H}], 4.15[\mathrm{bt}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(10) \mathrm{H}_{2}\right], 4.09[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 3.95-3.88[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(1) \mathrm{H}$ and $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.85[\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 3.75$ and $3.74\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.18\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, 2.98 [s, $6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], 2.92 and 2.91 [dd, $J=14.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a$], 2.59 and 2.57 [dd, $J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right], 2.32\left(\mathrm{~s}, 3 \mathrm{H}\right.$, pyrimidine residue $\left.\mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=165.43,165.33$, and 162.00 $\left[\mathrm{C}\left(2^{\mathrm{IV}}\right), \mathrm{C}\left(4^{\mathrm{IV}}\right)\right.$, and $\left.\mathrm{C}\left(6^{\mathrm{IV}}\right)\right], 159.46$ and $159.42\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\text {III }}\right)\right], 130.99$ and $130.74\left[\mathrm{C}\left(1^{\text {II }}\right)\right.$ and $\left.\mathrm{C}\left(1^{\text {III }}\right)\right], 127.48$ and $127.33\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.42$ and $113.30\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.42\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 99.29$ [C(3) and $\mathrm{C}(8)], 79,22[\mathrm{C}(5)], 76.51\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right]$, $69.76[\mathrm{C}(1)]$, $69.23[\mathrm{C}(10)], 68.80[\mathrm{C}(6)], 58.43\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.12$ and $55.10\left(2 \mathrm{ArOCH}_{3}\right), 39.70\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right.$, overlapped by the solvent signal, detectable by DEPT-135], 36.51 [$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], 25.97 [$\mathrm{C}\left(2^{\mathrm{IV}}\right) \mathrm{CH}_{3}$]. $-\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{7}$ (551.66): calcd. C $65.32, \mathrm{H}$ 6.76, N 7.62; found C 64.42, H 6.66, N 6.94. - HRMS ((+)ESI): $m / z=552.2710$ (calcd 552.2710 for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7}$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

6-Dimethylamino-4-[(R)-methoxy-[(1S,3S,5R,6R,8R)-3,8-
bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]methyl]-2-phenyl-pyrimidine (26)

Benzamidine hydrochloride ($470 \mathrm{mg}, 3 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal (70 mg , $3 \mathrm{mmol})$ to ethanol $(20 \mathrm{~mL})$. After stirring at r.t. for 30 min , the solvent was removed under reduced pressure. A solution of the orthoamide 22 ($791 \mathrm{mg}, 1.4 \mathrm{mmol}$) in THF (16 mL)
was added, and the mixture was stirred for 3 h at $65^{\circ} \mathrm{C}$. Water was added, and the mixture was extracted twice with CHCl_{3}. The organic extract was washed twice with water and concentrated under reduced pressure. Methanol was added to the red-brownish residue. The product crystallized and was collected by filtration, washed with methanol and dried to yield compound 26. Yield 586 mg (70%), yellowish crystals; m.p. $212-214^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.44\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $9: 1) .-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$ DMSO, 323 K): $\delta=8.41-8.35[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}, \mathrm{C}(2) \mathrm{H}$ and $\mathrm{C}(6) \mathrm{H}], 7.46(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(4) \mathrm{H}$, and $\mathrm{C}(5) \mathrm{H}], 7.44$ and 7.19 [2d, $\left.J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.96$ and $6.78\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 6.67\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right], 5.71[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}]$, $5.56[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.51$ and $4.50[\mathrm{dd}, J=9.0,1.5 \mathrm{~Hz}$, $\mathrm{C}(5) \mathrm{H}], 4.39\left[\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 4.27[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}(6) \mathrm{H}], 4.22$ and $4.18\left[2 \mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 4.00$ $[\mathrm{s}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.77$ and $3.67\left[2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right], 3.30$ [s, 3H, C $\left.\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 3.14\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] .-{ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=164.52\left[\mathrm{C}\left(4^{\mathrm{IV}}\right)\right], 162.26$ and $161.94\left[\mathrm{C}\left(2^{\mathrm{IV}}\right)\right.$ and $\left.\mathrm{C}\left(6^{\mathrm{IV}}\right)\right], 159.30$ and $159.24\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 138.31[\mathrm{Ph}, \mathrm{C}(1)], 130.97$ and $130.52\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 129.78[\mathrm{Ph}, \mathrm{C}(4)], 127.94$ and $127.59[\mathrm{Ph}$, $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5)$, and $\mathrm{C}(6)], 127.10$ and $127.08\left[\mathrm{C}\left(2^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.28$ and $113.05\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right)\right], 100.23\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 99.17$ and $99.03[\mathrm{C}(3)$ and $\mathrm{C}(8)], 79.75\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 77.98[\mathrm{C}(5)], 69.63[\mathrm{C}(1)], 69.20$ [C(10)], $68.60[\mathrm{C}(6)], 56.89\left[\mathrm{C}\left(1^{1}\right) \mathrm{OCH}_{3}\right], 54.98$ and 54.90 ($2 \mathrm{ArOCH}_{3}$), $36.48\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right] .-\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{7}$ (599.67): calcd. C 68.10, H 6.22, N 7.01; found C 68.14, H $6.21, \mathrm{~N}$ 6.87. - HRMS ((+)-ESI): $m / z=600.2707$ (calcd. 600.2710 for $\left.\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

6-Dimethylamino-4-[(2R)-2-methoxy-2-[($1 S, 3 S, 5 R, 6 R, 8 R)$ -3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]-decan-5-yl]ethyl]-2-phenyl-pyrimidine (27)

