Soliton Solutions, Bäcklund Transformation and Wronskian Solutions for the (2 + 1)-Dimensional Variable-Coefficient Konopelchenko–Dubrovsly Equations in Fluid Mechanics

Peng-Bo Xu, Yi-Tian Gao, Lei Wang, De-Xin Meng, and Xiao-Ling Gai

Ministry of Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Reprint requests to Y.-T. G.; E-mail: gaoyt@public.bta.net.cn

Received August 31, 2011

This paper is to investigate the (2 + 1)-dimensional variable-coefficient Konopelchenko–Dubrovsly equations, which can be applied to the phenomena in stratified shear flow, internal and shallow-water waves, plasmas, and other fields. The bilinear-form equations are transformed from the original equations, and soliton solutions are derived via symbolic computation. Soliton solutions and collisions are illustrated. The bilinear-form Bäcklund transformation and another soliton solution are obtained. Wronskian solutions are constructed via the Bäcklund transformation and solution.

Key words: (2 + 1)-Dimensional Variable-Coefficient Konopelchenko–Dubrovsly Equations; Fluid Mechanics; Soliton Solutions; Bäcklund Transformation; Wronskian Solutions; Symbolic Computation.

PACS numbers: 05.45.Yv; 47.35.Fg; 02.30.Jr; 02.30.Ik; 02.70.Wz

1. Introduction

Phenomena in fluid mechanics, physics, chemistry, biology, and other fields can be described by the nonlinear partial differential equations (NLPDEs) [1 – 8]. Investigations on the analytic solutions of the NLPDEs, especially the solitons, have been active in such fields [1 – 8]. Methods applied to constructing the analytic solutions of the NLPDEs have been proposed, such as the Hirota bilinear method [9 – 14], Bäcklund transformation (BT) [9, 15], Wronskian technique [16, 17], Painlevé analysis [18, 19], and Darboux transformation [20 – 26]. The bilinear method can transform some NLPDEs into bilinear equations, e.g., the Korteweg–de Vries (KdV) [10], Gardner [27 – 32], Kadomtsev–Petviashvili (KP) [33 – 36] and modified KP (mKP) [37, 38] equations. The Bäcklund transformation can connect several analytic solutions, and the auto-Bäcklund transformation several analytic solutions for the same equation [9, 15]. The Wronskian technique is used to construct the Wronskian solutions which have the determinant form of the soliton solutions [16, 17].

The variable-coefficient Konopelchenko–Dubrovsly (vcKD) equation [39 – 53],

$$u_t + f_1(t)u_{xxx} + f_2(t)uu_x + f_3(t)u^2u_x + f_4(t) \int u_{yy} \, dx + f_5(t)u_x \int u_y \, dx = 0,$$

is the (2 + 1)-dimensional model in fluid mechanics which is the relevant wave model in stratified shear flow, internal and shallow-water waves, plasmas, and other fields [39 – 53]. In (1), x and y are the running coordinates along the propagation directions, t is the time, $u = u(x,y,t)$ is the amplitude of the relevant waves in the stratified shear flow, ocean, and shallow water, the subscripts denote the partial differentiation, and $f_i(t)'s$ ($i = 1, 2, 3, 4, 5$) are the time-dependent coefficients.

In fact, the variable-coefficient NLPDEs are more suitable when the boundaries are considered and more accurate when we consider the description of dynamical and physical phenomena [1 – 8]. Equation (1) covers the Gardner, KP, mKP, and KD equations in ocean dynamics, fluid mechanics, and plasma physics, which are all special cases of (1) with different co-
2. Hirota Bilinear Method and Soliton Solutions

The bilinear derivative operator $D^m_xD^p_t[f(x,t)\cdot g(x,t)]$ [9] is defined as

$$D^m_xD^p_t[f(x,t)\cdot g(x,t)] = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right)^m f(x,t)g(x,t).$$

