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Two methods are explained to exactly solve Maxwell’s equations where permittivity, permeability,
and conductivity may vary in space. In the constitutive relations, retardation is regarded. If the mate-
rial properties depend but on one coordinate, general solutions are derived. If the properties depend
on two coordinates, geometrically restricted solutions are obtained. Applications to graded reflectors,
especially to dielectric mirrors, to filters, polarizers, and to waveguides, plain and cylindrical, are
indicated. New foundations for the design of optical instruments, which are centered around an axis,
and for the design of invisibility cloaks, plain and spherical, are proposed. The variability of material
properties makes possible effects which cannot happen in constant media, e.g. stopping the flux of
electromagnetic energy without loss. As a consequence, spherical devices can be constructed which
bind electromagnetic waves.
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1. Exact Solutions of Maxwell’s Equations

This work originated from a scrutiny for the founda-
tions of quantum mechanics. Do the equations, which
Schrödinger considered as the description of the prop-
agation of light, rest upon Maxwell’s equations? The
answer is no. The study produced analytic methods for
the exact solution of Maxwell’s equations even if per-
mittivity, permeability, and conductivity vary in space.
These methods should be useful to everyone concerned
with electromagnetic fields. Thus readers interested in
basic physics might read Section 1.1, whereas techni-
cians may begin with Section 1.2.

1.1. The Foundations of Quantum Mechanics

Let us trace the way Schrödinger walked to find the
Schrödinger equation. He thought that the propagation
of light, if it is construed as propagation of particles, is
best described by the eikonal equation

(∇s(r))2 = n2(r) . (1)

Surfaces of equal eikonal s(r) are perpendicular to the
light rays everywhere in the space described by the

vector of location r. n(r) is the index of refraction.
Schrödinger compared this with the Helmholtz equa-
tion

∇
2
ψ(r)+

n2(r)
c2 ω

2
ψ(r) = 0 (2)

which he considered as the best description of waves.
ω denotes the frequency of that wave and c is the ve-
locity of light. The meaning of ψ is not known. Next
Schrödinger remembered that there is an eikonal equa-
tion for massive particles, too, the Hamilton–Jacobi
equation

(∇S(r))2 = 2m(E−V (r)) . (3)

The mechanical eikonal S(r) has a similar meaning
as in ray optics, but its dimension is different. Hence
Schrödinger deduced from a comparison of (1) and (3)
a mechanical index of refraction

n(r) =

√
c2

h̄2
ω

2m(E−V (r)) . (4)

The factor in front of 2m(E −V (r)) is an adjustable
constant to get dimensions right. That it is related
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to Planck’s constant h̄, Schrödinger realized when he
solved the first problems. However, when the guess
(4) is used in the Helmholtz equation (2), an equation
for the wavy propagation of massive particles is estab-
lished, the Schrödinger equation

∇
2
Ψ(r)+

2m

h̄2 (E−V (r))Ψ(r) = 0 . (5)

Here also the meaning of Ψ is not clear.
The problem with this type of approach is the

Helmholtz equation (2). The wavy propagation of light
is reigned by Maxwell’s equations. In the analytic solu-
tion of these equations, the Helmholtz equation occurs
as a mathematical auxiliary [1], but this is only true
when material properties as permittivity ε and perme-
ability µ are constant. What is the replacement of the
Helmholtz equation if these properties and thus the in-
dex of refraction

n(r) =
√

ε0µ0

ε(r)µ(r)
(6)

vary in space? This question will be answered in Sec-
tions 3 and 4. The modifications will turn out so se-
vere that the Helmholtz equation (2) and all the more
the eikonal equation (1) can be considered only in rare
cases as approximations. It is not even possible to for-
mulate the true equations using the index of refraction
only. Permittivity and permeability enter individually.

The true companion of Maxwell’s equations is
Dirac’s equation. Maxwell’s is for vectors, Dirac’s for
spinors. Yet both systems carry similar information,
namely equations for divergences and curls related to
time derivatives. Dirac’s equation is a linear system of
partial differential equations with variable coefficients,
the electrodynamic potentials. In Maxwell’s equations,
variable coefficients appear when permittivity, perme-
ability, and conductivity depend on location. Dirac’s
equation can be solved analytically if the coefficients
vary just one-dimensionally or if they vary central-
symmetrically. The analog for Maxwell’s equations,
and more, is the main result of this article, see Sec-
tions 3.1 and 3.2.

1.2. Two Steps Towards Reality

The impact of this article might be even larger
on practical problems. In modern times, people fabri-
cate graded materials or so-called metamaterials within

which permittivity and permeability vary in space al-
most arbitrarily. Therefore analytic solutions that pre-
dict effects of such variations will be useful.

Yet usefulness for practicians coerces the considera-
tion of dissipation and dispersion. Most materials have
finite conductivity. Ohmic currents must be included in
the theory. Moreover inertia and friction within the ma-
terials modify permittivity ε , permeability µ , and con-
ductivity σ . The simple constants must be upgraded, in
a minimum approach to reality, to response functions
which vary in space and describe retardation:

D(r, t) =
∫ t

0
ε(r, t− τ)E(r,τ)dτ , (7)

B(r, t) =
∫ t

0
µ(r, t− τ)H(r,τ)dτ , (8)

j(r, t) =
∫ t

0
σ(r, t− τ)E(r,τ)dτ . (9)

D(r, t), E(r, t), B(r, t), H(r, t), and j(r, t) denote di-
electric displacement, electric force field, magnetic
force field, magnetic field strength, and electric current
density, respectively. They all are vector fields depend-
ing on space r and time t.

With the constitutive relations (7) – (9) the evolution
of the electrodynamic field is completely conceived by
Maxwell’s equations

∇×E(r, t) =−∂tB(r, t) , (10)

∇B(r, t) = 0 , (11)

∇×H(r, t) = ∂tD(r, t)+ j(r, t) , (12)

∇D(r, t) = ρ(r, t) , (13)

written in an unfamiliar sequence for reasons that will
become clear in Section 2.

So these are the two steps to reality: First, solutions
of Maxwell’s equations shall be found with material
properties that vary in space. Second, retardation shall
be taken into account.

Yet generality will be restricted in two ways: First,
only the homogeneous problem will be tackled. For
example, externally driven currents will be omitted.
The reason to keep nevertheless the charge density
ρ(r, t) and the current density j(r, t) in Maxwell’s
equations is to admit Ohmic currents. The exclusion of
nonhomogeneities is not a serious limitation as there
are standard procedures to construct the solutions of
nonhomogeneous equations from the solutions of the
homogeneous system.



U. Brosa · Electromagnetic Waves in Variable Media 113

By contrast, the second lack cannot be cured and
can be justified only by the desire to produce exact so-
lutions of Maxwell’s equations: All material proper-
ties will be restricted to depend on one or two spatial
coordinates only. To be specific, introduce coordinates
ξ ,η ,ζ to describe the vector of position r. They may
be the Cartesian coordinates x,y,z, but generally these
greek letters are meant to describe curvilinear yet or-
thogonal coordinates, for example spherical or cylin-
drical ones. The normalized basis vectors shall be de-
noted as eξ , eη , eζ and the line element ds be given
as

(ds)2 = gξ ξ (dξ )2 +gηη(dη)2 +gζ ζ (dζ )2 (14)

with elements gξ ξ , gηη , gζ ζ of the metric tensor [2].
The response functions are supposed to depend on ζ

only,

ε(ζ , t), µ(ζ , t), σ(ζ , t), (15)

see Section 3, or only on η and ζ ,

ε(η ,ζ , t), µ(η ,ζ , t), σ(η ,ζ , t), (16)

see Section 4. In the second case (16), which appears
to be more general, we will have to impose restrictions
upon the solutions of Maxwell’s equations. Neverthe-
less the realm of exactly solvable problems will be ex-
tended immensely.

This is the plan of this article: In Section 2
Maxwell’s and the constitutive equations will be
rewritten to facilitate a simple description of retar-
dation. In Sections 3 and 4 the main results will be
produced and proven, namely two theorems of repre-
sentation. They reduce the eight mingled Maxwellian
equations to two uncoupled partial differential equa-
tions each for one unknown only. Applications of
these theorems are sketched in the Sections 3.1,
3.1.1, 3.1.2, 3.1.3, 3.2, 3.2.1, 4.1, and 4.2. Finally in
Section 5 attempts are made to do justice to precursors
of the ideas and the results presented here.

2. Reshaping Maxwell’s Equations

The first two equations (10) and (11) are ideally sim-
ple. The aim is to rewrite the last two equations (12)
and (13) until they take the same shape as the first two.
The clue is the complete displacement

C(r, t) = D(r, t)+
∫ t

0
j(r,τ)dτ . (17)

This takes (12) to

∇×H(r, t) = ∂tC(r, t) (18)

having up to a sign the same structure as (10). Similarly
(13) appears as

∇C(r, t) = 0 (19)

having the exactly same structure as (11). Because of
the continuitity equation

ρ(r, t) =−∇

∫ t

0
j(r,τ)dτ +ρ(r,0) (20)

(19) is true if there is no initial bunching of charges
ρ(r,0) = 0. The effects of an initial bunching of
charges can be covered by a scalar potential in a man-
ner explained in [1, Sec. 2]. It is not extraordinary
enough to be treated here.

