Lack of Glyphosate Resistance Gene Transfer from Roundup Ready® Soybean to Bradyrhizobium japonicum under Field and Laboratory Conditions

Laura Arango Isaza,a Katja Opelt,a Tobias Wagner,a,b Elke Mattes,a Evi Bieber,a Elwood O. Hatley,c Greg Roth,c Juan Sanjuán,c Hans-Martin Fischer,a Heinrich Sandermann,a Anton Hartmann,f and Dieter Ernst*a

a Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, D-85764 Neuherberg, Germany
Fax: +49 89 3187 3383. E-mail: ernst@helmholtz-muenchen.de
b Present address: Applied Biosystems, Frankfurter Strasse 129B, D-64293 Darmstadt, Germany
c The Pennsylvania State University, Department of Crop and Soil Sciences, University Park, PA 16802, USA
d Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Prof. Albareda 1, Granada, Spain
e ETH, Institute of Microbiology, Wolfgang-Pauli-Str. 10, Zürich, Switzerland
f Department Microbe-Plant Interactions, Helmholtz Zentrum München – German Research Center for Environmental Health, D-85764 Neuherberg, Germany

* Author for correspondence and reprint requests

Z. Naturforsch. 66c, 595 – 604 (2011); received March 25/October 14, 2011

This paper is dedicated to the memory of the late Professor Dr. Heinrich Sandermann, former director of the Institute of Biochemical Plant Pathology, Helmholtz Zentrum München

A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvoylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready® (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

Key words: Bradyrhizobium japonicum, Glyphosate, Horizontal Gene Transfer

Introduction

The enormous success of agricultural gene technology has raised concern about the spread of novel traits into the environment. In 2010, more than 148 million hectares worldwide were planted with crops possessing biotechnologically derived traits (http://www.transgen.de/anbau/eu_international/). Herbicide tolerance is the most frequent trait found in genetically modified (GM) plants (80% of all GM crops planted worldwide; http://www.fourwinds10.com/siterun_data/science_technology/dna_gmo/news.php?q=1235154563). However, the increased use of transgenic plants in addition to herbicide selection pressure on the fields may facilitate a possible horizontal gene flow (Sandermann et al., 1997; Wagner et al., 2008) and cause the selection of spontaneous herbicide-resistant microorganisms. Horizontal gene transfer (HGT) requires the bacterial cell to possess the ability to actively take
up and heritably integrate extracellular DNA into its genome, *i.e.*, to have the competence for natural transformation (Johnsborg *et al*., 2007). More than 40 prokaryotic species, including many soil and rhizosphere bacteria, have been described that undergo natural transformation (Lorenz and Wackernagel, 1994). However, it has been demonstrated that competent bacteria are able to integrate transgenic plant DNA only if homologous bacterial DNA sequences are present in the plant genome (de Vries and Wackernagel, 2002). Laboratory studies have shown that gene transfer from plants to bacterial strains harbouring the homologous gene, inactivated by a short deletion, facilitates the selection of recombinant bacterial clones (Gebhard and Smalla, 1998; Nielsen *et al*., 2001; de Vries and Wackernagel, 2002; Kay *et al*., 2002). Under natural conditions, theoretical calculations predicted a very low transformation frequency (2 \(\cdot \) \(10^{-17} \), 1 transformant per 2 \(\cdot \) \(10^{17} \) bacteria) (Schlüter *et al*., 1995); nevertheless, it is presumed that selection pressure can increase the probability for a successful establishment of HGT (Nielsen *et al*., 1998). Until now the cultivation of GM plants in the field has not revealed any evidence that transgenes have been transferred to bacteria (Gebhard and Smalla, 1998; Paget *et al*., 1998; Badosa *et al*., 2004; Demanêche *et al*., 2008; Wagner *et al*., 2008), although they were detected in the soil food web (Hart *et al*., 2009).

Roundup Ready® (RR) soybean is currently the most widely used GM crop, which was genetically modified to tolerate glyphosate [(\(N \)-(phosphonomethyl)glycine]-containing herbicides, and was responsible in 2010 for about 70\% of the worldwide soybean production (http://www.transgen.de/anbau/eu_international/). Furthermore, glyphosate is the most widely used herbicide in the world (Yu *et al*., 2007), largely due to the increasing popularity of RR crops.

Glyphosate is a foliar-applied, broad-spectrum, non-selective herbicide that is systemically translocated to the meristems of growing plants and controls a wide variety of weeds (Rubin *et al*., 1982; Zablutowicz and Reddy, 2004). Glyphosate blocks the shikimate pathway through the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) (Amrhein *et al*., 1980). Because the shikimate pathway is present in plants, bacteria, and fungi but absent in animals, EPSPS has been an attractive target for effective herbicide development (Coggins *et al*., 2003; Priestman *et al*., 2005). Inhibition of EPSPS prevents the plant from synthesizing aromatic amino acids, causes shikimate accumulation, and consequently kills plants.

