Synthesis of New 4-Aryl-1-(biarylmethylene)piperidines. Structural Analogs of Adoprazine (SLV313)

Nisar Ullah and Ali Ahmed Qaid Al-Shaheri
Chemistry Department \& Centre of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Reprint requests to Professor Nisar Ullah. Fax: + 9663860 4277. E-mail: nullah@kfupm.edu.sa
Z. Naturforsch. 2012, 67b, 253 -262; received January 18, 2012

Abstract

A series of new 4-aryl-1-(biarylmethylene)piperidines have been synthesized. They are structurally related to SLV-313, a potential atypical antipsychotic agent with potent D_{2} receptor antagonist and $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist properties. Suzuki-Miyaura reaction of cyclic vinyl boronates, derived from the vinyl triflates of N-protected tetrahydropyridines, with appropriate aryl halides yielded 4-arylpiperidines. The reductive amination of the latter with suitable biarylaldehdyes accomplished the synthesis of the new compounds.

Key words: Aryl-(biarylmethylene)piperidines, Suzuki-Miyaura Reaction, Reductive Amination, Schizophrenia

Introduction

Schizophrenia is a complex lifelong chronic neuropsychiatric illness, afflicting approximately 1% of the world population. The symptoms of the disease can be grouped as positive and negative. Positive symptoms include delusions, hallucinations, and conceptual disorganization. The most characteristic negative symptoms are affective flattening, social withdrawal, anhedonia, and poverty of thought and content of speech [1]. The typical antipsychotic drugs, for example haloperidol or chlorpromazine, were the most widely used drugs for this disease because they block D_{2} receptors. However, although the blockade of D_{2} receptors improves the positive symptoms, the development of neurological side effects such as dystonia, muscle rigidity, tremor and akathisia, and tardive dyskinesia, and in particular of extrapyramidal side effects (EPS) [2,3] undermine compliance. Various atypical or second-generation antipsychotics, such as clozapine and more recently aripiprazole have been developed to reduce EPS liability and to treat negative symptoms. The atypical antipsychotics combine D_{2} receptor antagonism with activity at other receptors such as serotonergic receptors, on the premise that a suitable balance of pharmacological activity should broaden the spectrum of therapeutic efficacy and reduce EPS. It has been demonstrated that the combination of a dopamine D_{2} receptor antagonist with 5-
$\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist properties could improve the therapeutic window, side-effect profile and therapeutic efficacy of antipsychotic agents [4]. As a result adoprazine (1) (SLV-313) and bifeprunox (2), possessing potent D_{2} receptor antagonist and $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist properties, were developed [5]. However, the failure of $\mathbf{1}$ and $\mathbf{2}$ to oppose phencyclidine-induced social interaction deficits suggested that an appropriate 'balance' of activity at these sites is necessary for activity in this model [4]. Thus, the need to discover compounds having varying ratios of D_{2} and $5-\mathrm{HT}_{1 \mathrm{~A}}$ activities continued [6]. This report describes the synthesis of a series of new 4-aryl-1-(biarylmethylene)piperidines $\mathbf{3 a}-\mathbf{f}, \mathbf{4 a}-\mathbf{f}$ and $\mathbf{5 a}-\mathbf{f}$, structurally related to $\mathbf{1}$ (Fig. 1).

Results and Discussion

The synthesis of compounds $\mathbf{3 a}-\mathbf{f}, \mathbf{4 a}-\mathbf{f}$ and $\mathbf{5 a}-$ \mathbf{f} required the synthesis of aldehydes $\mathbf{6 b}-\mathbf{f}$. Suzuki reaction of 4-bromobenzaldehyde with 4-fluoroboronic acid yielded $\mathbf{6 b}$ whereas the reaction between 5bromonicotinaldehyde (7) with the appropriate boronic acid gave the desired aldehydes $\mathbf{6 c}$ and $\mathbf{6 d}$ [7-10]. The known aldehydes $\mathbf{6 e}$ and $\mathbf{6 f}$ were synthesized from their corresponding bromides 8 and 9 by employing literature-known procedures [11] (Scheme 1).

The synthesis of the required arylpiperidines was commenced from lithiation of $\mathbf{1 0}$ in THF at $-78^{\circ} \mathrm{C}$ fol-

Fig. 1. 1-Aryl-4-(biarylmethylene)piperidines $\mathbf{3 a}-\mathbf{f}, \mathbf{4 a}$ - \mathbf{f} and $5 \mathbf{a}$ - \mathbf{f}.

Scheme 1. Synthesis of aldehydes $\mathbf{6 c - f}$.
lowed by quenching with N-protected piperidinone 11 to obtain alcohol 12 in 68% yield. The dehydration of the latter was ensued by refluxing it in concentrated HCl and MeOH to generate compound $\mathbf{1 3}$ in a moderate yield. To produce the desired intermediate $\mathbf{4}$ from compound 13, removal of N-protection and reduction of the double bond were required. Hence compound 13 was subjected to hydrogenation in a Parr apparatus at $60 \mathrm{psi}(1 \mathrm{psi}=6894.757 \mathrm{~Pa})$ for 5 h . The benzyl deprotection, however, proved to be stubborn, and the
reaction yielded a mixture of products which were difficult to separate (Scheme 2).

Thus, the desired intermediates 4 and 5 were synthesized by an alternative route as outlined in Scheme 3. Suzuki-Miyaura reaction of cyclic vinyl boronates $\mathbf{1 4}$ [12], derived from the vinyl triflates of N protected tetrahydropyridines, with bromoquinoline 10 generated compound 15. Hydrogenation of intermediate $\mathbf{1 5}$ in a Parr apparatus at 50 psi for 6 h followed by column-chromatographic purifications on silica gel produced intermediates $\mathbf{1 6}$ and $\mathbf{1 7}$ in a ratio of $3: 7$. Exposure of compounds $\mathbf{1 6}$ and $\mathbf{1 7}$ to trifluoroacetic acid at room temperature smoothly furnished the desired intermediates $\mathbf{4}$ and 5 in high yields (Scheme 3).

Likewise, to synthesize the required intermediate 3, Suzuki-Miyaura reaction of cyclic vinyl boronates 14 with bromoquinoline 18 [13] generated compound 19, which in turn was hydrogenated at 50 psi for 7 h to furnish intermediate 20. Exposure of the latter to trifluoroacetic acid at r.t. smoothly produced the desired intermediate 5 in an overall yield of 36% from 18 (Scheme 4).

Scheme
4. Synthesis of arylpiperi-
dine 3 (dppf $=1,1^{\prime}$-bis(diphenylphosphino)ferrocene).

Scheme 5. Synthesis of 1-aryl-4-(biarylmethylene)piperidines $\mathbf{3 a}-\mathbf{f}, \mathbf{4 a}-\mathbf{f}$ and $\mathbf{5 a}-\mathbf{f}$, a representative example.