The reshaped Maxwell equations are now (10) and
(11) and (18) and (19). To close the system, we have to
combine from (7) and (9) the constitutive equation for
the complete displacement. It is

C(r, t) =
∫ t

0
ε(r, t− τ)E(r,τ)dτ (21)

ε(r, t) = ε(r, t)+
∫ t

0
σ(r,τ)dτ (22)

with the complete permittivity ε(r, t).
The reshaped Maxwell equations (10) and (11) and

(18) and (19) together with the constitutive equations
(8) and (21) form a closed system, but it is a system
of integro-differential equations. Performing Laplace
transforms [3]

fω(r) =
∫

∞

0
f (r, t)eiωt dt (23)

where f (r, t) may denote any component of the vector
fields or any response function, one gets rid of the in-
tegrals. The convolution theorem converts the integrals
in the constitutive relations (8) and (21) to products:

Bω(r) = µω(r)Hω(r) , (24)

Cω(r) = εω(r)Eω(r) . (25)

The Laplace transform of the complete permittivity
follows from (22):

εω(r) = εω(r)+ iσω(r)/ω . (26)
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It is just a linear combination of the Laplace transforms
of the ordinary permittivity and the conductivity.

Quite a few microscopic models feature the depen-
dence of permeability and complete permittivity on
ω . The deviations from the vacuum values are at-
tributed to atoms, especially to the electrons surround-
ing them [4, Chaps. 3.5, 4.8]. In microwave and op-
tics applications, the atoms are much smaller than
the wavelengths of the electromagnetic radiation. Thus
these theories are local. One can use the results of
these models in (24) – (26) to establish permittivities
and permeabilities which depend on ω and on r.

By the Laplace transform one also gets rid of the
derivatives with respect to time t:∫

∞

0
∂t f (r, t)eiωt dt =−iω fω(r)− f (r,0) . (27)

The second term on the right-hand side is a valuable
peculiarity of the Laplace transform as it facilitates
straightforward solutions of initial-value problems.

The Maxwell equations (10) and (11) and (18) and
(19) are transformed to

∇×Eω(r) = iω Bω(r) , (28)

∇Bω(r) = 0 , (29)

∇×Hω(r) =−iω Cω(r) , (30)

∇Cω(r) = 0 . (31)

Here two other nonhomogeneities were omitted, viz.
B(r,0) and −C(r,0) on the right-hand sides of (28)
and (30) which arise from the Laplace transforms
of −∂tB(r, t) and ∂tC(r, t), respectively, according to
(27).

Most people would consider the reshaped Maxwell
equations (28) – (31) as obtained from the orginal
Maxwell equations just by separation of exp(−iωt).
Yet this point of view hides the origin of the permit-
tivity εω(r) and permeability µω(r) depending on fre-
quency and it aggravates the solution of initial-value
problems, i.e. it impedes a rational theory of pulses. To
do this, one has, first, to solve the reshaped Maxwell
equations (28) – (31) with the reshaped constitutive re-
lations (24) and (25), second, to introduce the initial-
values as nonhomogeneities in (28) and (30) and to
solve the nonhomogeneous system and, third, to cal-
culate the pulses from the inverse Laplace transform

f (r, t) =
1

2π

∫
∞+ir

−∞+ir
fω(r)e−iωt dω . (32)

r denotes a real number big enough such that all loca-
tions of singularities of fω(r) in the complex plane of
ω have smaller real parts.

The customary variable of Laplace transforms is
p = iω . The author introduced ω instead in order to
pacify conservative readers. It they want to believe that
the equations (28) – (31) are just the ordinary Maxwell
equations with exp(−iωt) separated off, they can do
so. The calculations to be presented right now, how-
ever, do not depend on this point of view. So let us
abbreviate:

C = Cω(r), E = Eω(r), ε = εω(r),
B = Bω(r), H = Hω(r), µ = µω(r).

(33)

The emphasis will be to obtain analytic solutions of
Maxwell’s equations, i.e. permittivity and permeabil-
ity will be parametrized, and the dependences on these
parameters will appear in the solutions explicitly. Gen-
erally the parameters will be functions of ω . Hence the
dependence on ω can be taken into account by straight-
forward algebraic insertion after an analytic solution is
found.

3. Triple Curl Again

The aim is to reduce all Maxwell equations
(28) – (31) to one partial differential equation for one
scalar auxiliary, the representative b = bω(r). The ap-
proach is the same as in [1, Sec. 2] looking for certain
equations with triple curl.

The ansatz

B =−∇× (∇×vb) , (34)

E =−iω∇×vb (35)

solves two Maxwell equations immediately, viz. (28)
and (29). The vector field v, the carrier, shall be chosen
such that the remaining two equations (30) and (31),
too, can be solved. Such a choice will be possible if the
response functions depend only on one spatial variable,
say ζ , as declared in (15), and thus

ε = εω(ζ ), µ = µω(ζ ). (36)

Inserting the constitutive relations (24) and (25) into
the ansatz (34) and (35) gives

H =− 1
µ

∇× (∇×vb) , (37)

C =−iω∇×vεb . (38)
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In the last equation the permittivity ε was drawn under
the curl though it is not constant. This can be justified
if the carrier v is chosen to point into the direction of
the basis vector eζ .

v = |v|eζ . (39)

Then, because of (36), the carrier points into the same
direction as the gradient of ε

∇ε =
eζ

√gζ ζ

∂ε

∂ζ
=

v
|v|√gζ ζ

dε

dζ
. (40)

Consequently in the identity

ε∇×vb = ∇×vεb+vb×∇ε (41)

the last term is zero and thus (38) proven.
Because of (38), Maxwell’s equation (31) is auto-

matically fulfilled, too. So we just have to care for
(30). Insertion of (37) and (38) produces an equation
of triple curl

∇×
(
− 1

µ
∇× (∇×vb)+vεω

2b

)
= 0 . (42)

The second term behind the leading curl is proportional
to the carrier. All that remains to be done in order to
obtain the desired scalar equation is to show that the
first term is a gradient plus a term which also aligns
with the carrier. First, we replace the double curl with
the Laplacian ∇2:

− 1
µ

∇× (∇×vb) =
1
µ

(∇2vb−∇(∇vb)) . (43)

Second, we commute the carrier v with the Laplacian
and require that the commutation does not produce
more than a gradient. This can be done only if the car-
rier varies at most linearly

v = v0 + v1r ⇔ ∇
2vb = v∇

2b+2v1∇b , (44)

v0 denoting a constant vector and v1 a constant number.
The equivalence is valid only if the dependence of b on
the coordinates is not restricted. For details of the proof
see [5] or [6]. If µ were constant, we had completed
the task. Then the second terms on the right-hand sides
of (43) and (44) were gradients which the leading curl
in (42) would discard. When µ varies, we must effect
a third transformation

1
µ

(−∇(∇vb)+2v1∇b) =
(

∇
1
µ

)
(∇vb−2v1b)

−∇
1
µ

(∇vb−2v1b) . (45)

Here, at last, the second term on the right-hand side
is a gradient, while the first aligns with the carrier be-
cause of (36). Using again (39), we find

∇
1
µ

=
v

|v|√gζ ζ

d
dζ

1
µ

(46)

similar to (40). Collecting (43), (44), and (45), we de-
rive from (42) the scalar equation

∇
2b+

µ

|v|√gζ ζ

(
d

dζ

1
µ

)
(∇vb−2v1b)

+ εµω
2b = 0 . (47)

To find formulae for the other polarization, we im-
pose the ansatz

C = ∇× (∇×va) , (48)

H =−iω∇×va (49)

with the representative a = aω(r), which automatically
satisfies all Maxwell equations except (28). The de-
mand to have also this one solved produces a triple-
curl equation similar to (42). a replaces b, ε and µ are
interchanged. Performing the same transformations as
before, we arrive at a scalar equation similar to (47).

Thus we finished the proof of the

Three-Dimensional Representation Theorem.
Solutions of Maxwell’s equations (28) – (31) are pro-
vided by the representations

E =
1
ε

∇× (∇×va)− iω∇×vb , (50)

H =−iω∇×va− 1
µ

∇× (∇×vb) (51)

if the representatives a and b obey the scalar partial
differential equations

∇
2a− 1

v2 (v∇ logε)(∇va−2v1a)+ εµω
2a = 0 , (52)

∇
2b− 1

v2 (v∇ log µ)(∇vb−2v1b)+ εµω
2b = 0 , (53)

and the carrier is chosen such that

v = v0 + v1r and ∇ε ∝ v and ∇µ ∝ v , (54)

v0 being a constant vector and v1 a constant number.

In most optical instruments, different media meet.
Often a graded medium is surrounded by air. Usually
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material properties jump discontinously where the me-
dia touch. Therefore boundary conditions for the repre-
sentatives are necessary. The conditions are especially
simple when permittivity and permeability take con-
stant values on the boundary. In this case the normal
vector n of the boundary aligns with the carrier v.

Corollary on Boundary-Value Conditions. Let S de-
note the surface where different media meet, n the nor-
mal on this surface, and ∂/∂n the differentiation along
this normal. If v ∝ n, the representatives a and b must
satisfy

a |S− = a |S+ ,
1
ε

∂ |v|a
∂n

∣∣∣∣
S−

=
1
ε

∂ |v|a
∂n

∣∣∣∣
S+

, (55)

b |S− = b |S+ ,
1
µ

∂ |v|b
∂n

∣∣∣∣
S−

=
1
µ

∂ |v|b
∂n

∣∣∣∣
S+

. (56)

The symbols S− and S+ indicate that the values of the
functions and their derivatives are to be calculated via
an approach on the one side of S, say, the low side S−,
or on the other side, say, the high side S+.

Proof. It follows from the structure of the Maxwell
equations (28) and (30) that the tangential components
of the magnetic field strength H and the electric force
field E don’t jump on transition through S. Evaluating
these facts in the representation formulae (50) and (51)
produces the proof of the corollary. Details of the cal-
culational procedure are similar as in [1, Sec. 3].