The basis for resistance to glyphosate in RR soybeans is the insertion of a transgene that originates from the *Agrobacterium* strain CP4 (CP4-EPSPS) and specifies a glyphosate-insensitive EPSPS variant (Padgette *et al*., 1995). Molecular characterization studies determined that the genetic insertion in the RR soybean line 40-3-2 contains part of the 35S promoter of the *Cauliflower mosaic* virus (35S-CaMV), sequences of the *Petunia hybrida* EPSPS chloroplast transit peptide (CTP), the CP4-EPSPS gene, and an intact 3′ non-translated region of the nopaline synthase gene (NOS 3′) (Padgette *et al*., 1995).

The promoter from the 35S-CaMV gene is a strong constitutive promoter that is most widely used for the expression of transgenes in plants (Schnurr and Guerra, 2000). The efficient expression of an eukaryotic gene, transferred to a bacterial organism, requires a prokaryotic promoter (Jacob *et al*., 2004). This implies that plant transgenes transferred via HGT from plants to bacteria would not be expressed in prokaryotes because plant-specific regulatory sequences are associated with the transgene. However, the 35S-CaMV promoter includes prokaryotic promoter-like recognition sequences, which allow for direct gene expression in *Escherichia coli* (Assaad and Signer, 1990) and several other bacteria (Lewin *et al*., 1998; Jacob *et al*., 2004).

Studies addressing the molecular basis for glyphosate resistance demonstrated that a single amino acid exchange in the active site renders CP4-EPSPS insensitive to glyphosate (Padgette *et al*., 1991; Selvapandian *et al*., 1995). The continued presence of glyphosate is likely to favour mutations that reduce glyphosate sensitivity while still maintaining catalytic efficiency. Therefore, it is not surprising that the gene coding for CP4-EPSPS was isolated from a bacterium found in an extremely glyphosate-rich environment (Funke *et al*., 2006). This suggests that under glyphosate selection pressure, glyphosate tolerance could be achieved through spontaneous mutation or via HGT within bacterial communities.

DNA sequence alignments of EPSPS genes from the *Agrobacterium tumefaciens* strain CP4 and *Bradyrhizobium japonicum* revealed high homologies in many regions (Wagner *et al*., 2008).
The probability of HGT from RR soybean to bacteria was assessed under natural field conditions, choosing the nitrogen-fixing soybean symbiont *B. japonicum* as a DNA receptor (Wagner et al., 2008). Because glyphosate inhibits the growth of this symbiotic bacterium by the inhibition of aromatic acid amino biosynthesis (Jaworski, 1972; Zablotowicz and Reddy, 2004), this system provides optimal conditions for monitoring the HGT of CP4-EPSPS from transgenic soybeans to *B. japonicum*.

Material and Methods

Field site and plant material

In 2001, a field study of transgenic glyphosate-tolerant soybeans carrying the CP4-EPSPS gene was carried out at Russell E. Larson Agricultural Research Center, University Park, USA. The field size was 1276.35 m² (38.1 m x 33.5 m) with about 47,350 plants. Seeds were sown in 95 rows with a distance of 38 cm between the rows. The transgenic soybean line was Agway 364RR (Agway Farm Seeds, Tully, NY, USA). In addition, 10 rows were cultivated with a conventional soybean lacking the glyphosate-tolerant trait, Pioneer P93B-81STS (Pioneer, Johnston, IA, USA). Roundup was applied once before sowing and once during the growth period at a concentration of 560 g active material ha⁻¹. This was the third year of RR soybean monoculture on this field. The sampling scheme was as follows: from each third row, 10 nodule samples were taken. Each sample consisted of nodules from 2–3 plants. There were 320 samples in total. Samples were stored at +8 °C. In addition, 60 transgenic plants were randomly collected, and roots, including the associated nodules, were stored at +8 °C. Transgenic RR soybean (GTS 40-3-2) seeds expressing the EPSPS gene derived from *Agrobacterium* sp. strain CP4 were provided by Monsanto Europe (Brussels, Belgium).

Re-isolation and cultivation of *B. japonicum* bacteroids

Nodules were macerated in 5 ml of liquid medium nr. 0321, containing 0.2 mM mannitol, and dilutions of the macerate were plated on agar medium nr. 0321, containing 0.2 mM mannitol and 1 mM glyphosate (Werner, 1982). Visible colonies were detected after 9 to 12 d of growth at 28 °C, and 200 of them were further analysed.

DNA isolation

DNA was extracted from soybean leaves, nodules, and bacteroids according to Chen and Ronald (1999), and the final pellet was dissolved in 20–50 μl H₂O. For the isolation of DNA fragments of the EPSPS construct total genomic DNA was extracted from 100 mg of fresh leaf tissue using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany).