Having the desired arylpiperidines $\mathbf{4}$ and 5 and biarylaldehdyes $\mathbf{6 b}-\mathbf{f}$ in hand, we next performed the reductive amination in 1,2-dichloroethane, using $\mathrm{NaBH}(\mathrm{OAc})_{3}$ as reducing agent to obtain the desired piperidines $\mathbf{3 a}-\mathbf{f}, \mathbf{4 a}-\mathbf{f}$ and $\mathbf{5 a}-\mathbf{f}$ (Scheme 5).

Conclusion

In conclusion we have accomplished the synthesis of a series of new 1-aryl-4-(biarylmethylene)piperidines, $\mathbf{3 a}-\mathbf{f}, \mathbf{4 a - f}$ and $\mathbf{5 a - f}$, structurally related to SLV313.

Experimental Section

1-Benzyl-4-(2-(benzyloxy)quinolin-8-yl)piperidin-4-ol (12)
A solution of 2-(benzyloxy)-8-bromoquinoline 10 (2.0 g , 6.4 mmol) in THF (20 mL) was added dropwise over 10 min to a solution of n-BuLi ($2.5 \mathrm{~m}, 2.8 \mathrm{~mL}, 7 \mathrm{mmol}$) in hexane cooled to $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, and a solution of 1-benzylpiperidone $11(1.21 \mathrm{~g}, 6.4 \mathrm{mmol})$ in THF (10 mL) was added dropwise over a period of 10 min , maintaining the reaction temperature at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h and at $-10^{\circ} \mathrm{C}$ for 1.5 h whereupon a saturated solution of ammonium chloride (4 mL) was added. The reaction mixture was stirred and warmed to r.t. Water (50 mL) was added, and the reaction mixture was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure, and the crude product was purified by flash chromatography ($1 \mathrm{~m} \mathrm{NH}_{3}$ in $\mathrm{MeOH} /$ dichloromethane, $2: 98$ to $7: 93$) to afford the title compound as a dark-brown thick oil $(1.84 \mathrm{~g}$, 68%). - IR (neat): $v=3365,3042,3032,2971,1607,1485$, 1260, $1192 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.15$ (br. s, 4 H , piperidine H), $2.73-2.78(\mathrm{~m}, 5 \mathrm{H}$, piperidine H , $\mathrm{OH}), 3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.99(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.23-7.47(\mathrm{~m}, 11 \mathrm{H}$, aromatic H), $7.60(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 8.04 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=37.26,49.46$ (all C ${ }_{\text {piper }}$), $53.02\left(\mathrm{OCH}_{2}\right), 63.52\left(\mathrm{NCH}_{2}\right), 68.48\left(\mathrm{C}_{\text {piper }}\right), 113.21(\mathrm{C}-3)$, $124.75,126.30,127.48,127.80,128.05,128.54,128.70$,
128.87, 129.08, 129.39, 129.93, 136.84, 141.18, 142.25, 144.64 (all $\mathrm{C}_{\text {arom }}$), 160.31 (C-2). $-\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{3}$ (652.82): calcd. C 77.27, H $6.79, \mathrm{~N} 8.58$; found C $77.20, \mathrm{H} 6.84$, N 8.51.

8-(1-Benzyl-1,2,3,6-tetrahydropyridin-4-yl)quinolin-2(1H)one (13)

A solution of compound $\mathbf{1 2}(1.5 \mathrm{~g}, 5.35 \mathrm{mmol})$ in a mixture of methanol (15 mL) and concentrated $\mathrm{HCl}(15 \mathrm{~mL})$ was heated at reflux temperature for 5 h . The reaction mixture was cooled, and the solvent was removed under reduced pressure to give the crude product as a hydrochloride salt, which was converted to the free base (aq. $\mathrm{NaOH} /$ ethyl acetate) and purified by column chromatography eluting with ethyl acetate/hexane ($20: 80$ to $40: 60$) to afford the title compound as a light-yellow gum ($0.95 \mathrm{~g}, 56 \%$). - IR (neat): $v=3182,3054,3022,2978,1638,1610,1465 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.15$ (br. s, 2 H , piperidine H), 2.97 (t, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, piperidine H), 3.34 (br. s, 2 H , piperidine H), 3.87 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 5.79 (br. s, 1 H , piperidine H), $6.62(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.18(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.28-7.47(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$)$, 7.76 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 10.17 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.52,48.1,51.9$, 115.82 (all $\mathrm{C}_{\text {piper }}$), 120.93, 123.73, 124.66, 127.58, 128.07, 128.66, 128.88, 129.49, 129.99, 134.85, 136.44, 141.10, 141.85 (all Carom), 160.32 (C-2). $-\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (316.40): calcd. C 79.72, H $6.37, \mathrm{~N} 8.85$; found C $79.66, \mathrm{H} 6.41$, N 8.80.
tert-Butyl 4-(2-(benzyloxy)quinolin-8-yl)-5,6-dihydropyri-dine-1 $(2 \mathrm{H})$-carboxylate (15)

Nitrogen was flushed for 3 min in a flask containing a solution of boronate $14(1.39 \mathrm{~g}, 4.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.86 \mathrm{~g}$, $13.5 \mathrm{mmol})$ and bromide $\mathbf{1 0}(1.49 \mathrm{~g}, 4.74 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$, followed by the addition of $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})\right](0.23 \mathrm{~g}$, $0.28 \mathrm{mmol})\left(\mathrm{dppf}=1,1^{\prime}\right.$-bis(diphenylphosphino)ferrocene). The reaction mixture was heated to $80{ }^{\circ} \mathrm{C}$ and stirred under N_{2} overnight, cooled to room temperature and filtered through a pad of celite. To the filtrate was added ethyl acetate (50 mL), and it was washed successively with water (20 mL) and brine ($3 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. Column chromatography of the brown oily material on silica gel, eluting with ethyl acetate : hexanes (10:90, then $25: 75$) gave the title compound as a light-yellow amorphous solid ($0.97 \mathrm{~g}, 52 \%$). - IR (neat): $v=3043,3021$, 2978, 1681, 1607, 1442, $1175 \mathrm{~cm}^{--1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=1.49$ (s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.76$ (br. s, 2 H , piperidine H), 3.68 (br. s, 2 H , piperidine H), 4.13 (br. s, 2 H , piperidine H), $5.49(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ph}), 5.85$ (br. s, 1 H , piperidine H), 6.95 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.30-$ $7.38(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.46-7.48(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$)$,
7.63 (dd, $J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.99(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.77\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.18,44.32,67.73$ (all C $\mathrm{C}_{\text {piper }}$), $79.74\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 113.18,124.14,125.55,127.22,128.04$, 128.20, 128.66, 129.12, 137.51, 139.51, 140.12, 144.24 (all $\mathrm{C}_{\text {arom }}$), $155.60(\mathrm{C}=\mathrm{O}), 161.02\left(\mathrm{C}_{\text {arom }}\right) .-\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ (416.51): calcd. C 74.97, H 6.78, N 6.73; found C 74.91, H 6.83, N 6.67 .
tert-Butyl 4-(2-oxo-1,2,3,4-tetrahydroquinolin-8-yl)piperi-dine-1-carboxylate (16)