Benzamidine hydrochloride ($390 \mathrm{mg}, 2.5 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal $(60 \mathrm{mg}, 2.6 \mathrm{mmol})$ to ethanol $(10 \mathrm{~mL})$. After stirring at r.t. for 30 min . the solvent was removed under reduced pressure. A solution of the orthoamide $23(713 \mathrm{mg}, 1.2 \mathrm{mmol})$ in THF (14 mL) was added, and the mixture was stirred under N_{2} at $65^{\circ} \mathrm{C}$ for 3 h . Water was added, and the mixture was extracted twice with CHCl_{3}. The combined organic extracts were washed twice with water and concentrated under reduced pressure. The residue was dissolved in a minimal amount of CHCl_{3} and purified by flash chromatography on silica gel by consecutive elution with $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}-$ ethyl acetate ($95: 5$), and CHCl_{3}-ethyl acetate ($9: 1$). After the concentration of the eluate under reduced pressure, the residue was recrystallized from ethanol to yield compound 27. Yield 300 mg (41%), colorless crystals; m. p. 138-
$140^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.36\left(\mathrm{CHCl}_{3}\right.$-ethyl acetate, $\left.9: 1\right) .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=8.39-8.33[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}, \mathrm{C}(2) \mathrm{H}$ and $\mathrm{C}(6) \mathrm{H}], 7.49-7.35[\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(4) \mathrm{H}, \mathrm{C}(5) \mathrm{H}$, and $\left.\mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.97-6.91[\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}\right], 6.44\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right]$, $5.66[\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), \mathrm{C}(8) \mathrm{H}], 4.2-4.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}\left(1^{1}\right) \mathrm{H}\right.$, $\mathrm{C}(6) \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}$], 3.96-3.87 [m, 2H, C(1)H, C(5)H)], 3.74 and $3.73\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.27\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, $3.09\left[\mathrm{bs}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.07\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{Ha}\right], 2.80-2.72$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right) .-{ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right):$ $\delta=165.56\left[\mathrm{C}\left(4^{\mathrm{IV}}\right)\right], 162.19$ and $161.45\left[\mathrm{C}\left(2^{\mathrm{IV}}\right)\right.$ and $\left.\mathrm{C}\left(6^{\mathrm{IV}}\right)\right]$, 159.44 and $159.35\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{II}}\right)\right], 138.42[\mathrm{Ph}, \mathrm{C}(1)]$, 130.94 and $130.65\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 129.97[\mathrm{Ph}, \mathrm{C}(4)]$, 128.16 and $127.56[\mathrm{Ph}, \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5) \mathrm{C}(6)], 127.41$ and $127.19\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right)\right], 113.36$ and 113.31 $\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 100.58\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 99.39$ and $98.99[\mathrm{C}(3)$ and $\mathrm{C}(8)], 78.92\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 76.31[\mathrm{C}(5)], 69.78$ $[\mathrm{C}(1)], 69.19[\mathrm{C}(10)], 68.72[\mathrm{C}(6)], 58.21\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, 55.08 and $55.05[2 \mathrm{ArOCH} 3], 39.13\left[\mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H}_{2}\right.$, overlapped by the solvent signal, detectable by DEPT 135], 36.54 $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$. $-\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{7}$ (613.70): calcd. C 68.50 , H 6.41 , N 6.85; found: C 68.01, H 6.34, N 6.44. - HRMS ((+)ESI): $m / z=614.2869$ (calcd. 614.2866 for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{7}$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

6-Dimethylamino-4-[(R)-methoxy-[(1S,3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]methyl]-2-amino-pyrimidine (28)

Guanidine hydrochloride ($285 \mathrm{mg}, 3 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal ($70 \mathrm{mg}, 3 \mathrm{mmol}$) to ethanol (20 mL), and the solution was stirred at r.t. under N_{2} for $2 h$. The solvent was removed under reduced pressure. A solution of the orthoamide $22(791 \mathrm{mg}, 1.4 \mathrm{mmol})$ in THF (16 mL) was added, and the mixture was stirred at $65^{\circ} \mathrm{C}$ under N_{2} for 3 h . Water was added, and the mixture was extracted twice with CHCl_{3}. The organic extract was washed with water, concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel by consecutive elution with CHCl_{3}, acetonitrile, acetonitrile-methanol ($95: 5$). Compound $\mathbf{2 8}$ was obtained after the evaporation of the eluate to dryness under reduced pressure. Yield $330 \mathrm{mg}(44 \%)$, yellowish solid; m. p. 134$136{ }^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.54$ (ethyl acetate-MeOH, 8:2). $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.41$ and $7.23[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}\right], 6.97$ and 6.87 [2d, $\left.J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 6.00$ $\left[\mathrm{bs}, 3 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right.$ and $\left.\mathrm{NH}_{2}\right], 5.68[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 5.52[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}(3) \mathrm{H}], 4.30[\mathrm{dd}, J=9.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 4.22-4.05[\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{C}(6) \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right], 3.95[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.77$ and $3.72\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.19\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 2.96$ (s, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) .-{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ DMSO): $\delta=163.14\left[\mathrm{C}\left(6^{\mathrm{V}}\right)\right], 159.44$ and $159.41\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right]$,
131.12 and $130.66\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{II}}\right)\right]$, 127.49 and 127.29 $\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.42$ and $113.28\left[\mathrm{C}\left(3^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.28$ and $99.18[\mathrm{C}(3)$ and $\mathrm{C}(8)]$, $92.73\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 79.86\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 78.04[\mathrm{C}(5)], 69.79[\mathrm{C}(1)]$, $69.27[\mathrm{C}(10)], 68.62[\mathrm{C}(6)], 56.79\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.16$ and $55.13\left(2 \mathrm{ArOCH}_{3}\right), 36.62\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right] .-\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{7}$ (538.59): calcd. C 62.44, H 6.36, N 10.40 ; found C 61.24, H 6.28, N 10.21. - HRMS ((+)-ESI): $m / z=539.2505$ (calcd. 539.2505 for $\left.\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{7},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

6-Dimethylamino-4-[(2R)-2-methoxy-2-[($1 S, 3 S, 5 R, 6 R, 8 R)$ -3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]-decan-5-yllethyl]-2-amino-pyrimidine (29)