By truncating the Painlevé expansion at the constant level term, we can obtain the following expressions for $u(x,y,t)$ and $v(x,y,t)$:

$$u(x,y,t) = i\left[\frac{6f_1(t)}{f_3(t)}\left(\begin{array}{c} g(x,y,t) \\ g'(x,y,t) \end{array}\right)\right],$$

$$v(x,y,t) = i\left[\frac{6f_1(t)}{f_3(t)}\left(\begin{array}{c} g(x,y,t) \\ g'(x,y,t) \end{array}\right)\right].$$

With (3) and (4), (2) becomes the bilinear-form equations

$$[D_t + f_1(t)D^3_x + \sqrt{3}f_1(t)f_4(t)D_xD_y - f_3(t)D^2_y]g(x,y,t) = 0,$n

$$D_x - \sqrt{\frac{3f_1(t)}{f_4(t)}}D^2_x + D_y]g(x,y,t) = 0,$n

where \cdot is the representation of the complex conjugate.

The single-soliton solution is constructed as follows:

$$g(x,y,t) = 1 + \exp[p_1x - p_1y - \int [f_1(t)p^2_1 + f_4(t)p_1]dt + \eta_1 + \frac{\pi}{2}],$$

where p_1 is an arbitrary real parameter.

Now we substitute (6) into (4) which can be written as

$$u(x,y) = -2\frac{p_1}{f_2(t)}\sqrt{-3f_1(t)f_4(t)}\cdot\sec[p_1x - p_1y - \int [f_1(t)p^2_1 + f_4(t)p_1]dt + \eta_1],$$

$$v(x,y) = 2\frac{p_1}{f_2(t)}\sqrt{-3f_1(t)f_4(t)}\cdot\sec[p_1x - p_1y - \int [f_1(t)p^2_1 + f_4(t)p_1]dt + \eta_1].$$

The two-soliton solutions for (2) are described in the following forms:

$$g(x,y) = 1 + \exp[\xi_1 + i\frac{\pi}{2}] + \exp[\xi_2 + i\frac{\pi}{2}] - \frac{(p_1 - p_2)^2}{(p_1 + p_2)^2}\exp[\xi_1 + \xi_2 + i\pi],$$

where $\xi_1 = p_1x - p_1y - \int [f_1(t)p^2_1 + f_4(t)p_1]dt + \eta_1,$

$$\xi_2 = p_2x - p_2y - \int [f_1(t)p^2_1 + f_4(t)p_1]dt + \eta_2.$$
Fig. 1 (colour online). Single-soliton solution at $y = 0$ with parameters $f_1(t) = \cos(t)$, $f_2(t) = 1$, $f_4(t) = -1$, $p_1 = -2$, and $\eta_1 = 0$. (a) $u(x,y,t)$ for (7) and (b) $v(x,y,t)$ for (8).

Fig. 2 (colour online). Single-soliton solution at $x = 0$ with parameters $f_1(t) = \cos(t)$, $f_2(t) = 1$, $f_4(t) = -1$, $p_1 = -2$, and $\eta_1 = 0$. (a) $u(x,y,t)$ for (7) and (b) $v(x,y,t)$ for (8).

Fig. 3 (colour online). Single-soliton solution at $y = 0$ with parameters $f_1(t) = \cos(3t)$, $f_2(t) = 1$, $f_4(t) = -\cos(3t)$, $p_1 = -1.7$, and $\eta_1 = 0$. (a) $u(x,y,t)$ for (7) and (b) $v(x,y,t)$ for (8).

Fig. 4 (colour online). Single-soliton solution at $x = 0$ with parameters $f_1(t) = \cos(3t)$, $f_2(t) = 1$, $f_4(t) = -\cos(3t)$, $p_1 = -1.7$, and $\eta_1 = 0$. (a) $u(x,y,t)$ for (7) and (b) $v(x,y,t)$ for (8).
Fig. 5 (colour online). Two-soliton solutions at $y = 0$ for (9) with parameters $f_1(t) = 4, f_2(t) = 0.7, f_4(t) = -0.7, p_1 = -0.7, p_2 = -1.2, \eta_1 = 0$, and $\eta_2 = 0$. (a) for $u(x,y,t)$ and (b) for $v(x,y,t)$.