To a solution of compound $15(0.7 \mathrm{~g}, 1.68 \mathrm{mmol})$ in a mixture of THF (5 mL) and EtOH (10 mL) was added PdC (10% wet basis, 0.5 g), and the mixture was subjected to hydrogenation in a Parr apparatus at 50 psi for $6 \mathrm{~h}(1 \mathrm{psi}=$ $6894.757 \mathrm{~Pa})$. After filtration through a pad of celite, the solution was concentrated to give a brown oily material, which was resolved over a silica column eluting with ethyl acetate : hexanes ($30: 70$, then $60: 40$) to get compound $\mathbf{1 6}$ as an off-white solid ($0.15 \mathrm{~g}, 27 \%$). M. p. $132-134{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3245,3019,2971,1668,1603,1472 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.61(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 1.69(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$)$, $2.61(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 2.85$ (br. $\mathrm{s}, 2 \mathrm{H}$, piperidine H), 2.93 (m, $2 \mathrm{H}, 3-\mathrm{H}$), 4.28 (br. s, 2 H , piperidine H$), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.04-$ 7.09 (m, 2 H, aromatic H), 8.30 (br. s, 1 H , NHCO). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.00(\mathrm{C}-4), 28.45$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.68(\mathrm{C}-3), 32.13,35.62$ (all $\mathrm{C}_{\text {piper }}$), 79.56 $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 123.18,124.48,124.75,126.02,130.65,134.23$ (all $\mathrm{C}_{\text {arom }}$), $154.75(\mathrm{C}=\mathrm{O}), 172.03(\mathrm{C}-2) .-\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ (330.42): calcd. C 69.06, H $7.93, \mathrm{~N} 8.48$; found C 69.00 , H 7.98, N 8.41.
tert-Butyl 4-(2-oxo-1,2-dihydroquinolin-8-yl)piperidine-1carboxylate (17)

Compound 17 was obtained from the reaction described for compound 16 as a light-yellow solid (0.36 g , yield 65%). M. p. $101-103{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3172,3031,2965,1645$, 1603, 1461, $1112 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.69(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$)$, 1.91 (m, 2 H , piperidine H), 3.10 (br. s, 2 H , piperidine H), $3.42(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 4.30$ (br. s, 2 H , piperidine H), $6.67(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.40-7.45(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.78$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=28.48\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.29,32.33,34.70$ (all C $\mathrm{C}_{\text {piper }}$), $79.49\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 120.20,121.24,122.54,123.84,126.41 \text {, }}^{\text {, }}\right.$ 127.76, 131.38, 135.78, 141.74 (all Carom), 154.83 (C=O), 163.99 (C arom), $172.58(\mathrm{C}=\mathrm{O}) .-\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (328.41): calcd. C 69.49, H 7.37, N 8.53; found C 69.45, H 7.43 , N 8.46.

8-(Piperidin-4-yl)quinolin-2(1H)-one (4)

To a solution of $\mathbf{1 7}(0.5 \mathrm{~g}, 1.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added trifluoroacetic acid $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 6 h at r.t. Solvents were evaporated under reduced pressure, and triturating with diethyl ether gave the title compound $\mathbf{4}$ as trifluoroacetic acid salt as an off-white solid ($0.45 \mathrm{~g}, 90 \%$). M. p. $256-$ $258{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3266,3031,3011,2990,1672,1618$, $1445 \mathrm{~cm}^{--1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ DMSO): $\delta=1.86$ (br. s, 4 H , piperidine H), $3.08(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), 3.42 $(\mathrm{m}, 2 \mathrm{H}$, piperidine H$), 3.48(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 6.51(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.19(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 7.37 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1 H , aromatic H H), 7.91 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 8.49$ (br. s, $1 \mathrm{H}, \mathrm{NHCO}) .-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=28.91,31.68,44.05$ (all $\mathrm{C}_{\text {piper }}$), 119.91, 121.60, 122.31, 127.09, 127.56, 129.40, 136.09, 141.55 (all Carom), 162.92 (C=O). $-\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ (342.31): calcd. C 56.14, H 5.01, N 8.18; found C 56.08, H 5.06, N 8.11.

8-(Piperidin-4-yl)-3,4-dihydroquinolin-2(1H)-one (5)

Following the same procedure as adopted for the synthesis of $\mathbf{4}$, the title compound was obtained from compound 16 as an off-white solid (0.70 g , yield 89%). M.p. 247$248{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3221,3021,2988,1660,1603$, $1445,1186 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=$ $1.79(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.51(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.85(\mathrm{~m}$, $2 \mathrm{H}, 3-\mathrm{H}), 2.99-3.06(\mathrm{~m}, 3 \mathrm{H}$, piperidine H$), 3.34(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 6.96(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.07(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), 9.63 (s, $1 \mathrm{H}, \mathrm{NHCO}$). $-{ }^{13} \mathrm{C}$ NMR (125.7 MHz , [D_{6}]DMSO): $\delta=25.88$ (C-4), 29.22 ($\mathrm{C}_{\text {piper }}$), 30.88 (C-3), $32.29,44.82$ (all $\mathrm{C}_{\text {piper }}$), $123.05,124.68,125.63,126.62$, $130.45,135.37$ (all Carom), $170.02(\mathrm{C}=\mathrm{O}) .-\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ (344.33): calcd. C $55.81, \mathrm{H} 5.56, \mathrm{~N} 8.14$; found C 55.74 , H 5.62, N 8.08 .
tert-Butyl 4-(2-methoxyquinolin-8-yl)-5,6-dihydropyridine$1(2 \mathrm{H})$-carboxylate (19)

Following the same procedure as adopted for the synthesis of $\mathbf{1 5}$, the title compound was obtained from Suzuki reaction of boronate $\mathbf{1 4}$ and bromoquinoline 18 as a dark-brown gum, $(0.64 \mathrm{~g}$, yield $42 \%)$. M. p. $132-133{ }^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3037,2978,1677,1604,1486,1176 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.85$ (br. s, 2 H , piperidine H$), 3.70(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 4.02(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 4.13 (br. s, 2 H , piperidine H), 5.86 (br. s, 1 H , piperidine H), $6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 1 H , aromatic H), $7.48(\mathrm{dd}, J=1.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$)$, 7.63 (dd, $J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 7.97 (d, $J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.54\left(\mathrm{C}_{\text {piper }}\right), 28.51\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.84,42.32$ (all
$\left.\mathrm{C}_{\text {piper }}\right)$, $53.37\left(\mathrm{OCH}_{3}\right), 79.52\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.71,123.80$, 125.13, 126.99, 128.81, 139.06, 139.74, 144.03, 161.37 (all $\mathrm{C}_{\text {arom }}$). $-\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (340.42): calcd. C 70.56, H 7.11, N 8.23; found C 70.50, H 7.16, N 8.17.
tert-Butyl 4-(2-methoxyquinolin-8-yl)piperidine-1-carboxylate (20)

