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The crystal structure of the industrially relevant tetrahy-
droxy ether 2,2,2′,2′-(tetrahydroxymethyl)-dibutylether
(technically known as di(trimethylol)propane, Di-TMP;
C12H26O5) was determined from single-crystal X-ray
data at 123 K: monoclinic, space group C2/c (no. 15),
a = 20.1202(13), b = 5.8169(4), c = 13.0323(8) Å, β =
114.296(3)◦ , V = 1390.17(16) Å3 and Z = 4. The adjacent
molecules assemble into a two-dimensional framework
in the solid state, linked by two intermolecular O–H· · ·O
hydrogen bonds. The compound is characterized via spec-
troscopic methods and mass spectrometry.
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Introduction

High-boiling polyols play an important role in the
modern lubricant industry. Accordingly, trimethylol-
propane (TMP) has been known since the 1960s
for its effectiveness as an additive for lubricants
in order to improve high-pressure resistance, in-
hibit corrosion or promote heat transfer. Polyols have
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also made a dramatic impact as environmentally be-
nign alternatives to halocarbons for use as refriger-
ants [1]. Due to their cross-linking abilities, the poly-
ols TMP and Di-TMP {2,2′-[oxybis(methylene)]bis[2-
ethylpropane-1,3-diol]} have also been widely used in
paints [2] and polymers [3]. Moreover, the use of poly-
ols with anhydridic or epoxy reagents in paints accel-
erates the drying process [4]. Di-TMP is often used as
the alcohol component in esterification reactions with
long-chain acids [5 – 7], producing semisolid waxes for
use in cosmetics [8], as well as certain sunscreen ingre-
dients [9].

Results and Discussion

We report here the crystal structure of Di-TMP (1),
which is used as a high-value paint additive and lubri-
cant with a low vapor pressure and high boiling point.

The industrial synthesis of Di-TMP [10] is gen-
erally accomplished concurrent to the production of
TMP [11]. In most cases, a side stream of TMP pro-
duction and work-up is used for the purification of Di-
TMP. Normally the residue (high boiler) from the fi-
nal TMP distillation is used for this purpose [12]. It is
also possible to increase the yield of Di-TMP in the re-
action mixture during the production of TMP by addi-
tion of methylidenebutanal (ethylacrolein) to the TMP-
formalin-butanal mixture [13]. The purification of the
residue is accomplished for example by recrystalliza-
tion from ethyl acetate [14] or water [15]. A patented
method from Wada and Ishihara describes the purifi-
cation of Di-TMP via steam distillation [16]. This pro-
cess is only possible on a commercial scale and was
not suitable for our laboratory scale. The direct forma-
tion of Di-TMP starting from TMP by etherification
was accomplished by the reaction of TMP at 200 ◦C
with removal of the formed water under acidic condi-
tions, using p-toluenesulfonic acid or an acidic resin
(Nafion) [17].

We prepared Di-TMP (1) according to the procedure
by Ninomiya et al. [18] via an Aldol/Cross-Cannizzaro
reaction, in which butanal is treated with formalin un-
der strongly alkaline conditions. The reaction mixture
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Table 1. Selected bond lengths (Å) and bond angles (deg) for
compound 1a.

O1−C1 1.426(2) C1−O1−C1i 111.95(11)
O2−C3 1.435(2) O1−C1−C2 109.05(10)
O3−C4 1.428(2) C1−C2−C3 107.94(12)
C1−C2 1.532(2) C1−C2−C4 108.62(10)
C2−C3 1.537(2) C1−C2−C5 111.48(12)
C2−C4 1.537(2) C3−C2−C4 109.94(12)
C2−C5 1.544(2) C3−C2−C5 109.22(10)
C5−C6 1.521(2) C4−C2−C5 109.62(12)

O2−C3−C2 113.02(13)
O3−C4−C2 113.55(12)
C2−C5−C6 116.12(11)

a Symmetry operation for equivalent atoms: (i) −x, y, 0.5− z.

Table 2. Hydrogen bond geometry (Å, deg) for compound 1a.
D-H·A D-H H·A D·A D-H·A
O2–H2·O3ii 0.83(2) 1.87(2) 2.689(2) 166(2)
O3–H3·O2iii 0.85(2) 1.93(2) 2.753(2) 164(2)
Symmetry operations for equivalent atoms (ii): x, 1 + y, z;
(iii): 0.5− x, 1.5+ y, 1− z.

was worked up by distillation (removal of water and
formalin) and extraction (with ethyl acetate), in order
to remove the sodium formate. Afterwards TMP was
separated from Di-TMP by distillation. Following this,
we attempted to recrystallize Di-TMP from the distilla-
tion residue. Due to the low solubility in non-hydrogen
bonding solvents, recrystallization of Di-TMP was
successful only with the use of polar solvents. To this
end, solvents such as acetone, ethyl acetate, n-butyl ac-
etate and methylisobutyl ketone were all found to be
effective. In this manner, analytically pure Di-TMP (1)
was obtained and characterized by 1H, 13C{1H} NMR
spectroscopy and high-resolution mass spectrometry,
confirming its formulation.