In optics it is difficult to observe the electromag-
netic field directly. Instead one measures the flux of
energy which can be calculated as the Pointing vector
S(r, t) = E(r, t)×H(r, t). This is a general formula for
physical fields E(r, t) and H(r, t). Before we can use it
for the mathematical fields handled here, we must cal-
culate the dependence on time from (32) and extract
the real parts Re. However, if the dependence on time
can be described by the factor exp(−iωt) with real fre-
quency ω , we may apply the

Corollary on the Energy Flux. The time-averaged
Pointing vector S̄ can be calculated from the represen-
tatives a and b according to

S̄ =
1
2

Re(E×H∗) (57)

= Re

(
iω
2ε

(∇× (∇×va))× (∇×va∗)
)

+ Re

(
iω
2µ

(∇×vb)× (∇× (∇×vb∗))
)

+ Re

(
ω2

2
(∇×vb)× (∇×va∗)

)
−Re

(
1

2εµ
(∇×(∇×va))×(∇×(∇×vb∗))

)
,

the asterisk ∗ denoting complex conjugation.

The proof follows immediately from the representa-
tion formulae (50) and (51).

When there is only one polarization, i.e. either a = 0
or b = 0, the mixed terms in the third and the forth
lines of (57) do not apply. In the first and second
lines, reader’s attention shouldn’t miss the inconspic-
uous imaginary units i and the factors 1/ε as well as
1/µ . The former are indispensable for a weird stop of
energy flux in dielectric materials, whereas the latter
may alter the type of the flux considerably when they
are non-constant.

Due to the condition (54), two limiting cases
stand out, namely when the material properties
vary one-dimensionally, see Section 3.1, or central-
symmetrically, see Section 3.2.

3.1. One-Dimensional Variations of Material
Properties

z be the name of the coordinate along which per-
mittivity, permeability, and conductivity are allowed to
vary. It is the same z which is costumary in the carte-
sian system and all cylindrical coordinate systems. In
the equations of Sections 1 and 3, we got to set ζ = z.
The unit vector along z is chosen as carrier, i.e. v = ez.
According to condition (54), we have v0 = ez and
v1 = 0. The differential equations (52) and (53) become

∇
2a− dlogε

dz
∂a
∂ z

+ εµω
2a = 0 , (58)

∇
2b− dlog µ

dz
∂b
∂ z

+ εµω
2b = 0 . (59)

These differential equations are valid in all coordinate
systems which incorporate a cartesian direction.

The most elementary example is the cartesian sys-
tem x,y,z. (58) appears as

∂ 2a
∂x2 +

∂ 2a
∂y2 +

∂ 2a
∂ z2 −

dlogε

dz
∂a
∂ z

+ εµω
2a = 0 ,

(60)
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which is separated by the ansatz

a = X Y Za with X = X(x),
Y = Y (y), Za = Zaω(z)

(61)

to yield three ordinary differential equations

d2X
dx2 + k2

xX = 0 , (62)

d2Y
dy2 + k2

yY = 0 , (63)

d2Za

dz2 −
dlogε

dz
dZa

dz
+(εµ ω

2− k2)Za = 0 (64)

with separation constants kx and ky meaning physically
wave numbers and with k2 = k2

x + k2
y . The solutions of

the first two equations (62) and (63) are, of course, ex-
ponentials or sines and cosines

a = ei(kxx+kyy)Za , (65)

but the solutions of (64) can be weird and convey phys-
ical information never considered before.

According to (59), the representative b is subject to
another partial differential equation

∂ 2b
∂x2 +

∂ 2b
∂y2 +

∂ 2b
∂ z2 −

dlog µ

dz
∂b
∂ z

+ εµω
2b = 0 . (66)

When this is separated using the ansatz b = X Y Zb sim-
ilar to (61), the ordinary differential equations for X
and Y are the same as (62) and (63), respectively, but
the differential equation for Zb,

d2Zb

dz2 −
dlog µ

dz
dZb

dz
+(εµ ω

2− k2)Zb = 0 (67)

is different from (64). This reflects a responsiveness
of graded materials to polarization. Examples will be
discussed in the next sections.

It should never be forgotten that the partial differ-
ential equations (58) and (59) hold in any cylindrical
coordinate system. For a less trivial example let us se-
lect elliptic-cylinder coordinates ξ ,η ,ζ [2, Sec. 1]

x = c coshξ cosη , (68)

y = c sinhξ sinη , (69)

z = ζ , (70)

c being a positive constant. The ordinary differential
equations obtained by separation of

a or b = Ξ HZa or b with Ξ = Ξ(ξ ),
H = H(η), Za or b = Zaω or bω(z)

(71)

are

d2
Ξ

dξ 2 − (q− k2c2 cosh2
ξ )Ξ = 0 , (72)

d2H
dη2 +(q− k2c2 cos2

η)H = 0 . (73)

The separation constants are here q and k2. The solu-
tions of these two equations are Mathieu functions [7].
The third equation was not written because it is identi-
cal with (64) or (67). The elliptic-cylinder coordinates
are especially interesting as they allow to exactly pre-
dict the diffraction by a strip or a slit, not just by an
edge, see [1, Secs. 10,11] and the references therein.
Moreover in the theory presented here, the strip need
not to be homogeneous. So we can devise novel ways
to bunching and debunching of electromagnetic waves.

3.1.1. Graded Reflectors, Transmitters, and Polarizers

As a first example of application, consider a medium
homogenous and isotropic for z < 0:

ε = ε− , µ = µ− (74)

with constant permittivity ε− and permeability µ−. The
solutions of the differential equations (60) and (66) are
almost trivial:

a or b = ei(kxx+kyy)Za or b (75)

with Za or b depending only on z,

Za or b = ei
√

ε−µ−ω2−k2 z

+Ra or b e−i
√

ε−µ−ω2−k2 z,
(76)

and the abbreviation k2 = k2
x + k2

y . These solutions de-
scribe waves of different polarization intruding from
negative infinity and being partially reflected at z = 0.
Ra and Rb are complex constants to fix the strengths
and phases of the reflected waves. These constants
have to be determined from the solution of the
boundary-value problem; see below.

For z > 0, the permittivity is supposed to vary

ε =
ε∞

1− (1− ε∞/ε+)exp(−z/z+)
, µ = µ+ , (77)

whereas the permeability is supposed to stay constant
µ+. The permittivity (77) takes the value ε+ at z = 0
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and increases or decreases with constant positive de-
cay length z+ while it approaches ε∞ for z→ ∞. Again
we have solutions of the differential equations (60) and
(66) as in (75), but the functions Za or b are different.
For z > 0 the ordinary differential equations (64) and
(67) both can be solved in terms of the hypergeometric
function

Za or b = Ta or b ei
√

ε∞µ+ω2−k2 z (78)

·F(αa or b,βa or b,γa or b,(1− ε∞/ε+)exp(−z/z+)) .

Ta and Tb are complex constants to seize the strengths
and phases of the transmitted wave to be determined
from the boundary conditions, see below. For Za, we
have to use the parameters

αa = 1/2

(
1+
√

1+4k2z2
+

)
− i
√

ε∞µ+ω2− k2 z+ ,

βa = 1/2

(
1−
√

1+4k2z2
+

)
− i
√

ε∞µ+ω2− k2 z+ ,

γa = 1−2i
√

ε∞µ+ω2− k2 z+ , (79)

but for Zb

αb = +kz+− i
√

ε∞µ+ω2− k2 z+ ,

βb =−kz+− i
√

ε∞µ+ω2− k2 z+ , (80)

γb = 1−2i
√

ε∞µ+ω2− k2 z+ .

The very fact that the parameters in (79) and (80) dif-
fer shows that graded materials act discriminatorily to-
wards waves with different polarization.

There are second solutions of the second-degree
equations (64) and (67), but we don’t need them here.
Namely

F(α,β ,γ,(1− ε∞/ε+)exp(−z/z+))→ 1

for z→ ∞
(81)

is a property of the hypergeometric function for all val-
ues of α,β ,γ . Therefore (78) is sufficient to describe
a wave running to positive infinity.

The four coefficients Ra,Ta and Rb,Tb are deter-
mined by the conditions at the boundary S. The surface
S is given here as z = 0. The normal n coincides with
the vector ez. Specializing (55) and (56) yields

Za |z=−0 = Za |z=+0 ,

1
ε

dZa

dz

∣∣∣∣
z=−0

=
1
ε

dZa

dz

∣∣∣∣
z=+0

,
(82)

Zb |z=−0 = Zb |z=+0 ,

1
µ

dZb

dz

∣∣∣∣
z=−0

=
1
µ

dZb

dz

∣∣∣∣
z=+0

.
(83)

The boundary conditions (82) and (83) yield both
two linear equations for Ra,Ta and Rb,Tb, respectively,
and are solvable elementarily. Next one differentiates
the electromagnetic field from the representatives (75)
according to (50) and (51) and calculates from the elec-
tromagnetic field the Pointing vector to obtain quanti-
ties directly comparable to experimental results.

These formulae for the reflection and transmission
coefficients are generalizations of Fresnel’s equations.
The classical case is recovered when surface effects are
wiped out, i.e. ε+ = ε∞ in (77). Absorption is taken
into account if one admits complex ε−, ε+, and ε∞; see
(26) for the physical meaning of the complex values.
The properties of Zenneck waves alias surface plasmon
polaritons [8] can be derived from the poles of Ra,Ta

or Rb,Tb because these waves are eigenmodes. Equiva-
lently one may omit the leading term on the right-hand
side of (76) and solve the eigenvalue problem posed by
(82) or (83) directly. The solutions wherein the imagi-
nary parts of

√
ε−µ−ω2− k2 and

√
ε∞µ+ω2− k2 both

acquire positive values describe waves clinging to the
boundary z = 0.