To a solution of compound $\mathbf{1 9}(0.6 \mathrm{~g}, 1.76 \mathrm{mmol})$ in a mixture of THF (5 mL) and $\mathrm{EtOH}(10 \mathrm{~mL})$ was added Pd-C (10% wet basis, 0.4 g), and the mixture was subjected to hydrogenation in a Parr apparatus at 60 psi for $7 \mathrm{~h}(1 \mathrm{psi}=$ 6894.757 Pa). After filtration through a pad of celite, the solution was concentrated and chromatographed on a silica column, eluting with ethyl acetate:hexanes $(20: 80)$ to get the title compound as an off-white solid (0.57 g , yield 94%). M.p. $72-73^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3031,2935,1675,1608$, $1484 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.42(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.71(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 1.95(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $2.88(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 3.82(\mathrm{~m}, 1 \mathrm{H}$, piperidine H), 3.99 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.22 (br. s, 2 H , piperidine H), $6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.38$ $(\mathrm{m}, 1 \mathrm{H}$, aromatic H$), 7.51(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.97(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.48\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.15,36.84,42.84$ (all C ${ }_{\text {piper }}$), 53.23 $\left(\mathrm{OCH}_{3}\right), 79.30\left(\mathrm{OC}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.38,123.89,124.96,125.64$, 126.04, 139.40, 143.93 (all Carom), 155.21 ($\mathrm{C}=\mathrm{O}$), 161.67 ($\mathrm{C}_{\text {arom }}$). $-\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ (342.43): calcd. C 70.15, H 7.65, N 8.18; found C 70.10, H 7.70, N, 8.11.

2-Methoxy-8-(piperidin-4-yl)quinoline (3)

Following the same procedure as adopted for the synthesis of $\mathbf{4}$, the title compound was obtained from compound $\mathbf{2 0}$ as an off-white solid (0.46 g , yield 92%). M. p. $142-144{ }^{\circ} \mathrm{C}$. IR (neat): $v=3031,2982,1612,1441,1213 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=1.99$ (m, 2 H , piperidine H), $2.14(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), 3.16 ($\mathrm{m}, 2 \mathrm{H}$, piperidine H), $3.45(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), $7.51(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=$ $28.72,31.00,34.40,36.02,44.33$ (all C piper), $53.28\left(\mathrm{OCH}_{3}\right)$, 112.76, 114.52, 116.83, 124.23, 126.19, 126.48, 140.10, 158.76, 161.23 (all Carom). $-\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ (356.34): calcd. C 57.30, H 5.37, N 7.86 ; found C 57.24, H 5.42 , N 7.80 .

8-(1-(Biphenyl-4-ylmethyl)piperidin-4-yl)-2-methoxyquinoline (3a)

To a solution of compound $3(0.15 \mathrm{~g}, 0.42 \mathrm{mmol})$ and biphenyl-4-carbaldehyde ($\mathbf{6 a}, 0.1 \mathrm{~g}, 0.55 \mathrm{mmol}$) in 1,2-dichloroethane (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$
($0.13 \mathrm{~mL}, 0.97 \mathrm{mmol})$. After being stirred for 10 min at r.t., $\mathrm{NaBH}(\mathrm{OAc})_{3}(0.11 \mathrm{~g}, 0.53 \mathrm{mmol})$ was added, and the reaction mixture was stirred for 6 h . A sat. solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the mixture stirred for 15 min , followed by the addition of ethyl acetate (30 mL). The organic layer was separated and washed with sat. NaHCO_{3}, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification of the brown oily material on a silica column, eluting with ethyl acetate : hexanes $(70: 30)$ and then changing to ethyl acetate (100%) yielded the titled compound $\mathbf{3 a}$ as a light-yellow solid 0.126 g , yield 45%). M. p. $84-85^{\circ} \mathrm{C}$. - IR (neat): $v=$ 3031, 3021, 2936, 1609, 1444, 1186, $1120 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.15(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 2.36$ ($\mathrm{m}, 2 \mathrm{H}$, piperidine H), 2.85 (br. s, 2 H , piperidine H), 3.64 ($\mathrm{m}, 2 \mathrm{H}$, piperidine H), $4.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.20(\mathrm{~s}, 2 \mathrm{H}$, NCH_{2}), $6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), $7.51(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.56-7.59(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$)$, $7.63(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H). - ${ }^{13} \mathrm{CNMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.47,34.92$ (all $\left.\mathrm{C}_{\text {piper }}\right), 53.14\left(\mathrm{OCH}_{3}\right), 61.71\left(\mathrm{NCH}_{2}\right), 112.62(\mathrm{C}-3)$, 123.98, 124.98, 126.21, 127.06, 127.72, 128.85, 131.30, 139.31, 139.55, 140.02, 142.37, 143.86 (all Carom), 161.44 (C-2). $-\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ (408.53): calcd. C 82.32, H 6.91, N 6.86; found C 82.25, H 6.96, N 6.79.

8-(4-((4'-Fluorobiphenyl-4-yl)methyl)piperazin-1-yl)-2methoxyquinoline ($\mathbf{3 b}$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{3}$ and $\mathbf{6 b}$ as an off-white solid (yield 37%). M. p. $94-95{ }^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3042$, 3011, 2926, 1603, 1440, 1183, $1132 \mathrm{~cm}^{-1}-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.92(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 2.02$ $(\mathrm{m}, 2 \mathrm{H}$, piperidine H$), 2.30(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 3.18$ $(\mathrm{m}, 2 \mathrm{H}$, piperidine e H$), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.83(\mathrm{~m}$, 1 H , piperidine H), $4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.88(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.09-7.12(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.32$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.45-7.56(\mathrm{~m}, 8 \mathrm{H}$, aromatic H), 7.94 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H). $-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.03,36.07$ (all $\mathrm{C}_{\text {piper }}$), 53.07 $\left(\mathrm{OCH}_{3}\right), 54.66\left(\mathrm{C}_{\text {piper }}\right), 62.95\left(\mathrm{NCH}_{2}\right), 112.36(\mathrm{C}-3), 115.49$, 115.66, 123.85, 124.91, 125.41, 125.81, 126.84, 128.52, 128.57, 129.97, 136.71, 136.98, 139.17, 142.32, 144.13 (all $\mathrm{C}_{\text {arom }}$), $161.20(\mathrm{C}-2) .-\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}$ (426.53): calcd. C 78.85, H 6.38, N 6.57; found C 78.79, H 6.44, N 6.50.