Fig. 6 (colour online). Two-soliton solutions at $x = 0$ for (9) with parameters $f_1(t) = 4, f_2(t) = 0.7, f_4(t) = -0.8, p_1 = -0.7, p_2 = -1.2, \eta_1 = 0$, and $\eta_2 = 0$. (a) for $u(x,y,t)$ and (b) for $v(x,y,t)$.

Fig. 7 (colour online). Two-soliton solutions at $y = 0$ for (9) with parameters $f_1(t) = 4 \cos(2.5t), f_2(t) = 0.7, f_4(t) = -0.5 \cos(2.5t), p_1 = -0.7, p_2 = -1.2, \eta_1 = 0$, and $\eta_2 = 0$. (a) for $u(x,y,t)$ and (b) for $v(x,y,t)$.

Fig. 8 (colour online). Two-soliton solutions at $x = 0$ for (9) with parameters $f_1(t) = 4 \cos(2.5t), f_2(t) = 0.7, f_4(t) = -0.5 \cos(2.5t), p_1 = -0.7, p_2 = -1.2, \eta_1 = 0$, and $\eta_2 = 0$. (a) for $u(x,y,t)$ and (b) for $v(x,y,t)$.
where \(P_j \) \((j = 0, 1, 2, \ldots, N)\) are arbitrary real parameters characterizing the \(j \)th soliton, \(\eta_j \) \((j = 0, 1, 2, \ldots, N)\) are arbitrary real constants, and \(\sum_{j=0}^{N} \) contains all the possible combinations for \(\mu_1 = 0, 1, \mu_2 = 0, 1, \ldots, \mu_N = 0, 1 \).

Figures 1–4 present the single-soliton solutions when the appropriate coefficients are selected. In Figures 3 and 4, the periodic solitons appear when we choose the coefficient \(f_1(t) = \cos(3t) \) and \(f_2(t) = -\cos(3t) \). Figures 5 and 6 illustrate the head-on elastic collisions of \(u(x, y, t) \) and \(v(x, y, t) \) solitons at \(y = 0 \) and \(x = 0 \), respectively. After colliding, the intensity, amplitude, and velocity of the solitons remain the same as before. Figures 7 and 8 illustrate the periodicity of the two-soliton solution with the coefficient \(f_1(t) = 4 \cos(2.5t) \) and \(f_4(t) = -0.5 \cos(2.5t) \).

3. Bäcklund Transformation

It is known that the BT can connect two solutions of one equation, even two different equations, and we can deduce other solutions from the obtained one [9, 15, 28]. In this section, we will derive the bilinear-form BT by virtue of the bilinear-form (5) with the help of the exchange formula [9] and get two kinds of solutions from the obtained one.

Let us assume the new solutions to be

\[
\begin{align*}
\begin{bmatrix} u(x, y, t) = & i \sqrt{\frac{6}{f_3(t)}} \log \left(\frac{f(x, y, t)}{f^+(x, y, t)} \right) \end{bmatrix}_x, \\
v(x, y, t) = & i \sqrt{\frac{6}{f_3(t)}} \log \left(\frac{f(x, y, t)}{f^+(x, y, t)} \right) \end{bmatrix}_y,
\end{align*}
\]

where \(f(x, y, t) \) and \(f^+(x, y, t) \) are the new solutions of (2).