Several modifications are at hand. The waves may
run in the opposite directions. In this case the second
solutions of (64) and (67) are needed to describe re-
flected waves. They too are expressible in terms of the
hypergeometric function. We may also study the transi-
tion of waves from one graded medium to other graded
materia. In this case the purely exponential waves (76)
must be replaced with expressions containing hyperge-
ometric functions.

In the definition of gradation (77), it was assumed
that only the permittivity varies. This is resonable for
many materials, but for independent variations both
of permittivity and permeability it is advisable to use
other parametrizations. Power laws, for example,

ε = εα zα , µ = µβ zβ

with α +β =−2,−1,0,2
(84)

lead to solvable differential equations (64) and (67) -
solvable by functions not more complicated than the
confluent hypergeometric function.

Another useful variability is

ε = ε0 exp
z
zε

, µ = µ0 exp
z

zµ

(85)
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with positive constants ε0,µ0 and positive or negative
constant decay lengths zε and zµ . Apt solutions of (64)

and (67) are Hankel functions H(1)
ν and H(2)

ν of weird
index and weird argument:

Za = exp

(
z

2zε

)
·H(1,2)

ν

(
2zε zµ

√
ε0µ0 ω

zε + zµ

exp
(zε + zµ)z

2zε zµ

)
with ν =

zµ

√
1+4k2z2

ε

zε + zµ

, (86)

Zb = exp

(
z

2zµ

)
·H(1,2)

ν

(
2zε zµ

√
ε0µ0 ω

zε + zµ

exp
(zε + zµ)z

2zε zµ

)

with ν =
zε

√
1+4k2z2

µ

zε + zµ

. (87)

Hankel functions, also denoted as Bessel functions of
third kind [9, Chap. III], are more appropriate for the
description of running waves than ordinary Bessel and
Neumann functions.

The parametrizations (84) or (85) should be applied
to slabs as there is no medium with infinitely large
or infinitely small material properties. Instead of one
block of boundary-value conditions as in (82) and (83)
there should be two blocks, one for a boundary at, say,
z = z1 and the other block for a surface at z = z2. The
somewhat larger linear systems do not essentially ag-
gravate the solution of the entire problem.

3.1.2. Stopping the Energy Flux

A peculiar special case of (85) is

ε = ε0 exp
z
zε

, µ = µ0 exp
−z
zε

. (88)

The index of refraction (6) is just 1. Believers in the
Helmholtz equation (2) should expect just ordinary
propagation of waves, but no spectacular effect.

The true differential equations (64) and (67) have
constant coefficients:

d2Za

dz2 −
1
zε

dZa

dz
+(ε0µ0ω

2− k2)Za = 0 , (89)

d2Zb

dz2 +
1
zε

dZb

dz
+(ε0µ0ω

2− k2)Zb = 0 . (90)

Hence their solutions are readily found:

Za = exp

(
z

2zε

)
· exp

(
±

√
1

4z2
ε

− (ε0µ0ω2− k2)z

)
, (91)

Zb = exp

(
−z
2zε

)
· exp

(
±

√
1

4z2
ε

− (ε0µ0ω2− k2)z

)
. (92)

The exponential functions directly behind the equal
signs impress much, but for the energy flux they don’t
matter at all. They only exist to compensate the fac-
tors 1/ε and 1/µ in (57). The astonishing item is the
square root in the second exponentials. Normally, i.e.
for zε → ∞ as it holds for any almost homogeneous
medium, the value of the root is imaginary and the ex-
ponential function carrying it is complex. It is just the
description of a plane wave propagating we are used
to. Yet if

|zε |<
1

2
√

ε0µ0ω2− k2
, (93)

the functions (91) and (92) become real and the en-
ergy flux against the gradation is stopped. The con-
dition means that the slope constant must be smaller
than the wavelength the wave would have in a medium
without gradation divided by 4π . Though this is a short
length, it can be constructed in modern labs.

Proof. Evaluation of (57) using (91) and (65) yields

S ∝ exkx + eyky (94)

+ ez


√

ε0µ0ω2− k2−1/(2zε)2 if
ε0µ0ω2

> k2 +1/(2zε)2

0 otherwise.

The result is the same when the electromagnetic wave
is represented by b with Zb from (92).

The most surprising feature of the effect is its inde-
pendence of the sign of the slope constant zε . It doesn’t
matter if permittivity increases or decreases. Important
is only a sufficiently steep change.

The finding (94) differs fundamentally from the be-
haviour of electromagnetic waves in conducting ma-
terials. There the energy intrudes and is dissipated.
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The finding is also fundamentally different from the
behaviour in homogeneous dielectric materials. Even
when there is a discontinuity, part of the wave is
maybe reflected, but the remainder goes on to trans-
port energy. The waves found here differ as well from
the evanescent waves which make possible dielectric
waveguides. In these waveguides, k must be greater
than a positive cut-off wavenumber, whereas the stop-
ping described here works also for k = 0.

The effect is moreover not singular. The case (88)
need not be fulfilled exactly. One can derive this
from the asymptotic expansions of the Hankel func-
tions in (86) and (87). When both index and argu-
ment get great, the Hankel functions become exponen-
tial functions with real argument if the index is greater
than the argument, but they become exponential func-
tions with imaginary argument in the opposite case [9,
Sec. 3.14.2], similar to the elementary functions in (91)
and (92). Generally, however, there is some depen-
dence of the stopping on polarization.

Time-dependent analysis reveals that the energy
density oscillates. During one half of the period 2π/ω

it is pushed into the graded medium, during the other
half it is withdrawn. The depth of the penetration is ap-
proximately described by the second exponential func-
tions in (91) and (92) taken with negative signs be-
fore the roots. Therefore, in a slab of finite thickness,
the stopping is not perfect. Waves impinging on the
one boundary of the graded medium decrease in the
medium, but the mechanism just described may excite
waves, though weak ones, on the other boundary. Ex-
act amplitudes and phases follow from the boundary
conditions (82) and (83).

3.1.3. Dielectric Mirrors

Having read the previous section one may argue that
monotonous exponential growth cannot be maintained
on long distances. However, one can realize similar
stopping with zigzagging material properties. This sec-
tion is devoted to periodic variations of the permittiv-
ity. Let

ε = ε0− ε1 cosk0z , µ = µ0 (95)

with positive constants ε0, ε1, µ0, and k0. When we
compare the resulting equation (67)

d2Zb

dz2 +(ε0µ0ω
2− k2− ε1µ0ω

2 cosk0z)Zb = 0 (96)

to the equation of the Mathieu functions meν(w;q)

d2me±ν(w;q)
dw2 +(λ −2qcos2w)me±ν(w;q) = 0 (97)

with constant λ and q as defined by Meixner and
Schäfke [7, p. 105], see [10, p. 404] for a slightly dif-
ferent definition, we find Zb = me±ν(w;q) with

w = k0z/2, λ = 4(ε0µ0ω
2− k2)/k2

0,

q = 2ε1µ0ω
2/k2

0 .
(98)

The Mathieu functions possess properties tran-
scending the flexibility of the hypergeometric function
and all its descendants. It follows from Floquet’s the-
orem [10, p. 412] that one can compute the Mathieu
functions from a Fourier series times an exponential
factor

meν(w;q) = eiνw
n=+∞

∑
n=−∞

cν
2n(q)ei2nw . (99)

with coefficients cν
2n(q) for which Hill’s theory [10,

p. 413] provides handy expressions.
The characteristic exponent ν is a surprising func-

tion of λ and q. Imagine q > 0 fixed while λ varies.
Then ν assumes, for certain bands of λ , only real
values. This is what one should expect for physical rea-
sons: A periodic perturbation in the differential equa-
tion causes periodic or rather quasi-periodic perturba-
tions in the solutions. However, in the complements
of these bands, ν acquires complex values. The phe-
nomenon is known as parametric amplification, but it is
often forgotten that only one solution describes ampli-
fication, whereas the other describes attenuation. This
type of damping, which comes about without friction
or spatial dissipation, is the effect we will consider
here.

Floquet’s theorem and Hill’s theory were reinvented
and generalized in solid-state physics where the the-
ory is known as Bloch’s theorem [11, 12]. In solid-state
physics, λ plays the role of the energy in Schrödinger’s
equation and the complementary bands are denoted as
forbidden. More or less the same mathematical con-
tent reappeared more recently in the theory of photonic
crystals [13].

The lowest forbidden band of Mathieu’s equation
(97) is characterized [7, p. 120], see also [7, Fig. 6],
by

|λ −1|< |q|+O(q2) . (100)
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Maximum attenuation, described by the imaginary part
Im of the characteristic exponent ν , takes place ap-
proximately in its median [7, p. 165]

Imν = |q|/2+O(q2) where λ = 1+O(q2) . (101)

To estimate the attenuation of the Pointing vector (57),
we must take the absolute square of the leading fac-
tor on the right-hand side of (99). The attenuation of
energy flux is thus

S̄ ∝ exp(−|q|w+O(q2)) . (102)

Applying this to the problem at hand (98), we see
the first forbidden band approximately defined by

|4(ε0µ0ω
2− k2)− k2

0|< 2ε1µ0ω
2 . (103)

The median of the forbidden band is where the left-
hand side is zero. One may write this as

1
k0
≈ 1

2
√

ε0µ0ω2− k2
(104)

meaning that the wave length of the intruding light
must be twice the wave length of the dielectric zigzag-
ging. In other words: We must have two bilayers of
different media for every spatial period of light. The
reader is encouraged to compare (104) with (93).