Guanidine hydrochloride ($285 \mathrm{mg}, 3 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal (70 mg , $3 \mathrm{mmol})$ to ethanol $(20 \mathrm{~mL})$, and the solution was stirred at r.t. under N_{2} for 1 h . The solvent was removed under reduced pressure. A solution of the orthoamide 23 (697 mg , 1.2 mmol) in THF (14 mL) was added, and the mixture was stirred at $65^{\circ} \mathrm{C}$ under N_{2} for 3 h . Water was added, and the mixture was extracted twice with CHCl_{3}. The combined organic extracts were washed with water, concentrated under reduced pressure, and the residue was purified by flash chromatography with consecutive elution with ethyl acetate, ethyl acetate-methanol ($9: 1$), ethyl acetate-methanol ($8: 2$). Compound 29 was obtained after the evaporation of the eluate to dryness under reduced pressure. Yield 310 mg (47%), yellowish solid; m. p. $102-104{ }^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.3$ (ethyl acetate-MeOH, 8:2). - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.37\left[\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.94$ and $6.93\left[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.92$ (bs, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.81[\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right], 5.65$ and $5.64[2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}$ and $\mathrm{C}(8) \mathrm{H}]$, $4.15\left[\mathrm{bt}, 2 \mathrm{H}, J=13.9 \mathrm{~Hz}, \mathrm{C}(10) \mathrm{H}_{2}\right], 4.09[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}]$, $3.98-3.88\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(1) \mathrm{H}\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.80[\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(5) \mathrm{H}], 3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.19\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, $2.93\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.78$ and 2.77 [dd, $J=14.0,2.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a\right], 2.41$ and $2.39[\mathrm{dd}, J=14.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right]$. - ${ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=$ $165.89,163.26$, and $162.40\left[\mathrm{C}\left(2^{\mathrm{IV}}\right), \mathrm{C}\left(4^{\mathrm{IV}}\right)\right.$, and $\left.\mathrm{C}\left(6^{\mathrm{IV}}\right)\right]$, $159.53\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 131.04$ and $130.80\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.49$ and $127.39\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right]$, 113.45 and $113.32\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.41$ and $99.38[\mathrm{C}(3)$ and $\mathrm{C}(8)], 92.51\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 79,30[\mathrm{C}(5)]$, $76.39\left[\mathrm{C}\left(1^{1}\right)\right], 69.74[\mathrm{C}(1)], 69.23[\mathrm{C}(10)], 68.71$ [C(6)], $58.65\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.12\left(\mathrm{ArOCH}_{3}\right), 39.97\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right.$, overlapped by the solvent signal, detectable by DEPT-135], 36.51 $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$. $-\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{7}$ (552.62): calcd. C 63.03, H 6.57, N 10.14; found C 61.70, H 6.54, N 9.54. - HRMS ((+)ESI): $m / z=553.2656$ (calcd. 553.2662 for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{7}$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

6-Dimethylamino-4-[(R)-methoxy-[(1S,3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]decan-5-yl]methyl]-2-(1-piperidyl)pyrimidine (30)

Piperidine-1-carboxamidine sulfate ($2 \mathrm{~g}, 5.7 \mathrm{mmol}$) was added to a solution obtained by addition of Na metal $(300 \mathrm{mg}, 13 \mathrm{mmol})$ to ethanol $(30 \mathrm{~mL})$. The mixture was stirred for 30 min at r.t., then evaporated to dryness. Acetonitrile (30 mL) was added to the residue, the mixture was stirred for a few minutes and then filtered. The clear filtrate was evaporated to yield piperidine-1-carboxamidine base as a colorless solid ($1.3 \mathrm{~g}, 90 \%$). Piperidine-1-carboxamidine base ($0.9 \mathrm{~g}, 7 \mathrm{mmol}$) was added to a solution of the orthoamide 22 ($682 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF (14 mL), and the mixture was stirred at $55^{\circ} \mathrm{C}$ under N_{2} for 21 h . Water was added, and the mixture was extracted twice with CHCl_{3}. The combined organic extracts were washed with water and concentrated under reduced pressure. Methanol was added to the residue, and the suspension was heated to reflux. After cooling to r.t. the suspension was filtered. The solid material was washed with methanol and diethyl ether and dried to yield compound $\mathbf{3 0}$. Yield $510 \mathrm{mg}(70 \%)$, yellowish crystals; m. p. $194-196^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.68\left(\mathrm{CHCl}_{3}-\mathrm{THF}, 1: 1\right)$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.40$ and 7.21 [2d, $\left.J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.96$ and $6.85\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.97\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 5.67[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 5.51$ [s, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.33$ and 4.32 [dd, $J=9.5,1.5 \mathrm{~Hz}, \mathrm{C}(5) \mathrm{H}]$, 4.19, $[\mathrm{s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 4.18$ and $4.14[\mathrm{dd}, 2 \mathrm{H}, J=12.3$, $\left.1.3 \mathrm{~Hz}, \mathrm{C}(10) \mathrm{H}_{2}\right], 4.09\left[\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.95$ [s, $1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.76$ and $3.71\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right), 3.67$ (bt, $\left.J=5.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.22\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, $2.96\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.57\left[\mathrm{~m}, 2 \mathrm{H}\right.$, piperidine, $\left.\gamma-\mathrm{CH}_{2}\right]$, $1.45\left[\mathrm{~m}, 4 \mathrm{H}\right.$, piperidine, $\left.\beta-\mathrm{CH}_{2}\right] .-{ }^{13} \mathrm{C}$ NMR (125.76 MHz , [D D_{6}]DMSO): $\delta=164.88,162.84,160.94\left[\mathrm{C}\left(2^{\mathrm{IV}}\right), \mathrm{C}\left(6^{\mathrm{IV}}\right)\right.$, $\left.\mathrm{C}\left(4^{\mathrm{IV}}\right)\right], 159.36$ and $159.35\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{II}}\right)\right], 131.03$ and $130.65\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.36$ and $127.23\left[\mathrm{C}\left(2^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.37$ and $113.17\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right)\right], 99.23$ and $99.19[\mathrm{C}(3)$ and $\mathrm{C}(8)], 91.49$ $\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 79.89\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 78.07[\mathrm{C}(5)], 69.72[\mathrm{C}(1)], 69.29$ [C(10)], $68.69[\mathrm{C}(6)], 56.87\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.07\left[\mathrm{ArOCH}_{3}\right]$, 44.25 (piperidine, $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 36.47\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 25.26$ [piperidine, $\gamma-\mathrm{CH}_{2}$], 24.52 [piperidine, $\beta-\mathrm{CH}_{2}$]. $-\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{7}$ (606.70): calcd. C 65.33 , H $6.98, \mathrm{~N} 9.23$; found C 65.58 , H 6.96, N 8.96. - HRMS ((+)-ESI): $m / z=607.3140$ (calcd. 607.3132 for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{7},[\mathrm{M}+\mathrm{H}]^{+}$).