Now, we consider the equations

\[
\begin{align*}
\left[D_t + f_1(t)D_x^3 + \sqrt{3f_1(t)f_4(t)}D_yD_y - f_4(t)D_x \right] f \cdot f^+ &= -(D_t + f_1(t)D_x^3) f^+ f^+ - \sum_{j=1}^{N} (D_t + f_1(t)D_x^3), \\
+ \sqrt{3f_1(t)f_4(t)}D_yD_y - f_4(t)D_y \right] g \cdot g^+ &= 0, \\
\left[D_t - \sqrt{\frac{3f_1(t)}{f_4(t)}} D_x^2 + D_x \right] f \cdot f^+ &= 0, \\
- \left[D_t - \sqrt{\frac{3f_1(t)}{f_4(t)}} D_x^2 + D_x \right] g \cdot g^+ &= 0.
\end{align*}
\]

Then via symbolic computation and the different exchange formula [9], (16) and (17) can be transformed into the following forms:

\[
\begin{align*}
\left[D_t + f_1(t)D_x^3 - f_4(t)D_y \right] f \cdot g^+ &= -(D_t + f_1(t)D_x^3) f^+ g^+ - 3f_1(t)D_x \left[D_x f \cdot g^+ \right], \\
- \left[D_t + f_1(t)D_x^3 - f_4(t)D_y \right] g \cdot f^+ &= -(D_t + f_1(t)D_x^3) g^+ f^+ - 3f_1(t)D_x \left[D_x g \cdot f^+ \right] \\
- \left[D_t + f_1(t)D_x^3 - f_4(t)D_y \right] f^+ f^+ &= 0, \\
- \left[D_t + f_1(t)D_x^3 - f_4(t)D_y \right] g^+ g^+ &= 0.
\end{align*}
\]

Further, we decouple (18) and (19) into

\[
\begin{align*}
D_x f(x, y, t) \cdot g^+(x, y, t) &= \bar{\lambda} f^+(x, y, t) g(x, y, t), \\
D_x f^+(x, y, t) \cdot g(x, y, t) &= \bar{\lambda} f(x, y, t) g^+(x, y, t), \\
D_x f^+(x, y, t) \cdot g^+(x, y, t) &= \bar{\delta} f^+(x, y, t) g(x, y, t), \\
\lambda D_x f(x, y, t) \cdot g^+(x, y, t) &= 0, \\
(D_t + f_4(t)D_x^3 - f_4(t)D_y + 3f_1(t)\bar{\lambda}^2 D_x) f(x, y, t) \cdot g(x, y, t) &= 0, \\
(D_t + f_4(t)D_x^3 - f_4(t)D_y + 3f_1(t)\bar{\lambda}^2 D_x) f^+(x, y, t) \cdot g^+(x, y, t) &= 0, \\
\end{align*}
\]

where \(\bar{\lambda} \) and \(\bar{\delta} \) are arbitrary constants.

We could also assume the seed solution \(g(x, y, t) = 1 \). Then (20) can be written as the partial different equations

\[
\begin{align*}
f_x(x, y, t) &= \bar{\lambda} f^+(x, y, t), \\
f_y(x, y, t) &= \bar{\delta} f^+(x, y, t), \\
f_{xx}(x, y, t) + f_x(x, y, t) = 0, \\
f_{xx}(x, y, t) + f_x(x, y, t) f_{xx}(x, y, t) - f_4(t) f_y(x, y, t) + 3f_1(t)\bar{\lambda}^2 f_x(x, y, t) = 0, \\
f_{xx}(x, y, t) f_{xx}(x, y, t) = \bar{\lambda}^2 f(x, y, t).
\end{align*}
\]
When we solve the linear differential (21), the single-soliton solution of (2) can be constructed as
\[f = ae^{\lambda x - \lambda y} + f[-4f_1(t)\lambda^3 - f_4(t)\lambda]dt \\
+ be^{\lambda x + \lambda y} + f[-4f_1(t)\lambda^3 - f_4(t)\lambda]dt, \]
where \(a \) and \(b \) are arbitrary real constants.