Suitable single crystals for X-ray diffraction stud-
ies were grown from a r. t.-saturated methylisobutyl
ketone solution by slow evaporation of the solvent
and cooling to 15 ◦C. A view of the low-temperature
(123 K) molecular structure of compound 1 is given
in Fig. 1. Selected geometric and structural parameters
are listed in Table 1 and 2.

The packing of the molecules in the crystal is domi-
nated by two intermolecular O–H· · ·O hydrogen bond
interactions (see Table 2), which are present twice
in the structure due to the symmetry requirements
of the space group. As expected, the hydroxyl func-
tions are linked to each other via hydrogen bonding
to build up a two-dimensional structure, in contrast
to the studies on the related polyol TMP, in which a
three-dimensional framework was observed [20, 21].
This reduced dimensionality may be a result of the re-

Fig. 1. ORTEP [19] plot of the molecular structure of com-
pound 1 in the solid state, showing 50 % probability displace-
ment ellipsoids and the atom numbering adopted.

Fig. 2. DIAMOND [23] plot of the packing of 1 in the crys-
tal structure, as viewed perpendicular to the [1,0,−1] axis.
Dashed lines indicate the C–H· · ·O interactions.

duction of the number of hydroxyl groups available
for hydrogen bonding per C6 fragment, from three in
TMP to two in Di-TMP. The intermolecular hydrogen
bonds (1.87(2) and 1.93(2) Å) are within the normal
range [22]. As shown in Fig. 2, these hydrogen bonds
assemble a two-dimensional infinite network perpen-
dicular to the crystallographic [1,0,−1] axis. The four
(2H)C–OH bonds [1.426(2)– 1.435(2) Å] are in the
same range as those in the TMP structure (1.429(1)–
1.433(1) Å) [22].

Experimental Section

Compound 1 was prepared with small adjustments to
the procedure reported by Ninomiya et al. [18]. In a three-
neck double-walled 2 L round bottom flask with an exter-
nal cooler a suspension of 342 g of 2,2-bis(hydroxymeth-
yl)-1-butanol (“trimethylolpropane”, TMP) in 100 g wa-
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ter and 63 g of 50 % NaOH solution was added. Via two
dropping funnels the aqueous formalin solution (37 wt.-%;
195 g) and n-butanal (54 g) were added simultaneously to
the TMP solution over 2 min. Using the external cooler,
we attempted to maintain a reaction temperature of approx-
imately 65 ◦C, using an external bath temperature of 35 ◦C
(this Aldol-Cannizzaro reaction is particularly exothermic,
and high temperatures are useful for the formation of Di-
TMP under the current conditions). The reaction was stirred
for 3 h and the formalin-water solution was neutralized with
formic acid to a pH value of ∼ 5. The aqueous solution
was extracted three times with 150 mL ethyl acetate. The
organic extracts were combined, and the ethyl acetate was
slowly removed via a rotary evaporator at 80 ◦C/200 mbar
to obtain a yellow oil, which solidifies at r. t. over several
days. This oil was distilled via a column at high tempera-
ture and low pressure. The head fraction was found to be
mainly TMP, while the brownish residue in the distillation
sump was mainly Di-TMP and some cyclic derivatives of
TMP and Di-TMP [24]. The purification and separation of
Di-TMP from this residue was accomplished analogously to
the procedure by Zey [14], where 150 mL of ethyl acetate
was added to the hot residue, and the mixture cooled to 0 ◦C.
After 5 – 6 h a colorless precipitate formed, which was fil-
tered off, washed once more with 20 mL of cold ethyl ac-
etate, and dried under vacuum to obtain 41 g of Di-TMP (1)
in 9.9 % yield (purity by GC = 98.4 wt.-%). Suitable single
crystals for X-ray diffraction studies were grown from a r. t.-
saturated methylisobutyl ketone solution by slow evaporation
of the solvents and slow cooling to 15 ◦C. M. p. 109 – 110 ◦C.
B. p. > 300 ◦C/1013 mbar; 239 ◦C/4 mbar; 225 ◦C/3 mbar;
220 ◦C/2 mbar; 206 ◦C/1.4 mbar; 160 ◦C/0.6 mbar;
140 ◦C/0.3 mbar. – 1H NMR (500.14 MHz, [D6]DMSO):
δ = 4.18 (t, 3J = 5.4 Hz, 4 H, OH), 3.26 (d, 3J =
5.4 Hz, 8 H, CH2OH), 3.14 (s, 4 H, CH2O), 1.23 (q,
3J = 7.6 Hz, 4 H, CH2), 0.78 (t, 3J = 7.6 Hz, 6 H,
CH3) ppm. – 13C{1H} NMR (125.76 MHz, [D6]DMSO):
δ = 71.8 (CH2O), 62.0 (CH2OH), 43.4 (Cq), 22.1 (CH2CH3),
7.6 (CH3) [25] ppm. – Hydroxyl number [26]: 881 – 893 mg
KOH g−1. – Acid number [27]: < 0.04 mg KOH g−1. –
Gardner Color [28]: 1. – HRMS ((+)-ESI); MeCN/CHCl3
(1 : 1)): m/z = 251.18588, 252.18939 (calcd. 251.18585,
252.18920 for C12H27O5, [M+H]+); m/z = 273.16711
(calcd. 273.16779 for C12H26NaO5, [M+Na]+). – TLC
(EtOAc); Rf = 0.17.