6-Dimethylamino-4-[(2R)-2-methoxy-2-[(1S,3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo[4.4.0]-decan-5-yllethyl]-2-(1-piperidyl)pyrimidine (31)

Piperidine-1-carboxamidine base (see previous procedure) ($380 \mathrm{mg}, 3 \mathrm{mmol}$) was added to a solution of the orthoamide 23 ($787 \mathrm{mg}, 1.3 \mathrm{mmol}$) in THF (15 mL), and the
mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . Water was added and the mixture was extracted twice with CHCl_{3}. The combined organic extracts were washed with water and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel by consecutive elution with $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}$-ethyl acetate (1:1), ethyl acetate, ethyl acetate-methanol $(9: 1)$. After concentration of the eluate under reduced pressure, the residue was recrystallized from ethanol to yield compound 31. Yield $520 \mathrm{mg}(62 \%)$, yellowish crystals; m. p. $130-134^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.36$ (ethyl acetate). - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.36$ [d, $\left.J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.91$ $\left[\mathrm{d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right]$, $5.76\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 5.65[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 5.62[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}(3) \mathrm{H}], 4.21-3.97\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}, \mathrm{C}(6) \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.95-$ $3.84[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(1) \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 3.74\left[\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right]$, $3.66\left[\mathrm{bt}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}\right.$, piperidine, $\mathrm{N}-\mathrm{CH}_{2}$], $3.26[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 2.94\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.85$ and 2.84 [dd, $\left.J=14.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a\right],\left[\mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right.$ is overlapped by the solvent signal at 2.5 ppm$], 1.56[\mathrm{~m}, 2 \mathrm{H}$, piperidine, $\left.\gamma-\mathrm{CH}_{2}\right], 1.43\left[\mathrm{~m}, 4 \mathrm{H}\right.$, piperidine, $\left.\beta-\mathrm{CH}_{2}\right] .-{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=165.76,162.82$, and 160.63 $\left[\mathrm{C}\left(4^{\mathrm{IV}}\right), \mathrm{C}\left(6^{\mathrm{IV}}\right)\right.$, and $\left.\mathrm{C}\left(2^{\mathrm{IV}}\right)\right], 159.38$ and $159.29\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 130.96$ and $130.66\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.35$ and $127.07\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 113.32$ and 113.26 $\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.34$ and $98.89[\mathrm{C}(3)$ and $\mathrm{C}(8)], 91.83\left[\mathrm{C}\left(5^{\mathrm{IV}}\right)\right], 78,86[\mathrm{C}(5)], 76.00\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 69.82$ $[\mathrm{C}(1)], 69.19[\mathrm{C}(10)], 68.68[\mathrm{C}(6)], 58.16\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right]$, 55.07 and $55.05\left(2 \mathrm{ArOCH}_{3}\right), 44.15$ (piperidine, $\left.\mathrm{N}-\mathrm{CH}_{2}\right)$, $39.12\left[\mathrm{C}\left(2^{\mathrm{I}}\right)\right.$, overlapped by the solvent signal, detectable by DEPT-135], $36.39\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 25.30$ (piperidine, $\gamma-\mathrm{CH}_{2}$), 24.55 (piperidine, $\beta-\mathrm{CH}_{2}$). - $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{7}$ (620.73): calcd. C 65.79, H 7.14; found C 64.40, H 6.67. - HRMS ((+)ESI): $m / z=621.3288$ (calcd. 621.3288 for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{7}$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

5,5-Bis(dimethylamino)-2-cyano-3-[(R)-methoxy-[(1S,3S,

 5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabi-cyclo[4.4.0]decan-5-yl]methyl]-penta-2,4-dienenitrile (32)A solution of malononitrile ($200 \mathrm{mg}, 3 \mathrm{mmol}$) in THF $(3 \mathrm{~mL})$ was added to a THF solution of the orthoamide $22(22 \mathrm{~mL}, 631 \mathrm{mg}, 1.1 \mathrm{mmol})$. The color of the mixture turned immediately to deep orange. The mixture was stirred at r .t. for 24 h . The solvent was removed under reduced pressure. The viscous orange-brown oily residue was dissolved in CHCl_{3} and separated by flash chromatography on silica gel by consecutive elution with $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}-$ $\operatorname{THF}(9: 1), \mathrm{CHCl}_{3}$-THF-MeOH ($70: 30: 1.5$), and CHCl_{3} -THF-MeOH ($50: 50: 1.5$) to yield after evaporation of the eluate compound 32. Yield 500 mg (76%), yellow-orange amorphous solid; m. p. $125-130^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.58\left(\mathrm{CHCl}_{3}-\right.$ THF, $1: 1$). - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}, 297 \mathrm{~K}$):
$\delta=7.41$ and $7.33\left[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.93$ and $6.90[2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.65[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}]$, $5.57[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.54\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{IV}}\right) \mathrm{H}\right], 4.29[\mathrm{~d}, J=$ $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 4.20-4.06[\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(5) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$, $\left.\mathrm{C}(10) \mathrm{H}_{2}\right], 3.92[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.75$ and $3.74[2 \mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{ArOCH}_{3}\right], 3.27\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 2.90[\mathrm{~s}, 12 \mathrm{H}, 2$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] .-{ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=$ 167.47 and $160.70\left[\mathrm{C}\left(4^{\mathrm{IV}}\right)\right.$ and $\left.\mathrm{C}\left(2^{\mathrm{IV}}\right)\right], 159.42$ and 159.32 $\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 130.94$ and $130.39\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right]$, 127.44 and $127.24\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 120.32$ $(\mathrm{CN}), 113.30$ and $113.20\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right]$, $99.45[\mathrm{C}(3)], 99.02[\mathrm{C}(8)], 89.59\left[\mathrm{C}\left(3^{\mathrm{IV}}\right)\right]$, $79.67\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right]$, 78.93 [C(5)], 69.75 [C(1)], 69.17 [C(10)], 68.27 [C(6)], $56.63\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.09\left(\mathrm{ArOCH}_{3}\right), 45.90\left[\mathrm{C}\left(1^{\mathrm{IV}}\right)\right], 40.71$ $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$. - $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7}$ (590.66): calcd. C 65.07, H 6.48, N 9.49; found C 64.48, H 6.46, N 9.24. - HRMS ($(+)$ ESI): $m / z=591.2804$ (calcd. 591.2819 for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{7}$, $[\mathrm{M}+\mathrm{H}]^{+}$), 613.2634 (calcd. 613.2638 for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}$, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 629.2374$ (calcd. 629.2377 for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~K}$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.