2-Methoxy-8-(4-((5-phenylpyridin-3-yl)methyl)piperazin-1yl)quinoline (3c)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{3}$ and $\mathbf{6 c}$ as an off-white solid (yield
35%). M. p. $135-137^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3021,2945,1601$, 1433, 1263, $1228 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.90(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 2.02(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$)$, $2.30(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 3.09(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$)$, $3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.82(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 4.07(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.33(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.47-7.53(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.64(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.94(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 8.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, 1 H , aromatic H$), 8.77(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$)$. ${ }^{13} \mathrm{CNMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=32.33,36.36$ (all C ${ }_{\text {piper }}$), $53.05\left(\mathrm{OCH}_{3}\right), 54.79\left(\mathrm{C}_{\text {piper }}\right), 60.65\left(\mathrm{NCH}_{2}\right), 112.32(\mathrm{C}-3)$, 124.88, 125.33, 125.77, 127.16, 127.98, 128.97, 134.08, $135.05,136.23,137.81,139.11,142.49,144.13,146.95$, 149.17 (all $\mathrm{C}_{\text {arom }}$), 161.13 (C-2). $-\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ (409.52): calcd. C 79.19, H 6.65, N 10.26; found C 79.12, H 6.71, N 10.19.

8-(4-((5-(4-Fluorophenyl)pyridin-3-yl)methyl)piperazin-1-yl)-2-methoxyquinoline (3d)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained by reductive amination of compounds $\mathbf{3}$ and $\mathbf{6 d}$ as a light-brown solid (yield 32%). M. p. $156-158^{\circ} \mathrm{C} .-$ IR (neat): $v=3025,2931$, 1607, 1431, $1266 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.89(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 2.01(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $2.28(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 3.05(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.81(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$)$, $4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.16$ $(\mathrm{m}, 2 \mathrm{H}$, aromatic H), 7.33 (t, $J=7.6,1 \mathrm{H}$, aromatic H), $7.51(\mathrm{dd}, J=1.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.54-7.59(\mathrm{~m}$, 3 H , aromatic H), $7.89(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), $7.94(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $8.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 8.77(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$) .-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.33,36.35$ (all $\mathrm{C}_{\text {piper }}$), 53.04 $\left(\mathrm{OCH}_{3}\right), 54.82\left(\mathrm{C}_{\text {piper }}\right), 60.62\left(\mathrm{NCH}_{2}\right), 112.34(\mathrm{C}-3), 115.86$, $116.03,123.78,124.90,125.36,125.77,128.80,128.85$, $133.92,134.22,134.89,135.33,139.12,142.47,144.13$, 146.76, 149.17, 161.13, 163.82 (all Carom). $-\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}$ (427.51): calcd. C 75.85 , H 6.13, N 9.83; found C 75.79, H 6.19, N 9.76 .

8-(4-(3-Cyclopentenylbenzyl)piperazin-1-yl)-2-methoxyquinoline ($\mathbf{3 e}$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{3}$ and $\mathbf{6 e}$ as a light-yellow solid (yield 46%). M.p. $125-126{ }^{\circ} \mathrm{C} . ~-~ I R ~(n e a t): ~ v=3028, ~$ 2982, 2898, 1605, 1472, 1445, 1263, $1258 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.85-192(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), 1.98-2.04 (m, 4 H, piperidine H, cyclopent H), 2.24 (m, 2 H , cyclopent H), 2.72 (m, 2 H, cyclopent H), 3.05 (m, 2 H,
piperidine H$), 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.79(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.20(\mathrm{~s}, 1 \mathrm{H}$, cyclopent H$), 6.85$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), $7.24-7.34(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), $7.45-7.54(\mathrm{~m}, 3 \mathrm{H}$, aromatic H), 7.91 (d, $J=8.8 \mathrm{~Hz}$, 1 H , aromatic H). $-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 23.33 ($\mathrm{C}_{\text {cyclopent }}$), 32.33 ($\mathrm{C}_{\text {piper }}$), 33.22, 33.30 (all $\mathrm{C}_{\text {cyclopent }}$), $36.32\left(\mathrm{C}_{\text {piper }}\right), 53.05\left(\mathrm{OCH}_{3}\right), 54.74\left(\mathrm{C}_{\text {piper }}\right), 63.62\left(\mathrm{NCH}_{2}\right)$, 112.34 (C $\mathrm{C}_{\text {cyclopent }}$), 123.80, 124.27, 124.87, 125.28, 125.80, $126.12,126.46,127.88,128.10,136.67,138.29,139.11$, 142.41, 142.67, 144.13, 161.12 (all $\mathrm{C}_{\text {arom }}$). - $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ (398.54): calcd. C 81.37, H 7.59, N 7.03; found C 81.31, H 7.64, N 6.97.

8-(4-((5-Cyclopentenylpyridin-3-yl)methyl)piperazin-1-yl)-2-methoxyquinoline ($3 f$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{3}$ and $\mathbf{6 f}$ as a light-yellow amorphous solid (yield 39%). M. p. $85-86^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=$ 3021, 2992, 2828, 1601, 1472, 1445, $1255 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.89-194(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), 2.02-2.09 (m, 4 H, piperidine H, cyclopent H), 2.26-2.31 (m, 2 H , cyclopent H), $2.73(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H$), 3.09$ $(\mathrm{m}, 2 \mathrm{H}$, piperidine H$), 3.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.80(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.30(\mathrm{~s}, 1 \mathrm{H}$, cyclopent $\mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), 7.49 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 7.55 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.76(\mathrm{~s}, 1 \mathrm{H}$, aromatic H$)$, $7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $8.42(\mathrm{~s}, 1 \mathrm{H}$, aromatic H), $8.59(\mathrm{~s}, 1 \mathrm{H}$, aromatic H$) .-{ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=23.16\left(\mathrm{C}_{\text {cyclopent }}\right), 32.09\left(\mathrm{C}_{\text {piper }}\right), 32.88,33.36$ (all C cyclopent), $36.24\left(\mathrm{C}_{\text {piper }}\right), 53.03\left(\mathrm{OCH}_{3}\right), 54.57\left(\mathrm{C}_{\text {piper }}\right)$, $60.46\left(\mathrm{NCH}_{2}\right), 112.32$ (C $\mathrm{C}_{\text {cyclopent }}$), 123.77, 124.87, 125.36, $125.78,128.35,132.04,133.14,133.59,139.10,139.38$, 142.34, 144.10, 145.74, 148.46 (all Carom), 161.14 (C-2). $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}$ (399.53): calcd. C 78.16, H 7.32, N 10.52; found C 78.10, H 7.38, N 10.45.