When (104) is used in the formula for q in (98) and
if it is assumed, just for simplicity, that k = 0, i.e. the
light impinges vertically, we obtain as a crude estimate

q≈ ε1

2ε0
(105)

and thus for the attenuation (102)

S̄ ∝ exp

(
− ε1

ε0

k0z
4

)
. (106)

A variation of permittivity ε1 = 0.13ε0 is realistic viz.
for cryolite on zinc sulfide. Then, according to (106),
it takes approximately 11 bilayers to attain attenuation
by a factor of 10, it takes less than 23 bilayers to attain
attenuation by a factor of 100 and so forth. An electro-
magnetic wave that impinges on a periodic structure
cannot penetrate. It is reflected.

The dielectric mirror just described is selective.
Light that has not the suitable wave length (104)
passes. Yet selectiveness isn’t overly sharp. According
to (100), the width of the band is 2|q|. If q is estimated

according to (105), we find that the relative width of
the forbidden band is ε1/ε0, i.e. 13% in the present ex-
ample. This is enough to cover a considerable part of
the spectrum visible to human eyes, but not enough to
produce a mirror for all colors. Moreover the dielectric
mirror alters its properties with the angle of incidence.
The angle is contained in the transverse wave number
k and enters the theory via the parameter λ in (98).

It remains to check the dielectric mirror for its de-
pendence on polarization. To this end the solution of
the differential equation (64) has to be compared with
the solution of (67) which we just discussed.

The term with the first derivatives in (64) can be
eliminated introducing the auxiliary function Z̃a, yet at
the cost of more complications in the factor of Z̃a:

Z̃a = Za/
√

ε , (107)

d2Z̃a

dz2 +
(

εµω
2− k2 +

1
2ε

d2
ε

dz2 −
3

4ε2

(
dε

dz

)2)
Z̃a = 0.

Generally this is not exactly a Mathieu equation, but
it is, because of its periodic coefficient, of Hill’s type.
It can be solved in the same way as Mathieu’s and ex-
hibits the same features, namely allowed and forbidded
bands. Nevertheless for small oscillations of the per-
mittivity ε1 � ε0, (107) can be approximated by the
Mathieu equation

d2Z̃a

dz2 +
(

ε0µ0ω
2− k2

−
(

ε1µ0ω
2− ε1

ε0

k2
0

2

)
cosk0z

)
Z̃a = 0 ,

(108)

i.e. Z̃a is represented by a Mathieu function, too, where
w and λ is same as in (98), but

q =
2ε1µ0ω2

k2
0

− ε1

ε0
. (109)

Repeating the same deliberations as those following
(98), we find that the median of the forbidden band is
at the same position (103) and q≈−ε1/(2ε0). The pa-
rameter q has now, apart from its sign, approximately
the same magnitude as in (105), but the sign of q can
be compensated by an unimportant phase shift of the
argument in Mathieu’s function. Therefore both the
width of the forbidden band and the attenuation are
approximately the same as for Zb. Thus, surprisingly
enough, the dielectric mirror depends but weakly on
polarization.
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3.2. Central-Symmetric Variations of Material
Properties

For this case we specialize the condition (54) by
v0 = 0 and v1 = 1. The carrier is just the vector of
position v = r and hence v2 = r2. In all equations of
Section 2, we got to replace ζ with the r customary in
the spherical coordinate system r,θ ,ϕ . The differential
equations (52) and (53) appear as

1
r

∂ 2ra
∂ r2 +

1
r2

(
1

sinθ

∂

∂θ

(
sinθ

∂a
∂θ

)
+

1

sin2
θ

∂ 2a
∂ϕ2

)
− dlogε

dr
1
r

∂ ra
∂ r

+ εµω
2a = 0, (110)

1
r

∂ 2rb
∂ r2 +

1
r2

(
1

sinθ

∂

∂θ

(
sinθ

∂b
∂θ

)
+

1

sin2
θ

∂ 2b
∂ϕ2

)
− dlog µ

dr
1
r

∂ rb
∂ r

+ εµω
2b = 0. (111)

Both equations can be separated by similar ansatzes

a =
1
r

Ra Ylm and b =
1
r

Rb Ylm with

Ra = Raω(r), Rb = Rbω(r), Ylm = Ylm(θ ,ϕ). (112)

The equation for the angular factor Ylm is the same for
both representatives a and b:

1
sinθ

∂

∂θ

(
sinθ

∂Ylm

∂θ

)
+

1

sin2
θ

∂ 2Ylm

∂ϕ2

+ l(l +1)Ylm = 0 .

(113)

It is the differential equation of the familiar spherical
harmonics. They must be unique. So l and m must be
integers, in fact l = 1,2,3, . . ., and |m| ≤ l. l = 0 is ex-
cluded because Y00 is a constant, and a representative
not depending at all on the angles is annihilated by the
curls in (50) or (51).

The differential equations for the radial parts are ex-
traordinary:

d2Ra

dr2 −
dlogε

dr
dRa

dr

+
(

εµω
2− l(l +1)

r2

)
Ra = 0,

(114)

d2Rb

dr2 −
dlog µ

dr
dRb

dr

+
(

εµω
2− l(l +1)

r2

)
Rb = 0.

(115)

Although they look like their one-dimensional analogs
in (64) and (67), the last terms on the left-hand sides
are different. Nevertheless also the present differential
equations can be solved for all power laws conforming
to

ε = εα rα , µ = µβ rβ

with α +β =−2,−1,0,2 ,
(116)

i.e. solved in terms of functions not more complicated
than the confluent hypergeometric function.

3.2.1. Bound Electromagnetic Waves

In Schrödinger’s quantum mechanics, electrons can
be bound in a spherical well. Some eigenvalues of
Schrödinger’s solutions are discrete. A similar con-
struction for photons isn’t known. For instance

ε =

{
ε0 if 0≤ r < r1,

ε1 if r1 ≤ r < ∞,

µ =

{
µ0 if 0≤ r < r1,

µ1 if r1 ≤ r < ∞,

(117)

with positive constants ε0,µ0 inside the spherical core
r < r1 and other positive constants ε1,µ1 outside ad-
mits as solution of (114) only

1
r

Ra =


A jl(
√

ε0µ0 ωr) if 0≤ r < r1,

Bh(1)
l (
√

ε1µ1 ωr)
+C h(2)

l (
√

ε1µ1 ωr)
if r1 ≤ r < ∞.

(118)

with spherical Bessel functions jl , spherical Hankel
functions h(1)

l ,h(1)
l , l = 1,2,3 . . . [14, Sec. 10], and con-

stants A, B, and C. All functions describe running
waves. One might think of materials where the real per-
mittivity or the permeability are negative. Such mate-
rials exist, but those negative values take place only in
narrow bands of ω and come always with considerable
conductivity. So there is not the least chance to estab-
lish bound electromagnetic waves and discrete values
of ω with spatially constant material properties.

With graded materials, however, we can construct
a home of bound waves. Consider instead of (117)

ε =

{
ε0 if 0≤ r < r1,

ε1r1/r if r1 ≤ r < ∞,

µ =

{
µ0 if 0≤ r < r1,

µ1r1/r if r1 ≤ r < ∞.

(119)
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The respective solution of (114) is

Ra =

Ar jl(
√

ε0µ0 ωr) if 0≤ r < r1,

Br−
√

l(l+1)−ε1µ1ω2r2
1 if r1 ≤ r < ∞.

(120)

The solution on the flank of the wall r1 ≤ r can be
a wave, though a weird one

r±
√

l(l+1)−ε1µ1ω2r2
1

= exp

(
±i
√

ε1µ1ω2r2
1− l(l +1) logr

) (121)

if ω is sufficiently high. Yet, if

Ω =
√

ε0µ0 ωr1 <

√
ε0µ0

ε1µ1
l(l +1) (122)

with Ω as nondimensional substitute of ω , the flank
function in (120) just decreases without any variation
of phase such that the same considerations apply as in
Section 3.1.2: The transfer of energy through the flanks
is stopped. One can check this explicitly evaluating the
Pointing vector (57) with (120) and (112).

To find the eigenvalues of Ω and thus of ω , we must
satisfy the boundary conditions (55). The surface S is
now the sphere r = r1 and the normal vector is n = r/r.
Hence

Ra |r=r1−0 = Ra |r=r1+0 ,

1
ε

dRa

dr

∣∣∣∣
r=r1−0

=
1
ε

dRa

dr

∣∣∣∣
r=r1+0

.
(123)

This produces a homogenous linear system for A and
B. It has a non-trivial solution if its determinant is zero:√

ε0µ1

ε1µ0

√
ε0µ0

ε1µ1
l(l +1)−Ω 2 =− (Ω jl(Ω))′

jl(Ω)
, (124)

the prime indicating differentiation with respect to the
argument Ω . The function on the left-hand side is
a parabola open to the left. We need its positive branch
at positive values of Ω . The parabola disappears for Ω

greater than the cut-off given on the right-hand side of
(122). The function on the ride-hand side of (124) takes
the value −(l + 1) at Ω = 0. It increases with Ω and
crosses the Ω -axis at the zero of (Ω jl(Ω))′. The func-
tion continues to increase until it approaches its pole at
the zero of jl(Ω). To secure the existence of a solution
of (124), it would be sufficient to demand that the cut-
off in (122) be greater than the zero of (Ω jl(Ω))′. But

these zeros are not tabulated. So let us be generous and
demand that the cut-off be greater than the first zero of
jl(Ω). This yields a condition√

ε0µ0

ε1µ1
>

Ωl√
l(l +1)

where jl(Ωl ) = 0 (125)

which warrants the existence of at least one positive so-
lution of (124). The expression on the right-hand side
tends to 1 as l tends to infinity. Therefore the restriction
on the ratio of the indices of refraction is unimportant
at high multipolarities. Yet even for l = 1 the condition
(125) can be fulfilled. The first zero of the first spheri-
cal Bessel function is Ω1 ≈ 4.5 [14, Sec. 10] such that
ratios of the indices must be greater than 3.2. In mod-
ern times where indices of refraction can be made as
big as 38.6 [15], this is a moderate requirement.