5,5-Bis(dimethylamino)-2-cyano-3-[(2R)-2-methoxy-2-[(1S, 3S,5R,6R,8R)-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabi-cyclo[4.4.0]decan-5-yl]ethyl]-penta-2,4-dienenitrile (33)

Malononitrile ($300 \mathrm{mg}, 4.5 \mathrm{mmol}$) was added to a THF solution of the orthoamide $23(25 \mathrm{~mL}, 697 \mathrm{mg}, 1.2 \mathrm{mmol})$. The color of the mixture turned immediately to deep orange. The mixture was stirred at r.t. for 24 h . A 10% aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added, and the mixture was extracted with ethyl acetate. The organic extract was washed with water and concentrated under reduced pressure. The viscous orange-brown oily residue was dissolved in CHCl_{3} and separated by flash chromatography on silica gel by consecutive elution with $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}$-ethyl acetate ($1: 1$), ethyl acetate, ethyl acetate-MeOH-triethylamine ($9: 1: 0.1$) to yield after concentration of the eluate the compound 33. Yield 460 mg (63%), yellow-orange amorphous solid; m. p. $94-100^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.43$ (ethyl acetate). $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ DMSO, 296 K) (mixture of rotamers): $\delta=7.46-7.30\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.98-6.87\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.65[\mathrm{~s}, 1.5 \mathrm{H}$, incl. $\mathrm{C}(8) \mathrm{H}$ and $0.5 \mathrm{C}(3) \mathrm{H}], 5.63$ $[\mathrm{s}, 0.5 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.75$ and $4.36\left[2 \mathrm{~s}, 2 \times 0.5 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{IV}}\right) \mathrm{H}\right]$, $4.15\left[\mathrm{bt}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right], 4.10$ and $4.04[2 \mathrm{~s}$, $2 \times 0.5 \mathrm{H}, \mathrm{C}(6) \mathrm{H}], 3.92$ and $3.91[2 \mathrm{~s}, 2 \times 0.5 \mathrm{H}, \mathrm{C}(1)], 3.84$ $[\mathrm{d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 3.77-3.73[\mathrm{~m}, 7 \mathrm{H}$, incl. 2 $\mathrm{ArOCH}_{3}, 0.5 \mathrm{C}(5) \mathrm{H}$, and $\left.0.5 \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.51-3.43[\mathrm{~m}, 0.5 \mathrm{H}$, $\left.\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.36$ and $3.43\left[2 \mathrm{~s}, 2 \times 1.5 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 2.91$ and $2.70\left[2 \mathrm{~s}, 2 \times 6 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.78-2.72\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a\right]$, $2.45-2.33\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right] .-{ }^{13} \mathrm{C}$ NMR (125.76 MHz , [D_{6}]DMSO): $\delta=167.35$ and $160.27\left[\mathrm{C}\left(4^{\mathrm{IV}}\right)\right], 165.59$ and
$162.36\left[\mathrm{C}\left(2^{\mathrm{IV}}\right)\right], 159.49$ and $159.43\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right]$, $131.05,130.94,130.66$, and $130.59\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right]$, 127.61, 127.55, 127.31, and 127.15 [C($\left.2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right)$, $\left.\mathrm{C}\left(6^{\mathrm{III}}\right)\right], 120.32$ and $119.96(\mathrm{CN}), 113.43,113.39$, and $113.32\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right)\right], 99.39[\mathrm{C}(8)], 99.23$ and $98.89[\mathrm{C}(3)], 91.67$ and $88.53\left[\mathrm{C}\left(3^{\mathrm{IV}}\right)\right], 79.15$ and 79.09 [C(5)], 77.96 and $77.84\left[\mathrm{C}\left(1^{1}\right)\right], 69.73$ and $69.64[\mathrm{C}(1)]$, 69.26 and $69.15\left[\mathrm{C}(10) \mathrm{H}_{2}\right], 68.91$ and $68.16[\mathrm{C}(6)], 59.79$ and $58.87\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.19$ and $55.15\left[\mathrm{ArOCH}_{3}\right], 52.18$ and $47.51\left[\mathrm{C}\left(1^{\mathrm{IV}}\right)\right], 40.95$ and $40.68\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 39.66$ (overlapped by the solvent signal, detectable by DEPT-135) and $34.60\left[\mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H}_{2}\right] .-\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7}(604.69)$: calcd. C $65.55, \mathrm{H}$ 6.67, N 9.27; found C 64.80, H 6.58, N 8.34. - HRMS ((+)ESI): $m / z=605.2930$ (calcd. 605.2975 for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{7}$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 627.2750\left(\right.$ calcd. 627.2794 for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}$, $[\mathrm{M}+\mathrm{Na}]^{+}$), 643.2479 (calcd. 643.2534 for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~K}$, $\left.[\mathrm{M}+\mathrm{K}]^{+}\right)$.