8-(4-(Biphenyl-4-ylmethyl)piperazin-1-yl)quinolin-2(1H)one (4a)

Following the same procedure as adopted for the synthesis of $\mathbf{3}$ a, the title compound was obtained by reductive amination of compounds $\mathbf{4}$ and $\mathbf{6 a}$ as a light-yellow solid (yield 45%). M. p. $146-148^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3193,3038,3021$, 2938, 1641, 1601, 1437, $1218 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.81(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.26(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), 3.00 (br. s, 3 H , piperidine H), $3.60(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 6.65(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.10(\mathrm{t}, J=8.7 \mathrm{~Hz}$, 1 H , aromatic H), $7.34-7.55(\mathrm{~m}, 5 \mathrm{H}$, aromatic H$), 7.61$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 10.12 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.41,34.93,53.83$ (all $\left.\mathrm{C}_{\text {piper }}\right), 63.03\left(\mathrm{NCH}_{2}\right), 119.99,121.17,122.47,126.18$,
126.92, 127.03, 127.16, 127.78, 128.73, 129.75, 131.41, 135.71, 137.02, $139.95,140.92,141.61$ (all Carom), 163.46 (C=O). $-\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (394.51): calcd. C 82.20, H 6.64, N 7.10; found C 82.14, H 6.70, N 7.03.

8-(4-((4'-Fluorobiphenyl-4-yl)methyl)piperazin-1-yl)quino-
lin-2(1H)-one (4b)
Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{4}$ and $\mathbf{6 b}$ as an off-white solid (yield 41%). M.p. $159-161^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3213,3028$, 2928, 1637, 1609, 1447, $1171 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.88(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.24(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $2.90(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 3.08(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.62(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 7.12(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.20(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.41-7.44(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$)$, $7.52-7.58(\mathrm{~m}, 5 \mathrm{H}$, aromatic H), $7.73(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$, 4-H), 9.55 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). - ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , CDCl_{3}): $\delta=32.32,35.36,54.03($ all C piper$), 63.02\left(\mathrm{NCH}_{2}\right)$, 115.52, 115.73, 120.06, 121.21, 122.62, 126.32, 126.86, 127.82, 128.56, 128.64, 129.77, 130.08, 135.66, 137.05, 137.07, 139.03, 141.70 (all $\mathrm{C}_{\text {arom }}$), 161.32 ($\mathrm{C}=\mathrm{O}$), 163.11 ($\mathrm{C}_{\text {arom }}$). $-\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}$ (412.50): calcd. C 78.62, H 6.11, N 6.79; found C 78.56, H 6.16, N 6.72.

8-(4-((5-Phenylpyridin-3-yl)methyl)piperazin-1-yl)quinolin-2(1H)-one (4c)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{4}$ and $\mathbf{6 c}$ as a light-yellow solid (yield 38%). M.p. $158-160{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3363$, 3051, 3018, 2932, 1643, 1600, 1433, $1208 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.90(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.17$ $(\mathrm{m}, 2 \mathrm{H}$, piperidine H$), 3.07(\mathrm{~m}, 3 \mathrm{H}$, piperidine H$), 3.71$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $6.59(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.21(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.41-7.43(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.47-7.51(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.64(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.7 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}$, aromatic H), 8.57 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 8.78 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 10.52 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.28,34.67,53.84$ (all C ${ }_{\text {piper }}$), $60.47\left(\mathrm{NCH}_{2}\right), 120.03,121.06,122.55,126.26$, 127.19, 127.81, 128.07, 129.02, 131.34, 133.55, 135.16, 135.69, 136.31, 137.71, 141.73, 147.06, 149.16 (all Carom), 163.65 ($\mathrm{C}=\mathrm{O}$). - $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ (395.50): calcd. C 78.96, H 6.37, N 10.62 ; found C 78.90, H 6.43, N 10.57 .

8-(4-((5-(4-Fluorophenyl)pyridin-3-yl)methyl)piperazin-1-yl)quinolin-2(1H)-one (4d)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained by reductive amina-
tion of compounds $\mathbf{4}$ and $\mathbf{6 d}$ as a light-yellow solid (yield 34%). M. p. $161-163^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3373,3058,3040$, 2928, 1640, 1602, 1430, $1228 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.91(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.39(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $3.09(\mathrm{~m}, 3 \mathrm{H}$, piperidine H$), 3.71(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 6.62(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), $7.44-7.48(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.59-7.62 (m, 2 H , aromatic H), $7.80(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.91$ (br. s, $1 \mathrm{H}, \mathrm{NH}$), $8.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 8.75 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 10.20 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.26,34.89,53.99$ (all C ${ }_{\text {piper }}$), $60.46\left(\mathrm{NCH}_{2}\right), 115.97,116.18,120.07,121.15$, $123.63,126.38,127.85,128.89,131.10,133.87,135.03$, 135.48, 141.77, 147.01, 149.24, 163.50, 164.36 (all Carom). $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}$ (413.49): calcd. C 75.52, H 5.85, N 10.16; found C 75.46, H 5.91, N 10.09 .

8-(4-(3-Cyclopentenylbenzyl)piperazin-1-yl)quinolin-2(1H)one (4e)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds 4 and $\mathbf{6 e}$ as a colorless solid (yield 42%). M. p. $123-125^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3164,3110,3022$, 3011, 2936, 2886, 1639, 1599, 1471, $1116 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.83-191$ ($\mathrm{m}, 6 \mathrm{H}$, piperidine H , cyclopent H), 2.21-2.29 (m, 2 H, cyclopent H), 2.51-2.59 ($\mathrm{m}, 2 \mathrm{H}$, piperidine H), $2.73(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), $2.83(\mathrm{~m}$, 1 H , piperidine H$), 3.08(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 3.60(\mathrm{~s}, 2 \mathrm{H}$, NCH_{2}), $6.22(\mathrm{~s}, 1 \mathrm{H}$, cyclopent H), $6.60(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 7.11-7.28(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.29(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.33(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.42$ $(\mathrm{m}, 2 \mathrm{H}$, aromatic H$), 7.52(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.75(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 9.36 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.37\left(\mathrm{C}_{\text {cyclopent }}\right), 32.27\left(\mathrm{C}_{\text {piper }}\right)$, $33.28,33.34$ (all $\mathrm{C}_{\text {cyclopent }}$), 35.47, 53.99 (all C $\mathrm{C}_{\text {piper }}$), 63.44 $\left(\mathrm{NCH}_{2}\right), 119.94,121.21,122.58,124.37,126.26,126.43$, 127.81, 128.18, 130.84, 135.47, 136.77, 137.01, 141.64, 142.42 (all $\mathrm{C}_{\text {arom }}$), $162.98(\mathrm{C}=\mathrm{O}) .-\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ (384.51): calcd. C 81.21, H 7.34, N 7.29; found C 81.15, H 7.40, N 7.22.