4. Wronskian Solution

Using the BT and the single-soliton solution in Section 3, we can construct the Wronskian solution of (2). Its construction is postulated as follows:
\[f = W(\varphi_1, \varphi_2, \ldots, \varphi_N) = \begin{vmatrix} \varphi_1^{(1)} & \varphi_1^{(2)} & \cdots & \varphi_1^{(N-1)} \\ \varphi_2^{(1)} & \varphi_2^{(2)} & \cdots & \varphi_2^{(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_N^{(1)} & \varphi_N^{(2)} & \cdots & \varphi_N^{(N-1)} \end{vmatrix}_{N \times N} \]
where \(\varphi_j = \varphi_j(x,y,t) \) and \(\varphi_j^{(i)} = \frac{\partial^i \varphi_j(x,y,t)}{\partial x^i} \) (\(j = 1, \ldots, N; i = 0, \ldots, N-1 \)), and \(\varphi_j \) must satisfy the relations
\[\varphi_{j,t} = -4f_1(t)\varphi_{j,xx} - f_4(t)\varphi_{j,x}, \quad \sum_{j=1}^{N} \lambda_j (-1, N-2) = (-1, N-3, N-1), \]
\[\varphi_{j,y} = -\varphi_{j,x}, \quad \sum_{j=1}^{N} \lambda_j^2 (-1, N-2) = (-1, N-3, N), \]
\[\varphi_{j,xx} = \lambda_j^2 \varphi_j, \quad \sum_{j=1}^{N} \lambda_j^2 (-1, N-3, N-1) = (-1, N-3, N+1) \]
\[\varphi_j^* = \lambda_j^{-1} \varphi_j, \quad \sum_{j=1}^{N} \lambda_j (N-1) = (N-2, N), \]
where \(f \) and \(f^* \) can be abbreviated as \(f = (N-1) \) and \(f^* = A(-1, N-2) \), where \(A = \prod_{j=1}^{N} \lambda_j \), the derivatives of \(f \) and \(f^* \) with respect to \(x, y \) and \(t \) can be expressed in the abbreviated notations
\[f_x = (N-2, N), \quad f_{xx} = (N-3, N-1, N), \]
\[f_{xxx} = (N-4, N-2, N-1, N), \]
\[f_x^* = A(-1, N-3, N-1), \]
\[f_{xx}^* = A(-1, N-4, N-2, N-1, N), \]
\[f_{xxx}^* = A(-1, N-5, N-3, N-2, N-1, N), \]
and substituting the derivatives of \(f \) and \(f^* \) into (5), we have
In a similar way, the other equation of (5) can be proved:

\[
\left(D_x + f_x(t)D_x^2 + \sqrt{3}f_x(t)D_x + f_x(t)D_f - f(t)D_f \right) f_x + f_{xx} + f f_x^* - f f_f^* + f f_{xx}^* = 0.
\]

Therefore, by directly substituting \(f = (N-1) \) and \(f^* = A(-1,N-2) \) into the bilinear equations (5), we have proved that the Wronskian solution is the solution of (2). Then the solution of (2) can be expressed as

\[
\begin{align*}
 u(x,y,t) &= \sqrt{\frac{6f(t)}{f_x(t)}} \log \left(\frac{(N-1)}{A(-1,N-2)} \right), \\
 v(x,y,t) &= \sqrt{\frac{6f(t)}{f_y(t)}} \log \left(\frac{(N-1)}{A(-1,N-2)} \right).
\end{align*}
\]

5. Conclusions

In this paper, we have investigated (2), a variable-coefficient model in fluid mechanics and ocean dynamics. Based on symbolic computation, (2) has been transformed into bilinear forms (5), and \(N \)-soliton solutions (6)–(14) of (2) have been constructed. Figures 1–8 also illustrate the single soliton, two solitons, and two-soliton collisions including the parallel solitons and the head-on elastic...
collisions, after which the intensity, amplitude, and velocity of each soliton remain the same as before, respectively. With the help of exchange formula and symbolic computation, the bilinear-form BT (20) has been derived. From the seed solution, we have obtained solution (22). From BT (20) and soliton solution (22), Wronskian solutions (35) have been constructed and proved to be the solution of (2).

Acknowledgements

The authors are very grateful to all the members of our discussion group. This work has been supported by the National Natural Science Foundation of China under Grant No. 60772023 and by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 200800130006), Chinese Ministry of Education.