3-Cyano-6-dimethylamino-4- $[(R)$-methoxy- $[(1 S, 3 S, 5 R, 6 R$, $8 R)$-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo-[4.4.0]decan-5-yl]methyl]-2-oxo-1,2-dihydropyridine (36)

Cyanoacetamide ($360 \mathrm{mg}, 4.3 \mathrm{mmol}$) was added under N_{2} to a THF solution of the orthoamide $22(17 \mathrm{~mL}, 908 \mathrm{mg}$, $1.6 \mathrm{mmol})$. The color of the mixture turned immediately to deep orange. The mixture was stirred at r.t. for 24 h , then concentrated under reduced pressure. 2-Propanol (30 mL) was added to the residue, and the mixture was stirred for 2 h at $80^{\circ} \mathrm{C}$. The initial yellow-orange color of the mixture quickly disappeared, and the pale-yellow compound began to crystallize. The suspension was filtered. The crystalline product was washed with 2-propanol and dried to yield compound 36. Yield 556 mg (62%), pale-yellow crystals; m. p. $222-224^{\circ} \mathrm{C} .-R_{\mathrm{f}}=0.46\left(\mathrm{CHCl}_{3}-\mathrm{THF}-\mathrm{MeOH}\right.$, $10: 2: 1)$. - FT-IR (ATR): $v=2967,2908,2837\left(\mathrm{OCH}_{3}\right)$, 2208 (CN), 1599 (C=O), 1514, 1244, 1114, 1030, 827, 802, $776 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=11.27$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.41 and $7.29\left[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}\right.$, $\left.\mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.94$ and $6.87[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.87[\mathrm{bs}, 1 \mathrm{H}$, $\left.\mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}\right], 5.69[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}], 5.54[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 4.58$ $[\mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{C}(5) \mathrm{H}], 4.25-4.08\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}, \mathrm{C}(6) \mathrm{H}\right.$, $\left.\mathrm{C}(10) \mathrm{H}_{2}\right], 3.94[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 3.76$ and $3.73[2 \mathrm{~s}, 6 \mathrm{H}, 2$ ArOCH_{3}], $3.24\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 3.05\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$. $-{ }^{13} \mathrm{C}$ NMR ($\left.125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=159.41$ and $159.34\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 130.89$ and $130.40\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.42$ and $127.17\left[\mathrm{C}\left(2^{\mathrm{II}}\right), \mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right]$, $117.10(\mathrm{CN}), 113.35$ and $113.21\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}(5 \mathrm{II}), \mathrm{C}\left(3^{\mathrm{III}}\right)\right.$, $\left.\mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.12$ and $99.07[\mathrm{C}(3)$ and $\mathrm{C}(8)], 78.72[\mathrm{C}(5)], 77.58$ [C(1 $\left.\left.1^{1}\right)\right], 69.66[\mathrm{C}(1)], 69.21[\mathrm{C}(10)], 68.32$ [C(6)], 57.17 $\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.09\left[\mathrm{ArOCH}_{3}\right] .-\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8}(563.59)$: calcd. C 63.93, H 5.90, N 7.46; found C 62.63, H 5.84, N 7.34. - HRMS ((+)-ESI): $m / z=564.2344$ (calcd. 564.2345
for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{8},[\mathrm{M}+\mathrm{H}]^{+}$), 586.2152 (calcd. 586.2165 for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$), 602.1888 (calcd. 602.1904 for $\left.\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~K},[\mathrm{M}+\mathrm{K}]^{+}\right)$.

3-Cyano-6-dimethylamino-4-[(2R)-2-methoxy-2-[(1S,3S,5R, $6 R, 8 R)$-3,8-bis(4-methoxyphenyl)-2,4,7,9-tetraoxabicyclo-[4.4.0]decan-5-yl]ethyl]-2-oxo-1,2-dihydropyridine (37)

Cyanoacetamide ($120 \mathrm{mg}, 1.4 \mathrm{mmol}$) was added under N_{2} to a THF solution of the orthoamide $23(6 \mathrm{~mL}, 318 \mathrm{mg}$, 0.54 mmol). The mixture was stirred at r.t. for 24 h , then concentrated under reduced pressure. 2-Propanol (10 mL) was added to the residue, and the mixture was stirred for 2 h at $80^{\circ} \mathrm{C}$. The initial yellow-orange color of the mixture quickly disappeared, and a pale-yellow compound began to crystallize. The suspension was filtered. The crystalline product was washed with 2-propanol and dried to yield compound 37, which was recrystallized from acetonitrile. Yield $222 \mathrm{mg}(70 \%)$, pale-yellow crystals; m. p. $238-240^{\circ} \mathrm{C} .-$ FTIR (ATR): $v=3508,2960,2922,2830\left(\mathrm{OCH}_{3}\right), 2211(\mathrm{CN})$, 1613, 1603 (C=O), 1515, 1247, 1231, 1170, 1109, 1083, 1028, 829, $777 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=11.13(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.37$ and $7.36[2 \mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(2^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(6^{\mathrm{III}}\right) \mathrm{H}\right], 6.92$ and 6.91 [2d, $\left.J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}\left(3^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{II}}\right) \mathrm{H}, \mathrm{C}\left(3^{\mathrm{III}}\right) \mathrm{H}, \mathrm{C}\left(5^{\mathrm{III}}\right) \mathrm{H}\right], 5.65$ [bs, $\left.3 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{IV}}\right) \mathrm{H}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(8) \mathrm{H}\right], 4.15\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right]$, 4.10 [s, 1H, C(6)H], 3.94 [s, 1H, C(1)H], 3.85-3.79 [m, $\left.2 \mathrm{H}, \mathrm{C}(5) \mathrm{H}+\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{H}\right], 3.75$ and $3.74\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArOCH}_{3}\right)$, $3.31\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 2.99-2.93\left[\mathrm{~m}, 7 \mathrm{H},\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~s}\right.\right.$ at $2,95 \mathrm{ppm}]$ and $\left.\mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} a\right], 2.70$ and $2.69[2 \mathrm{~d}, J=13.7,5.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}\left(2^{\mathrm{I}}\right) \mathrm{H} b\right] .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.76 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right):$ $\delta=159.40$ and $159.34\left[\mathrm{C}\left(4^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(4^{\mathrm{III}}\right)\right], 130.87$ and $130.51\left[\mathrm{C}\left(1^{\mathrm{II}}\right)\right.$ and $\left.\mathrm{C}\left(1^{\mathrm{III}}\right)\right], 127.35$ and $127.21\left[\mathrm{C}\left(2^{\mathrm{II}}\right)\right.$, $\left.\mathrm{C}\left(6^{\mathrm{II}}\right), \mathrm{C}\left(2^{\mathrm{III}}\right), \mathrm{C}\left(6^{\mathrm{III}}\right)\right], 118.01(\mathrm{CN}), 113.36$ and 113.25 $\left[\mathrm{C}\left(3^{\mathrm{II}}\right), \mathrm{C}\left(5^{\mathrm{II}}\right), \mathrm{C}\left(3^{\mathrm{III}}\right), \mathrm{C}\left(5^{\mathrm{III}}\right)\right], 99.12[\mathrm{C}(3)$ and $\mathrm{C}(8)], 78.49$ [C(5)], $76.78\left[\mathrm{C}\left(1^{\mathrm{I}}\right)\right], 69.68[\mathrm{C}(1)], 69.19$ [C(10)], 68.63 $[\mathrm{C}(6)], 58.80\left[\mathrm{C}\left(1^{\mathrm{I}}\right) \mathrm{OCH}_{3}\right], 55.09$ and $55.06\left(2 \mathrm{ArOCH}_{3}\right)$. $-\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{8}$ (577.62): calcd. C 64.46, H 6.11, N 7.27; found C 62.02, H 5.91, N 6.84. - HRMS ((+)-ESI): $m / z=$ 600.2320 (calcd. 600.2321 for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$).
(2S,3R,4S,5R)-5-(3-Cyano-6-dimethylamino-2-oxo-1,2-
dihydropyridin-4-yl)-2,3,4-trihydroxy-5-methoxypentan-1-ol (38)