8-(4-((5-Cyclopentenylpyridin-3-yl)methyl)piperazin-1-yl)quinolin-2(1H)-one (4f)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{4}$ and $\mathbf{6 f}$ as an off-white solid (yield 31%). M. p. $133-135^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3169,3026,2934$, 1639, 1601, 1411, 1190, $1127 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=1.81-191(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 1.98-2.10$ $(\mathrm{m}, 2 \mathrm{H}$, cyclopent H), 2.25-2.36(m,2 H, cyclopent H), $2.52-2.59(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 2.72(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), $3.00(\mathrm{~m}, 3 \mathrm{H}$, piperidine H$), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.30$
(s, 1 H , cyclopent H), 6.57 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), $7.18(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.41(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.68(\mathrm{~s}, 1 \mathrm{H}$, aromatic H), $7.76(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}$, aromatic H), $8.59(\mathrm{~s}, 1 \mathrm{H}$, aromatic H), 10.18 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=23.33\left(\mathrm{C}_{\text {cyclopent }}\right), 32.33\left(\mathrm{C}_{\text {piper }}\right), 33.22,33.30$ (all C cyclopent $)$, $36.32\left(\mathrm{C}_{\text {piper }}\right), 53.05\left(\mathrm{OCH}_{3}\right), 54.74\left(\mathrm{C}_{\text {piper }}\right)$, $63.62\left(\mathrm{NCH}_{2}\right), 113.98\left(\mathrm{C}_{\text {cyclopent }}\right), 120.14$ ($\left.\mathrm{Ar}-\mathrm{C}\right), 122.26$, 122.41, 124.11, 128.50, 132.05, 132.59, 133.36, 133.58, 138.80, 139.29, 140.65, 145.98, 148.45 (all Carom), 162.28 (C-2). - $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ (385.50): calcd. C 77.89, H 7.06, N 10.90; found C 77.83, H 7.12, N 10.83 .

8-(4-(Biphenyl-4-ylmethyl)piperazin-1-yl)-3,4-dihydroqui-nolin-2(1H)-one (5a)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{5}$ and $\mathbf{6 a}$ as an off-white solid (yield 41%). M. p. $116-118{ }^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3217,3053,2912$, 2872, 1668, 1601, 1482, $1211 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=1.76-184(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.15(\mathrm{~m}$, 4 H , piperidine H), $2.53(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 2.59(\mathrm{t}, J=$ $7.6,2 \mathrm{H}, 4-\mathrm{H}), 2.94(\mathrm{t}, J=6.7,2 \mathrm{H}, 3-\mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), $3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.97-7.03(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.15(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.34(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), $7.41-7.45(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.55(\mathrm{~d}, J=7.3$, 1 H , aromatic H), $7.60(\mathrm{~d}, J=7.3,1 \mathrm{H}$, aromatic H$), 7.87$ (br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}) .-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.95$ (C-4), 30.62 (C-3), 32.24, 35.82, 54.07 (all C $\mathrm{C}_{\text {iper }}$), 63.00 $\left(\mathrm{NCH}_{2}\right), 123.09,124.21,124.80,125.69,126.92,127.01$, 127.12, 128.69, 129.62, 130.91, 134.20, 137.22, 139.95, 140.91 (all Carom), 171.68 (C-2). $-\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ (396.52): calcd. C 81.78, H 7.12, N 7.06; found C 81.72, H 7.17, N 7.00.

8-(4-((4'-Fluorobiphenyl-4-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5b)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{5}$ and $\mathbf{6 b}$ as a light-yellow solid (yield 33%). M. p. $132-134^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3223,3050,2902$, 2862, 1667, 1600, 1489, $1231 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.67-173(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.07(\mathrm{~m}$, 2 H , piperidine H$), 2.50(\mathrm{~m}, 3 \mathrm{H}$, piperidine $\mathrm{H}, 4-\mathrm{H}), 2.83$ ($\mathrm{t}, J=7.6,2 \mathrm{H}, 3-\mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 3.51$ (s, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.88-6.94((\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.01-$ $7.12((\mathrm{~m}, 3 \mathrm{H}$, aromatic H), $7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), 7.39-7.49 ((m, 4 H , aromatic H), 7.94 (br. s, 1 H , $\mathrm{NHCO}) .-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.02(\mathrm{C}-4)$, 30.71 (C-3), $32.30,35.78,54.10$ (all C piper), $63.02\left(\mathrm{NCH}_{2}\right)$, 115.52, 115.73, 123.16, 124.31, 124.87, 125.87, 126.84, $128.56,129.78,131.05,134.31,137.08,137.24,139.04$,
161.32, 163.62 (all $\mathrm{C}_{\text {arom }}$), 170.87 ($\mathrm{C}=\mathrm{O}$). $-\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}$ (414.51): calcd. C 78.23, H 6.57, N 6.76; found C 78.26, H 6.62, N 6.69.

8-(4-((5-Phenylpyridin-3-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5c)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{5}$ and $\mathbf{6 c}$ as a light-yellow gum (yield 34%). - IR (neat): $v=3213,3032,2922,1662,1608,1472$, $1201 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.76-189$ $(\mathrm{m}, 4 \mathrm{H}$, piperidine H$), 2.27(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$), 2.56-$ $2.66(\mathrm{~m}, 3 \mathrm{H}$, piperidine $\mathrm{H}, 4-\mathrm{H}), 2.93(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.05$ $(\mathrm{m}, 2 \mathrm{H}$, piperidine H$), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.97(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.07(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.43(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), $7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), $7.89(\mathrm{~s}, 1 \mathrm{H}$, aromatic H$), 8.41(\mathrm{~s}, 1 \mathrm{H}$, aromatic H$), 8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO})$, 8.72 (s, 1 H , aromatic H$).-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.93$ (C-4), 30.63 (C-3), 31.93, 35.26, 53.85 (all C $\mathrm{C}_{\text {piper }}$), 60.13 (s, $2 \mathrm{H}, \mathrm{NCH}_{2}$), 115.99, 116.20, 123.34, 124.43 , 124.91, 125.96, 128.87, 128.95, 130.99, 133.68, 134.21, 135.43, 146.80, 148.93, 161.76, 164.22 (all Carom), 172.50 (C=O). - $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ (397.51): calcd. C 78.56, H 6.85, N 10.57; found C 78.50, H 6.91, N 10.50 .

8-(4-((5-(4-Fluorophenyl)pyridin-3-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5d)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive amination of compounds $\mathbf{5}$ and $\mathbf{6 d}$ as a light-yellow solid (yield 30%). M. p. $136-138^{\circ} \mathrm{C} .-$ IR (neat): $v=3198,3051$, 2931, 1660, 1608, 1468, $1186 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=1.74-189(\mathrm{~m}, 4 \mathrm{H}$, piperidine H$), 2.31(\mathrm{~m}$, 2 H , piperidine H$), 2.56(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}$, piperidine H$), 2.89(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}$, piperidine H$)$, $3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.93-7.06(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.35-7.55(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 3 \mathrm{H}$, aromatic H), $7.62(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.93 (s, 1 H , aromatic H), 8.54 ($\mathrm{s}, 1 \mathrm{H}$, aromatic H), 9.61 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). $-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.95$ (C-4), 30.68 (C-3), 31.95, 35.04, 53.69 (all $\mathrm{C}_{\text {piper }}$), 60.07 $\left(\mathrm{NCH}_{2}\right), 123.30,124.46,124.93,125.90,127.20,128.23$, $129.10,131.25,133.00,134.37,135.69,136.55,137.51$, 146.91, 148.90 (all Carom), 172.66 ($\mathrm{C}=\mathrm{O}$). $-\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}$ (415.50): calcd. C 75.16, H 6.31, N 10.11; found C 75.10, H 6.37, N 10.03.