Waves of the other polarization can found replac-
ing the representative a with b and interchanging ε and
µ . The characteristic equation of this case differs from
(124) just by a different leading factor. Therefore it de-
pends on the polarization whether an electromagnetic
wave can be bound, but it does not depend much.

One might compare the construction explained here
with a hydrogen atom. Rather it is similar to a nucleon
bound in a collective nuclear potential as the spec-
trum of eigenvalues is finite. The essential difference,
however, is that every electron always carries the same
charge which necessitates a normalization of its wave.
Here, by contrast, the energy of the bound electromag-
netic wave is arbitrary. The only necessity to confine
the energy is a possible breakdown of material proper-
ties (7) – (9). It is therefore blameworthy to speak about
‘photonics’, an ‘atom for photons’, and so forth. Nev-
ertheless, if quantum electrodynamics were true, the
energy stored in the construction just described should
be discrete.

As in Section 3.1.2, people might argue that the sys-
tem just constructed is not realistic. Fortunately there
is no singularity at the origin at r = 0, but it is cer-
tainly questionable to require permittivity and perme-
ability approaching zero as in (119). The solution of
this problem, however, is known. One must replace the
monotonous decrease with zigzagging as explained in
Section 3.1.3. This will work. For the differential equa-
tions (64) and (114) are the same for r→ ∞.

Effects of finite conductivity can be studied if one
assumes complex values of ε0 and ε1 and solves (124)
for complex Ω . The inverse of the imaginary part of



124 U. Brosa · Electromagnetic Waves in Variable Media

Ω would correspond to the finite lifetime of the wave
stored in the sphere.

4. An Alternative Theorem of Representation

In the study of graded fibers, one cannot use the the-
orem of representation provided in Section 3. It is pos-
sible to analyze electromagnetic fields in cylindrical
bodies, but the material properties must not vary except
in the direction of the axis of the cylinder. For graded
waveguides, one needs permittivity and permeability
varying with the distance from the axis, i.e. ε = εω(ρ),
µ = µω(ρ) in circular cylindrical coordinates ρ,ϕ,z.
Yet there is no carrier according to (54) that would be
proportional to ∇ε and ∇µ . Fortunately we can rely on
the

Two-Dimensional Representation Theorem.
In a system of orthogonal coordinates ξ ,η ,ζ where
the elements of the metric tensor

gξ ξ = gξ ξ (η ,ζ ), gηη = gηη(η ,ζ ),
gζ ζ = gζ ζ (η ,ζ ),

(126)

cf. the line element (14), do not depend on the distin-
guished coordinate ξ and where permittivity and per-
meability

ε = εω(η ,ζ ), µ = µω(η ,ζ ) (127)

do not depend on ξ , the fields

E =
1
ε

∇× eξ

a
√gξ ξ

− iωeξ

b
√gξ ξ

, (128)

H =−iωeξ

a
√gξ ξ

− 1
µ

∇× eξ

b
√gξ ξ

(129)

solve Maxwell’s equations (28) – (31) including the
constitutive relations (24) and (25) if the representa-
tives a and b

a = aω(η ,ζ ), b = bω(η ,ζ ) (130)

do not depend on ξ and obey the differential equations√
gξ ξ

gηη gζ ζ

[(
∂

∂η

√
gζ ζ

gηη gξ ξ

∂a
∂η

)
+
(

∂

∂ζ

√
gηη

gζ ζ gξ ξ

∂a
∂ζ

)]
− 1

gηη

∂ logε

∂η

∂a
∂η

− 1
gζ ζ

∂ logε

∂ζ

∂a
∂ζ

+ εµ ω
2a = 0 ,

(131)

√
gξ ξ

gηη gζ ζ

[(
∂

∂η

√
gζ ζ

gηη gξ ξ

∂b
∂η

)
+
(

∂

∂ζ

√
gηη

gζ ζ gξ ξ

∂b
∂ζ

)]
− 1

gηη

∂ log µ

∂η

∂b
∂η

− 1
gζ ζ

∂ log µ

∂ζ

∂b
∂ζ

+ εµ ω
2b = 0 .

(132)

For the proof, let us start with the representative a
only. The ansatz

C = ∇× eξ

a
√gξ ξ

, (133)

H =−iωeξ

a
√gξ ξ

(134)

is the special case of (128) and (129) with b = 0. It
solves at once the Maxwell equations (30) and (31).
Yet under the geometrical restrictions (126), (127), and
(130), it also solves Maxwell’s equation (29), namely

∇B =
−iω

√gξ ξ gηη gζ ζ

∂
√gηη gζ ζ µ a/

√gξ ξ

∂ξ
= 0 ,

(135)

because nothing behind the differentiation depends on
ξ .

Thus the only Maxwell equation that still expects
solution is (28). Using the ansatz (133) and (134), it is
transformed to

ε∇×
(

1
ε

∇× eξ

a
√gξ ξ

)
= εµω

2 eξ

a
√gξ ξ

(136)

which is equivalent, as we will see soon, to the differ-
ential equation (131). It is apparent that the right-hand
side of (136) is proportional to eξ /

√gξ ξ . We will dis-
cover that the same is true for the left-hand side. To this
end, we sever the differentiation of ε in (136):

ε∇×
(

1
ε

∇× eξ

a
√gξ ξ

)
=−(∇ logε)

×
(

∇× eξ

a
√gξ ξ

)
+∇×

(
∇× eξ

a
√gξ ξ

)
.

(137)

The nabla operator applied to logε yields

−∇ logε =−
eη√
gηη

∂ logε

∂η
−

eζ

√gζ ζ

∂ logε

∂ζ
. (138)

The simple curl in (137) is

∇× eξ

a
√gξ ξ

=
eη

√gζ ζ gξ ξ

∂a
∂ζ
−

eζ

√gηη gξ ξ

∂a
∂η

. (139)
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Evaluating the cross product of (138) and (139) as
required in (137) produces the contributions to (131)
with the logarithms times eξ /

√gξ ξ . The double curl
on the right-hand side of (137) gives the first contri-
bution to (131) times eξ /

√gξ ξ . So it is shown that
solution of (131) completes the solution of Maxwell’s
equations.

The truth of (132) can be proven when we start from
the ansatz (128) and (129) with the representative b
only, putting a = 0. All Maxwell equations turn out to
be automatically solved except (30). This one is eval-
uated as described in (136) – (139) where a is inter-
changed with b and ε with µ .

Finally we remember the linearity of Maxwell’s
equations. The full proof of the alternative theorem
of representation is just the superposition of the two
proofs produced in the last paragraphs.

The consistent setup of boundary-value problems is
described in the

Corollary on Boundary-Value Conditions. Let S de-
note the line where different media meet, n the normal
on this line with neξ = 0, and ∂/∂n the differentiation
along this normal. The representatives a and b must
satisfy

a |S− = a |S+ ,
1
ε

∂a
∂n

∣∣∣∣
S−

=
1
ε

∂a
∂n

∣∣∣∣
S+

, (140)

b |S− = b |S+ ,
1
µ

∂b
∂n

∣∣∣∣
S−

=
1
µ

∂b
∂n

∣∣∣∣
S+

. (141)

The symbols S− and S+ indicate that the values of the
functions and their derivatives are to be calculated via
an approach on the one side of S, say, the low side S−,
or on the other side, say, the high side S+.

The proof is nearly the same as the proof of the
corollary on boundary-value conditions in Section 3.
We must use now the representation formulae (128)
and (129). The difference is: Here ε and µ needn’t be
constant on the boundary.

The reader is kindly asked not to misunderstand
the denotation ‘two-dimensional’. A propagating elec-
tromagnetic field always spans the three-dimensional
space. ‘Two-dimensional’ means just that all compo-
nents of the field depend only on two coordinates.

Yet quite a few problems can be declared to be two-
dimensional by a judicious choice of coordinates. In
all these cases it is advantageous to apply the two-
dimensional representation theorem. Namely the cal-

culation of the electromagnetic field using (128) and
(129) takes less work than using (50) and (51) as two
curls less need to be computed.

When permittivity and permeability are constant in
space, the two-dimensional theorem of representation
doesn’t offer anything which is not included in the
three-dimensional theorem given in Section 3. With
constant material properties, the theorem already pre-
sented in [1, Sec. 10] grants the best systematic ap-
proach.

4.1. Examples in a Plane

The most straightforward applications of the forego-
ing theorem take place in cartesian coordinates x,y,z.
None of the components of the metric tensor depends
on any coordinate:

gxx = 1, gyy = 1, gzz = 1 . (142)

As distinguished coordinate ξ , we may select either x
or y or z. Let us identify ξ = z,η = x,ζ = y. The partial
differential equations (131) and (132) appear as

∂ 2a
∂x2 +

∂ 2a
∂y2 −

∂ logε

∂x
∂a
∂x

− ∂ logε

∂y
∂a
∂y

+ εµ ω
2a = 0 ,

(143)

∂ 2b
∂x2 +

∂ 2b
∂y2 −

∂ log µ

∂x
∂b
∂x

− ∂ log µ

∂y
∂b
∂y

+ εµ ω
2b = 0 .