Compound 36 ($250 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in a mixture of ethanol (5 mL) and 37% aqueous $\mathrm{HCl}(0.2 \mathrm{~mL})$. After 48 h at r.t., the mixture was diluted with water (5 mL) and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The aqueous phase was concentrated under reduced pressure. The
residue was dissolved in 5 mL ethanol and the solution filtered. The clear filtrate was concentrated under reduced pressure. Acetone (ca. 5 mL) was added to the residue. The crystalline material was isolated by filtration, washed several times with acetone and dried to yield compound 38 . Yield 70 mg (48%), pale-yellow crystals; m. p. $>280^{\circ} \mathrm{C}$ (dec.). -$R_{\mathrm{f}}=0.58\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 1: 1\right) .-$ FT-IR (ATR): $v=3118$ (OH assoc.), 2984, 2803, 2205 (CN), 1609 (C=O), 1381, $1096 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DSS}$): $\delta=5.97$ $\left[\mathrm{s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{I}}\right) \mathrm{H}\right], 4.41[\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 3.96-3.81$ [m, 3H, C(2)H, C(3)H, C(4)H], 3.78-3.70 [m, 1H, C(1)Ha], 3.68-3.57 [m, $1 \mathrm{H}, \mathrm{C}(1) \mathrm{H} b], 3.35\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right], 3.20[\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right] .-{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DSS}$): $\delta=$ $167.70(\mathrm{C}=\mathrm{O}), 161.32\left[\mathrm{C}\left(4^{\mathrm{I}}\right)\right], 156.41\left[\mathrm{C}\left(6^{\mathrm{I}}\right)\right], 121.63[\mathrm{CN}]$, $95.54\left[\mathrm{C}\left(5^{\mathrm{I}}\right)\right], 84.64[\mathrm{C}(5)], 83.79\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 75.76,75.17$, $72.52[\mathrm{C}(2), \mathrm{C}(3)$, and $\mathrm{C}(4)], 65.22\left[\mathrm{C}(1) \mathrm{H}_{2}\right], 59.88\left[\mathrm{OCH}_{3}\right]$, $41.73\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right] .-\operatorname{HRMS}((+)-\mathrm{ESI}): m / z=328.1511$ (calcd. 328.1509 for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{6},[\mathrm{M}+\mathrm{H}]^{+}$).
(2S,3R,4S,5R)-6-(3-Cyano-6-dimethylamino-2-oxo-1,2-dihydropyridin-4-yl)-2,3,4-trihydroxy-5-methoxyhexan-1-ol (39)