Single-crystal X-ray structure determination of compound 1

Crystal data and details of the structure determination are
presented in Table 3. Suitable single crystals for the X-ray
diffraction study were grown from methylisobutyl ketone.

The crystal was fixed on the top of a glass fiber with per-
fluorinated ether and transferred into a Lindemann capillary,
fixed and sealed. Preliminary examination and data collec-

Table 3. Summary of the crystallographic data of com-
pound 1.
Chemical formula C12H26O5
Molecular weight 250.33
Crystal color / shape colorless / plate
Crystal size, mm3 0.05×0.25×0.76
Crystal system monoclinic
Space group C2/c (no. 15)
a, Å 20.1202(13)
b, Å 5.8169(4)
c, Å 13.0323(8)
β , deg 114.296(3)
V, Å3 1390.17(16)
Z 4
ρcalcd. , g cm−3 1.20
µ , mm−1 0.1
Wavelength; λ , Å MoKα ; 0.71073
T , K 123
Θ range, deg 2.22 – 25.56
Reflections integrated 12801
Independent reflections (all data) / Rint 1288 / 0.054
Observed reflections [I ≥ 2σ(I)] 1173
Parameters refined 130
R1 (observed / all data)a 0.0369/0.0403
wR2 (observed / all data)b 0.0943/0.0965
GOFc 1.063
Largest diff. peak / hole, e Å−3 0.29 / −0.17
a R1 = Σ‖Fo|− |Fc‖/Σ|Fo|; b wR2 = [Σw(Fo

2 −Fc
2)2/Σw(Fo

2)2]1/2,
w = [σ2(Fo

2)+(AP)2+BP]−1, where P= (Max(Fo
2,0)+2Fc

2)/3;
c GoF = [Σw(Fo

2 −Fc
2)2/(nobs −nparam)]

1/2].

tion were carried out on an area detecting system (APEX II,
κ-CCD) [29] at the window of a rotating anode (Bruker
AXS, FR591) and graphite-monochromatized MoKα radia-
tion (λ = 0.71073 Å). The unit cell parameters were obtained
by full-matrix least-squares refinement of 8342 reflections.
Ten data sets were measured in rotation scan modus with
∆ϕ/∆Ω = 1.0◦. The raw data were corrected for Lorentz, po-
larization, and, arising from the scaling procedure, for latent
decay and absorption effects [30]. The structure was solved
by a combination of Direct Methods and difference Fourier
syntheses [31]. All non-hydrogen atoms were refined with
anisotropic displacement parameters. All hydrogen atoms
were found in the final difference Fourier maps and allowed
to refine freely with isotropic displacement parameters. Full-
matrix least-squares refinements were carried out by mini-
mizing Σw( fo

2 −Fc
2)2 with the SHELXL-97 [32] weighting

scheme and stopped at a shift over error ratio of < 0.001.
The final residual electron density maps showed no remark-
able features. Neutral atom scattering factors for all atoms
and anomalous dispersion corrections for the non-hydrogen
atoms were taken from International Tables for Crystallo-
graphy [33].

CCDC 846738 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre
via http://www.ccdc.cam.ac.uk/data request/cif.
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