(144)

The electromagnetic field is represented according to
(128) and (129) through

E =
1
ε

∇× eza− iωezb , (145)

H =−iωeza−
1
µ

∇× ezb , (146)

showing that the electromagnetic wave extends in three
dimensions while the representatives a = aω(x,y) and
b = bω(x,y) depend on two coordinates x and y. More-
over it should be noticed that both permittivity and
permeability may depend on both coordinates x and
y. Therefore for the so-called two-dimensional prob-
lem, the equations (143) and (144) constitute the most
general reduction of the coupled Maxwellian system to
two uncoupled equations.
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Even when the partial differential equations (143)
and (144) are not separable, they vastly simplify the
solution of Maxwell’s equations as all methods which
people learn in the ordinary courses of quantum me-
chanics can be applied directly, for example, Born’s
approximation and the JWKB approximation, denoted
also as semi-classical approximation. In the latter case,
however, the classical eikonal equation (1) will turn
out to be only of restricted usefulness. Also numerical
methods will profit from the reduction.

When ε and µ depend only on one coordinate, x or
y, the partial differential equations (143) and (144) can
be separated and produce ordinary differential equa-
tions similar to (64) and (67). Also when ε and µ are
products of functions which depend on one coordinate
only, separation is possible, but only under certain cir-
cumstances. We will see an example below.

In cartesian coordinates, we can choose x, y or z as
the distinguished coordinate ξ , but a changed choice
does not alter the geometrical situation. In circular
cylindrical coordinates ρ,ϕ,z the elements of the met-
ric tensor depend neither on z nor on ϕ:

gρρ = 1, gϕϕ = ρ
2, gzz = 1. (147)

Hence we may select either ϕ or z as distinguished co-
ordinate, but now the choice varies the geometrical sit-
uation.

Begin with ξ = z as distinguished coordinate. The
partial differential equation (131) appears as

1
ρ

(
∂

∂ρ
ρ

∂a
∂ρ

)
+

1
ρ2

∂ 2a
∂ϕ2 −

∂ logε

∂ρ

∂a
∂ρ

− 1
ρ2

∂ logε

∂ϕ

∂a
∂ϕ

+ εµ ω
2a = 0 ,

(148)

(132) for b is identical up to an interchange of ε with
µ and is therefore not written.

The partial differential equation (148) is the equa-
tion of plane scattering. It can be separated if ε and µ

are functions of ρ only. The ansatz

a = Pa Φ with Pa = Paω(ρ) ,Φ = Φ(ϕ) (149)

generates the ordinary differential equations

d2
Φ

dϕ2 +m2
Φ = 0 , (150)

d2Pa

dρ2 +
(

1
ρ
− dlogε

dρ

)
dPa

dρ

+
(

εµ ω
2− m2

ρ2

)
Pa = 0 .

(151)

The first equation has the familiar solutions Φ =
exp(imϕ). The separation constant m2 must be the
square of an integer m = 0,±1,±2,±3, . . .. Otherwise
a and hence the electromagnetic field would not be
unique. The second equation can be solved using func-
tions not more complicated than the confluent hyper-
geometric function if

ε = εα ρ
α , µ = µβ ρ

β

with α +β =−2,−1,0,2
(152)

and with constant α , β , εα , and µβ . This together with
the boundary conditions (140) gives ample freedom to
model graded centers of scattering around ρ = 0.

Interestingly the partial differential equation (148)
can also be separated if permittivity and permeability
depend on both variables, e.g.

ε = ρ
α

εϕ , µ = ρ
β

µϕ with α +β =−2

and εϕ = εϕ(ϕ), µϕ = µϕ(ϕ).
(153)

The functions εϕ and µϕ depend only on the angle ϕ

and must be periodic for the uniqueness, else they are
arbitrary. The ansatz

a = Pa Φa with Pa = Pa(ρ),
Φa = Φaω(ϕ)

(154)

produces

d2
Φa

dϕ2 −
dlogεϕ

dϕ

dΦa

dϕ

+(q+ εϕ µϕ ω
2)Φa = 0 ,

(155)

d2Pa

dρ2 +
1−α

ρ

dPa

dρ
− q

ρ2 Pa = 0 (156)

with the separation constant q. The latter equation is
now of Eulerian type simply solved by

Pa = ρ
α/2±
√

q+α2/4 , (157)

whereas the former equation is of Hill’s type. When
the average values of εϕ and µϕ are denoted by ε̄ϕ and
µ̄ϕ , respectively, and when εϕ and µϕ oscillate around
their average values but weakly, then (155) is solved by
periodic Mathieu functions and the separation constant
can be estimated as

q≈ m2− ε̄ϕ µ̄ϕ ω
2 , (158)
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m = 0,±1,±2,±3, . . .. Because of (157), this deter-
mines whether we see a wave or monotonous variation
along ρ .

There is no sizeable difficulty to solve (156) even if
the oscillations of εϕ and µϕ are large. Use, for exam-
ple, Hill’s theory.

Presently the devices to simulate invisibility cloaks
are mostly plain. Therefore this is the section with the
best formulas to design them. It takes the solution of
a scattering problem in a loop of minimization.

One starts with a guess of permittivity ε = ε(ρ) and
permeability µ = µ(ρ) demanding that these functions
converge quickly to constants ε∞ and µ∞ as ρ tends to
infinity. Using these functions, one solves the differen-
tial equation (148), for example by a partial-wave ex-
pansion based on (150) and (151), fulfilling the bound-
ary condition

a∼ exp(ikρ cosϕ)+A(ϕ) exp(ikρ)/
√

ρ

for ρ → ∞
(159)

with k =
√

ε∞µ∞ ω . The dependence of the scattering
amplitude A(ϕ) on the angle ϕ is obtained as a part
of the solution. Invisibility would appear when there is
an object in a circle, say ρ < ρ0, while the scattering
amplitude is zero, at least in some angular range, say
ϕ1 < ϕ < ϕ2. ρ0,ϕ1, and ϕ2 are given constants. Per-
fect invisibility cannot be attained. So ε(ρ) and µ(ρ)
must be varied until one finds

|a| for ρ < ρ0 and

|A(ϕ)| for ϕ1 < ϕ < ϕ2
(160)

small enough.
For a first guess of ε(ρ) and µ(ρ), one may fall back

to another approach to invisibility. People apply non-
bijective coordinate transforms to Maxwell’s equa-
tions. The transforms are such that they approach iden-
tity far away from the origin whereas they dig up
the space around the center. In this way the plane-
wave solution of Maxwell’s equations is transformed
to a wave that stays plane in infinity while it wafts
around the center without touching it [16, 17]. The
idea is much the same as in Joukowsky’s classical
theory of airfoils [18]. Yet every non-bijective trans-
form implies singularities. Moreover Maxwell’s equa-
tions cannot be reduced to the Laplace equation. The
main difference to Joukowsky’s theory is thus that the
coordinate transform converts permittivity and perme-
ability to tensors and that these tensors exhibit pro-
portional dependences on the coordinates as there are

two material properties but only one coordinate trans-
form. To verify this theory, called transformation
optics, experimentalists must try and construct meta-
materials with, first, suitable singularities, second, pro-
portional spatial variations and, third, tensorial char-
acteristics of permittivity and permeability. Naturally
they cannot, but they may find materials wherein sin-
gularities are approximated by smooth functions and
tensors are approximated by effective scalars. This is
where the present theory starts. One may insert theo-
retically suggested, yet realistically modified values of
the material properties and find the belonging exact so-
lutions of Maxwell’s equations.

Visibility depends on polarization. Thus one must
solve the scattering problem for the representative b,
too, and minimize its size around the origin and its
scattering amplitude as indicated in (160) for a.

The best formulas to design central-symmetrical
cloaks can be found in Section 3.2. The scattering
problem for a finite center in three-dimensional space
is very well studied [19]. Instead of the axial distance
ρ , one uses the radial distance r from that center. The
asymptotic behaviour is slightly different from that de-
scribed in (159);

√
ρ must be replaced with r and the

scattering amplitude depends on the angle θ rather than
on ϕ .

4.2. Examples around an Axis

When we stay with circular cylindrical coordinates,
but select ξ = ϕ as distinguished coordinate, we obtain
from (131) and (132)

ρ

(
∂

∂ρ

1
ρ

∂a
∂ρ

)
+

∂ 2a
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∂ logε

∂ρ

∂a
∂ρ

− ∂ logε

∂ z
∂a
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+ εµ ω
2a = 0 ,

(161)

ρ

(
∂

∂ρ

1
ρ

∂b
∂ρ

)
+

∂ 2b
∂ z2 −

∂ log µ

∂ρ

∂b
∂ρ

− ∂ log µ

∂ z
∂b
∂ z

+ εµ ω
2b = 0 .

(162)

The reader might notice that the second-order operator
in these equations cannot be understood as a part of
the Laplace operator. Also one needs to get used to the
equations of representation

E =
1
ε

(
−

eρ

ρ

∂a
∂ z

+
ez

ρ

∂a
∂ρ

)
− iω

eϕ

ρ
b , (163)
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H =−iω
eϕ

ρ
a+

1
µ

(
eρ

ρ

∂b
∂ z
− ez

ρ

∂b
∂ρ

)
(164)

which follow, despite of their weird appearance, di-
rectly from (128) and (129). For b = 0 the magnetic
field forms rings around the axis z = 0, for a = 0 the
electric field builds clings to circular lines.