Compound 37 ($340 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in a mixture of ethanol (10 mL) and 37% aqueous $\mathrm{HCl}(0.5 \mathrm{~mL})$. After 48 h at $\mathrm{r} . \mathrm{t}$., the mixture was diluted with water $(10 \mathrm{~mL})$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The aqueous phase was concentrated under reduced pressure. The residue was dissolved in 5 mL ethanol and the solution filtered. The clear filtrate was concentrated under reduced pressure. The residue was dissolved in hot 2-propanol (5 mL). After cooling to $\mathrm{r} . \mathrm{t}$., the precipitated product was isolated by filtration, washed with 2-propanol and dried to yield compound 39. Yield 55 mg (27%), yellowish amorphous solid; m. p. $238^{\circ} \mathrm{C}$ (dec.). $-R_{\mathrm{f}}=0.39\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 7: 3\right) .-$ FT-IR (ATR): $v=3333$ (OH assoc.), 2933, 2201 (CN), 1592 (C=O), 1382, 1066, $996 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DSS}$): $\delta=$ $5.84\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}\left(5^{\mathrm{I}}\right) \mathrm{H}\right], 3.88-3.80[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}], 3.80-3.68$ [m, $4 \mathrm{H}, \mathrm{C}(1) \mathrm{H} a, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(4) \mathrm{H}, \mathrm{C}(5) \mathrm{H}], 3.64$ and 3.63 [2d, $J=12.0,6.8 \mathrm{~Hz}, \mathrm{C}(1) \mathrm{H} b], 3.34\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(5) \mathrm{OCH}_{3}\right], 3.17$ [bs, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.99$ and $2.98[2 \mathrm{~d}, J=13.8,3.0 \mathrm{~Hz}$; $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H} a], 2.74$ and $2.73[2 \mathrm{~d}, J=13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(6) \mathrm{H} b] .-{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / \mathrm{DSS}$): $\delta=167.25$ $(\mathrm{C}=\mathrm{O}), 161.64\left[\mathrm{C}\left(4^{\mathrm{I}}\right)\right], 155.83\left[\mathrm{C}\left(6^{\mathrm{I}}\right)\right], 121.85(\mathrm{CN}), 97.20$ $\left[\mathrm{C}\left(5^{\mathrm{I}}\right)\right], 85.56\left[\mathrm{C}\left(3^{\mathrm{I}}\right)\right], 83.53[\mathrm{C}(5)], 75.54[\mathrm{C}(3)], 74.67$ and $72.63[\mathrm{C}(2)$ and $\mathrm{C}(4)], 65.36[\mathrm{C}(1)], 61.37\left[\mathrm{OCH}_{3}\right]$, $41.67\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 39.08[\mathrm{C}(6)] .-\operatorname{HRMS}((+)-\mathrm{ESI}): m / z=$ 364.1474 (calcd. 364.1484 for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$).
[1] Orthoamides and Iminium Salts. LXXIV: I. Tiritiris, W. Kantlehner, Z. Naturforsch. 2012, 67b, 685-698.
[2] K. A. Watanabe, in Chemistry of nucleosides and nucleotides, (Ed.: L. B. Townsend) Plenum Press, New York 1994, chapter 5, pp. 421-536.
[3] D. E. Levy in The Organic Chemistry of Sugars, (Eds.: D. E. Levy, P. Fügedi), CRC Press/Taylor \& Francis Group, Boca Raton 2006, Chap. 7, pp. 269-348.
[4] J. Stambaský, M. Hocek, P. Kočovský, Chem. Rev. 2009, 109, 6729-6764.
[5] M. A. E. Shaban, A. Z. Nasr in Advances in Heterocyclic Chemistry, Vol. 68, (Ed.: A. R. Katritzky), Academic Press, San Diego 1997, pp. 223-432.
[6] K. W. Wellington, S. A. Benner, Nucleos. Nucleot. Nucl. 2006, 25, 1309-1333.
[7] U. Hacksell, G. D. Daves, Jr., Prog. Med. Chem. 1985, 22, 1-65.
[8] M. H. D. Postema, Tetrahedron 1992, 48, 8545-8599.
[9] C. Jamarillo, S. Knapp, Synthesis 1994, 1-20.
[10] Y. G. Du, R. J. Linhardt, I. R. Vlahov, Tetrahedron 1998, 54, 9913-9959.
[11] T. Bililign, B. R. Griffith, J. S. Thorson, Nat. Prod. Rep. 2005, 22, 74-760.
[12] D. Y. W. Lee, M. S. He, Curr. Top. Med. Chem. 2005, 5, 1333-1350.
[13] S. Hainke, S. Arndt, O. Seitz, Org. Biomol. Chem. 2005, 3, 4233-4238.
[14] V. Di Bussolo, M. Caselli, M. Pineschi, P. Crotti, Org. Lett. 2003, 2173-2176.
[15] H. Togo, W. He, Y. Waki, M. Yokoyama, Synlett 1998, 700-717.
[16] A. El-S. Rashad, A. H. Shamroukh, M. I. Hegab, H. M. Awad, Acta Chim. Slov. 2005, 52, 429-434.
[17] W. Kantlehner, M. Vettel, H. Lehmann, K. Edelmann, R. Stieglitz, I. C. Ivanov, J. Prakt. Chem. 1998, 340, 408-423.
[18] W. Kantlehner, E. Haug, R. Stieglitz, W. Frey, R. Kress, J. Mezger, Z. Naturforsch. 2002, 57b, 399-419.
[19] W. Kantlehner, J. Mezger, R. Stieglitz, K. Edelmann, H. Lehmann, M. Vettel, R. Kreß, W. Frey, S. Ladendorf, Z. Naturforsch. 2007, 62b, 1015-1029.
[20] W. Kantlehner, H.-J. Lehmann, K. Edelmann, J. Mezger, I. C. Ivanov, Appl. Catal. A: General 2008, 336, 148-154.
[21] W. Weingaertner, W. Kantlehner, G. Maas, Synthesis 2011, 265-272.
[22] D. Horton, J. B. Hughes, J. M. J. Tronchet, Chem. Commun. 1965, 481-483.
[23] D. Horton, J. M. J. Tronchet, Carbohydr. Res. 1966, 2, 315-327.
[24] D. Horton, J. B. Hughes, J. K. Thomson, J. Org. Chem. 1968, 33, 728-734.
[25] D. Horton, A. Liav, Carbohydr. Res. 1976, 47, 81 90.
[26] H. Ogura, M. Ogiwara, T. Itoh, H. Takahashi, Chem. Pharm. Bull. 1973, 21, 2051-2056.
[27] G. Aslani-Hotorbani, J. G. Buchanan, A. R. Edgar, P. K. Shahidi, Carbohydr. Res. 1985, 136, 37-52.
[28] J. G. Buchanan, M. L. Quijano, R. H. Wightman, J. Chem. Soc., Perkin Trans. 1 1992, 1573-1576.
[29] S. Guillarme, K. Plé, A. Banchet, A. Liard, A. Haudrechy, Chem. Rev. 2006, 106, 2355-2403.
[30] W.-L. Wu, Y.-L. Wu, J. Chem. Soc., Perkin Trans. I 1993, 3081-3086.
[31] W.-L. Wu, Z.-J. Yao, Y.-L. Li, J.-C. Li, Y. Xia, Y.-L. Wu, J. Org. Chem. 1995, 60, 3257-3259.
[32] Y.-L. Li, X.-H. Mao, Y.-L. Wu, J. Chem. Soc., Perkin Trans. 1 1995, 1559-1563.
[33] M. Kordian, H. Feist, W. Kantlehner, M. Michalik, K. Peseke, Z. Naturforsch. 2006, 61b, 406-412.
[34] E. Breuer, D. Melumad, S. Sarel, E. Margalith, E. Katz, J. Med. Chem. 1983, 26, 30 - 34.
[35] M. M. Kabat, K. W. Pankiewicz, K. A. Watanabe, J. Med. Chem. 1987, 30, 924 - 927.
[36] R. A. Veloo, M. J. Wanner, G.-J. Koomen, Tetrahedron 1992, 48, 5301 - 5316.
[37] L. Nørskov, R. B. Jensen, G. Schroll, Acta Chem. Scand. B 1983, 37, 133-140.
[38] D. A. Smith, D. Baker, A. F. M. Maqsudur Rahman, Struct. Chem. 1991, 2, 65-70.
[39] R. J. Abraham, M. Reid, J. Chem. Soc., Perkin Trans. 2 2001, 1195-1204.
[40] M. V. Mezentseva, I. F. Faermark, E. F. Kuleshova, O. S. Anisimova, G. Y. Shvarts, V. G. Granik, M. D. Mashkovskii, Pharm. Chem. J. 1991, 25, 29-33.
[41] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.