8-(4-(3-Cyclopentenylbenzyl)piperazin-1-yl)-3,4-dihydro-quinolin-2(1H)-one (5e)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive am-
ination of compounds 5 and $\mathbf{6 e}$ as a light-green solid (yield 45%). M. p. $115-117^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3191,3067,2922$, 2842, 1665, 1603, 1431, $1188 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=1.71-189(\mathrm{~m}, 4 \mathrm{H}$, piperidine H), 1.98-2.08 (m, 2 H, cyclopent H), 2.11-2.18 (m, 2 H , cyclopent H), $2.48-2.56(\mathrm{~m}, 5 \mathrm{H}$, piperidine $\mathrm{H}, 4-\mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), $2.95(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}$, piperidine H), 3.57 (s, $2 \mathrm{H}, \mathrm{NCH}_{2}$), 6.22 (br. s, 1 H , cyclopent H), $6.94-$ $7.13(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 7.23 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.25-7.32$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic H), 7.41 (s, 1 H , aromatic H), 7.98 (br. s, $1 \mathrm{H}, \mathrm{NHCO}) .-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.40$ ($\mathrm{C}_{\text {cyclopent }}$), 26.04 (C-4), 30.71 (C-3), 32.31 ($\mathrm{C}_{\text {piper }}$), 33.29, 33.37 (all C cyclopent), $35.83,54.07$ (all C Ciper), $63.49\left(\mathrm{NCH}_{2}\right)$, 123.13 ($\mathrm{C}_{\text {cyclopent }}$), 124.28, 124.37, 124.88, 125.83, 126.27, 126.26, 127.88, 128.18, 131.11, 134.30, 136.82, 137.04, 142.42 (all $\mathrm{C}_{\text {arom }}$), 171.82 (C=O). $-\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ (386.53): calcd. C 80.79, H $7.82, \mathrm{~N} 7.25$; found C 80.73 , H 7.88, N 7.18.

8-(4-((5-Cyclopentenylpyridin-3-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one ($5 f$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by reductive
amination of compounds 5 and $\mathbf{6 f}$ as a light-yellow solid (yield 39%). M. p. $123-125{ }^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3195$, 3057, 2932, 2832, 1667, 1600, 1437, $1182 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.73-188(\mathrm{~m}, 4 \mathrm{H}$, piperidine H), 2.00-2.11 (m, 2 H, cyclopent H), 2.12-2.16 (m, 2 H, cyclopent H$), 2.51-2.66(\mathrm{~m}, 4 \mathrm{H}$, piperidine $\mathrm{H}, 4-\mathrm{H}), 2.69-$ $2.76(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), $2.92-3.06$ ($\mathrm{m}, 4 \mathrm{H}$, piperidine $\mathrm{H}, 3-\mathrm{H}$), 3.57 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 6.31 (br. s, 1 H , cyclopent H), $6.92-7.12(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.16(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), $7.69(\mathrm{~s}, 1 \mathrm{H}$, aromatic H$), 8.12$ (br. s, $1 \mathrm{H}, \mathrm{NHCO}$), 8.41 (s, 1 H , aromatic H), 8.59 (s, 1 H , aromatic H). $-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 23.25 (C $\mathrm{C}_{\text {cyclopent }}$), 26.03 (C-4), 30.71 (C-3), 32.25 ($\mathrm{C}_{\text {piper }}$), 32.99, 33.44 (all C Cyclopent), 35.62, 54.04 (all C ${ }_{\text {piper }}$), 60.57 $\left(\mathrm{NCH}_{2}\right), 123.13\left(\mathrm{C}_{\text {cyclopent }}\right), 124.34,124.84,125.88,128.35$, $130.98,132.02,133.07,133.31,134.33,139.49,146.02$, 148.68 (all $\mathrm{C}_{\text {arom }}$), 171.87 ($\mathrm{C}=\mathrm{O}$). $-\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}$ (387.52): calcd. C 77.48, H 7.54, N 10.84; found C 77.42, H 7.60, N 10.77.

Acknowledgements

The financial support from KACST Project No: AR-28-38 and lab facilities from KFUPM are gratefully acknowledged.
[1] a) M. Rowley, J.L. Bristow, H. H. Peter, J. Med. Chem. 2001, 44, 477-498; b) H. Y. Meltzer, Neuropsychopharmacology 1999, 2, 106-115.
[2] D. E. Casey, Br. J. Psychiatr. 1996, 29, 32-39.
[3] P. Seeman, T. Lee, M. Chau-Wong, K. Wong, Nature 1976, 261, 717-719.
[4] A. Newman-Tancredi, Curr. Opin. Inves. Drugs 2010, 11, 802-812.
[5] A.C. McCreary, J. C. Glennon, C. R. Ashby, Jr., H. Y. Meltzer, Z. Li, J.-H. Reinders, M. B. Hesselink, S. K. Long, A.H. Herremans, H. van Stuivenberg, R. W. Feenstra, C. G. Kruse, Neuropsychopharmacology 2007, 32, 78-94.
[6] S. Cuisiat, N. Bourdiol, V. Lacharme, A. NewmanTancredi, F. Colpaert, B. Vacher, J. Med. Chem. 2007, 50, 865-876.
[7] Q. Hu, M. Negri, K. Jahn-Hoffmann, Y. Zhuang, S. Olgen, M. Bartels, U. Müller-Vieira, T. Lauterbach, R. W. Hartmann, Bioorg. Med. Chem. 2008, 16, 7715-7727.
[8] D. Desai, G. Lin, H. Morimoto, P. G. Williams, K. ElBayoumy, S. Amin, J. Label Compd Radiopharm. 2002, 45, 1133-1141.
[9] D. L. Comins, J. J. Herrick, Heterocycles 1987, 26, 2159-2164.
[10] J. Kralik, US. Patent 123682, 2005.
[11] S. Cuisiat, N. Bourdiol, V. Lacharme, A. NewmanTancredi, F. Colpaert, B. Vacher, J. Med. Chem. 2007, 50, 865-876.
[12] P.R. Eastwood, Tetrahedron Lett. 2000, 41, $3705-$ 3708.
[13] A. G. Osborne, L. A. D. Miller, J. Chem. Soc., Perkin Trans. I 1993, 2, 181-184.