Most optical instruments are centered around an
axis. The equations (161) – (164) provide a better foun-
dation to design them than anything known up to now.
Ray-tracing methods, for example, are based on the
eikonal equation (1). They cannot produce correct re-
sults in media where material properties vary continu-
ously but steeply. The equations (161) – (164), by con-
trast, yield exact solutions of Maxwell’s equations. The
second advantage is one has to solve partial differential
equations only for one unknown. This is much simpler
than solving the multiply coupled Maxwell equations.
One may, for example, insert a singularity a or b ∼
log((ρ − ρo)2 + (z− zo)2) at a point of an object ρo,
zo and compute where other (quasi-)singularities arise.
The inserted singularity would represent the object, the
(quasi-)singularities would indicate the images. One
may simulate lenses by regions in the ρ-z-plane where
permittivity ε and permeability µ are increased. At
the same time, one may simulate metallic stops of fi-
nite thickness by regions with complex ε , cf. (26), and
study the interaction between lenses and stops. Many
properties of imaging can thus be predicted, however,
with an important exception: astigmatism can not be
observed because the dependence on the azimuth ϕ is
missing.

The first example is the graded mono-mode fiber.
There we have permittivity ε = εω(ρ) and permeabil-
ity µ = µω(ρ) as functions of the axial distance ρ only.
Both partial differential equations (161) and (162) can
be separated. Let us select the first for example. The
ansatz with leading ρ ,

a = ρ Pa Z with Pa = Paω(ρ), Z = Z(z) , (165)

is advantageous because it permits simple boundary
conditions for ρ → 0 and ρ → ∞, namely Pa = 0 in
both cases. Why? We just have to consider the electro-
magnetic field in (163) and (164) and to demand that
all its components should stay finite on the axis and de-
crease towards infinity. The ansatz (165) generates the
ordinary differential equations

d2Z
dz2 + k2Z = 0 , (166)

d2Pa

dρ2 +
(

1
ρ
− dlogε

dρ

)
dPa

dρ

+
(

εµ ω
2− k2− 1

ρ2 −
1
ρ

dlogε

dρ

)
Pa = 0 .

(167)

The relation between the real wavenumber k and the
frequency ω , the so-called dispersion relation, is the
desired item. It is found from the solution of (167)
satisfying the boundary conditions for ρ → 0 and for
ρ→∞ as explained in the previous paragraph. One can
solve the ordinary differential equation (167) for per-
mittivities and permeabilities obeying power laws as
in (152) or one can solve it numerically. A boundary-
value problem with one ordinary differential equation
is by orders of magnitude simpler than the same prob-
lem with the Maxwell equations and it is much simpler
to attain high accuracy.

The considerations produced here for circular cylin-
drical coordinates can be transferred to all coordinate
system which embody an axis of rotation, e.g. spher-
ical coordinates, prolate and oblate spheroidal coor-
dinates, parabolic coordinates, and all rotational sys-
tems [2, Secs. I, IV]. Especially interesting appear at
first glance the oblate spheriodal coordinates because
they allow an easy study what an electromagnetic wave
does in a bottleneck, and the toroidal coordinates be-
cause they allow the study of electromagnetic waves in
a tokamak. Perhaps fusion research, too, might profit
from the methods developed here.

5. Retro and Prospects

We have now two systematic approaches to exact so-
lutions of Maxwell’s equations when material proper-
ties vary in space. What was known before this article
was written?

The interest in electromagnetically variable media
increased dramatically with the advent of dielectric
waveguides, i.e. in the seventies of the previous cen-
tury. Attempts were made to improve the fibers using
dielectrics with a graded index of refraction (GRIN),
see [20] for references. In 1975, Kogelnik noted down
a Helmholtz equation with a variable coefficient as in
(2) which, according to his belief, would found a the-
ory of electromagnetic waves in GRIN media [21,
Sec. 2.4]. He remarked the similarity of his equation
with Schrödinger’s and rewrote some solutions found
in textbooks on quantum mechanics for his purpose.

In their classic monography, Born and Wolf [22,
Sec. 1.6] reproduce some deliberations probably first
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thought by Abelés [23] in 1950. Maxwell’s equations
are written in a cartesian coordinate system and per-
mittivity as well as permeability are allowed to depend
on one coordinate. Maxwell’s system, which usually
couples all components of the electromagnetic field, is
shuffled until there is one equation for only one com-
ponent. This equation has the same shape as (64) al-
though its physical content is different. Unfortunately
this useful equation comes with a second, more com-
plicated equation which has to be solved at the same
time if the electromagnetic field is to be calculated. In
summary, the theory put forward by Born and Wolf is
practically useless.

So Born and Wolf haste to a theory which construes
the continuum as a sequence of small steps. The graded
medium is replaced with a pile of thin layers. The
reflection and the transmission in a single layer are
calculated from Snell’s law and Fresnel’s formulae.
The results are entered in simple matrices such that
the reflections and the transmissions in the pile can be
computed as matrix multiplication. This is the transfer-
matrix method. It is, with many technical improve-
ments, most popular with practicians. Software pack-
ages that help to construct the matrices and to execute
their multiplication can be found and downloaded in
the internet. Have a look, for example, at ‘Freesnell’ or
‘RP Coating’!

In 2010 Turakulov presented a preprint [24] and in
2011 an article [25] wherein vector potentials were
used. Ordinary differential equations similar to the cor-
rect equations (64) and (67) were found although in
a different mathematical context and a useless scalar
potential was introduced [24] which obscures the cal-
culation of the electromagnetic field. Turakulov also
communicated that the equations (64) and (67) can ac-
tually be solved for the example (85). Unfortunately
the solutions presented by him were not correct.

The awkwardness of the approaches mentioned so
far is caused by the arbitrary eliminations. One of
the 12 components of the electromagnetic field and
one of 8 Maxwellian equations is selected whereupon
lots of unsystematic attempts are made to eliminate
the other 11 components from the arbitrarily selected
equation. This is sometimes feasible in the cartesian
coordinate system. It is cumbersome in cylindrical co-
ordinates and becomes a nightmare in spherical coor-
dinates.

Most physical laws are formulated as partial dif-
ferential equations between vector fields and scalars.

Thus we have several independent variables, denoted
by physicists as coordinates, and several dependent
ones, denoted by physicists as fields. Given are par-
tial differential equations where all these variables are
mingled. Wanted are ordinary differential equations
each with one dependent and one independent variable
only. To reach the wanted end, we must perform two
separations: a separation of the dependent variables
and a separation of the independent ones. These two
kinds of separation must be kept separate. The fields
must be uncoupled without reference to special coor-
dinates. This is the idea not comprehended in previous
work.

What one must do is this: In a problem with vector
fields one must decompose them into their longitudi-
nal and their transverse parts. The former can be rep-
resented by a scalar potential, the latter by two vector
potentials, the one being a simple vector potential, the
other a vector potential’s vector potential. Both vec-
tor potentials must consist of a predetermined vector
field times an amplitude which describes the dynamics.
Otherwise there is no chance to arrive at a differential
equation for one scalar quantity only.

This is the recipe that works in all vector-field theo-
ries, e.g. in the theory of sound, hydrodynamics, elas-
ticity, and electrodynamics [26]. It was applied in [1]
for a general method solving Maxwell’s equations
when the material properties are constant. Finally it
was applied here, namely in (50) and (51) and in (128)
and (129).

The solutions of the equations (60) and (66) in Sec-
tions 3.1 appear all to be new.

At any surface the value of permittivity must deviate
from that in the bulk. The most natural way to describe
this is (77). The exact solution yields coefficients of
reflection and transmission which differ from Fresnel’s
just by factors in terms of the hypergeometric function.
Therefore the formulae given in Section 3.1.1 consti-
tute a more realistic foundation for the comparison of
standard optical measurements with theories that try to
relate the measured values to microscopic properties of
matter.

The stopping exemplified in Section 3.1.2 must not
be confused with tunnelling. Tunnelling takes a barrier
to penetrate. Stopping happens at barriers and holes.

Seemingly nobody has noticed that the theory of di-
electric mirrors is based on the Mathieu equation and
its generalizations as described in Section 3.1.3. Calcu-
lations up to now were done using the transfer-matrix
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method described above; consider the paper by Fink
et al. [27] as an anchor of references.

Appearently there were not the least precursors for
the solutions of the spherical problem in Sections 3.2
ff. nor were there harbingers of the two-dimensional
theorem of representation in Section 4, especially of
the solution of the cylindrical problem in Section 4.2.

The broad scope of this article is at the same time its
weakness. The applications were here only indicated,
but must be elaborated in detail to be useful for the de-
sign of optical instruments. For example, in the theory
of dielectric mirrors, the permittivity must be formu-
lated as a Fourier series

ε =
N

∑
n=−N

εn eink0z (168)

with positive wavenumber k0 and coefficients εn, n =
0,±1,±2, . . . ± N, which model the real medium.
Solving the respective equations (60) and (66) costs
some work, but it can be done as precisely as wanted.
The reward are exact solutions of Maxwell’s equations.
These solutions should be better than those obtained
using the transfer-matrix method because gradual tran-

sitions between the layers in the mirror can be taken
into account.

Another area worthy of study is the dependence of
all material properties on the frequency ω . What kind
of dependence should one select? The obvious choice
are the functions of ω known in the bulk, possibly cor-
rected for variations of mass density. For example in
(77) one may utilize Drude’s model or an oscillator
model with damping for the permittivity ε∞ in the bulk.
Moreover one might select the same model for the per-
mittivity ε+ at the surface as a first approximation. In
the next step of research one should look for trade-offs
between surface effects as described in Section 3.1.1
and microscopic effects. It may happen that a depen-
dence on ω , which presently is attributed to some fancy
microscopic mechanism, is just due to a gradual sur-
face. In the long run one must face the need of a mi-
croscopic theory which takes the difference between
bulk and surface into account.
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