Polymerase chain reaction (PCR) amplification of selected DNA sequences

Gene-specific primers (RR01, RR02) for the EPSPS gene resulted in the amplification of a 509-bp fragment (Köppel et al., 1997). As an internal control, soybean-specific lectin primers (GM01, GM02) were used that resulted in a fragment of 413 bp (Köppel et al., 1997). To identify *B. japonicum*, specific primers for repetitive intergenic consensus sequences were used (Judd et al., 1993). PCR amplifications were carried out according to standard protocols, and PCR products were run on 1.5% agarose gels, containing ethidium bromide (0.1 μg ml⁻¹).

PCR amplification of the EPSPS construct from RR soybean

DNA fragments of the EPSPS construct for cloning and sequencing were generated by PCR (AccuPrime™ Taq DNA Polymerase High Fidelity Kit; Invitrogen, Darmstadt, Germany). Gene-specific primers were as follows: forward, TGGAAAAGGAAGGTGGCTC; reverse, GG-GATCGATCCCCGATCT (AccNr. AB209952). The optimized PCR program for the EPSPS construct was performed as follows: 94 °C for 3 min, 33 cycles at 94 °C for 30 s, 58 °C for 45 s, 68 °C for 2 min 20 s; final elongation at 68 °C for 10 min.

Cultivation of *E. coli* and of *B. japonicum*

One Shot® TOP10F’ electrocompetent *E. coli* (Table I) (Invitrogen) was used as a host in the standard cloning procedures, and *E. coli* S17-1 (Simon et al., 1983) served as a donor in the conjugative plasmid transfer. *E. coli* was cultivated at 37 °C on LB agar plates or in liquid cultures according to standard methods (Sambrook et al., 1989).

The *B. japonicum* strain 110spc4 was used in this study (Table I). PSY medium (Regensburger...
Horizontal Gene Transfer from Transgenic Plants to Bacteria and Hennecke, 1983) supplemented with 0.1% (w/v) arabinose (Narberhaus et al., 1998) was used for natural transformation experiments. YEX medium (Adams et al., 1984) was employed for electroporation experiments. For selection of the B. japonicum strain 110spc4 spectinomycin (100 μg ml⁻¹) and chloramphenicol (20 μg ml⁻¹) were added to the media (Loh et al., 2002).

B. japonicum electrocompetent cells

B. japonicum 110spc4 cells were prepared for electroporation using modifications of two protocols (Guerinot et al., 1990; Hattermann and Stacey, 1990). Cell cultures (500 ml) were grown to an optical density (OD600) of 0.4 to 0.6, then placed on ice, and harvested by centrifugation. The resulting pellet was washed with 500 ml distilled water, 250 ml distilled water, and 10 ml of sterile 10% glycerol. Cells were resuspended in 1 ml of 10% glycerol, frozen in liquid nitrogen, and stored at −80 °C.

E. coli transformation

Bacterial transformation was carried out by electroporation using a Gene Pulser (Bio Rad, München, Germany). For electroporation, E. coli DH5α electrocompetent cells (Invitrogen) and E. coli S17-1 (Simon et al., 1983) were thawed on ice and mixed with plasmid DNA (10–100 ng).

Electroporation of B. japonicum

For electroporation, a Gene Pulser (Bio Rad) was used. The plasmid pRJ1042 was used for the B. japonicum 110spc4 electroporation. Following DNA concentrations were tested: 10 ng ml⁻¹, 125 ng ml⁻¹, 250 ng ml⁻¹, 500 ng ml⁻¹, 1 μg ml⁻¹. Electrocompetent cells were thawed on ice, and 1–2 μl plasmid DNA were then mixed thoroughly with 40 μl of a cell suspension, placed on ice for 1 min, and transferred to a chilled cuvette. A 2.5-kV pulse with a capacity of 25 μF and resistance of either 200 Ω or 400 Ω was applied. Cells were then suspended in 1 ml of YEX or PSY medium and incubated on a horizontal shaker at 30 °C for 20 h. Dilutions were plated on selective and non-selective media. Controls consisted of cells mixed with plasmid DNA, which were not subjected to a pulse prior to incubation in the liquid medium.

Cloning EPSPS constructs into TA Cloning® system vectors in E. coli and into the B. japonicum integration vector pRJ1042

Amplified 35S-EPSPS products were ligated, according to the manufacturer’s instructions, to the pCR® 2.1.-TOPO® vector (Invitrogen). The ligation products were transformed into One Shot® TOP10F⁺ electrocompetent E. coli cells (Table I).

The 35S-EPSPS cassette, including the 35S-CaMV promoter, was excised from the vector pT-35S-EPSPS by digestion with EcoRI and integrated into the same restriction site of the vector pRJ1042 (Acuña et al., 1987).

B. japonicum natural transformation on agar plates and in liquid cultures

The development of a natural competence state in B. japonicum 110spc4 was tested on agar plates according to the method used by Lorenz and Wackernagel (1991) to monitor natural transformation, as well as under liquid medium conditions (Demanèche et al., 2001). Experiments were performed on PSY medium. Purified plasmid

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant genotype or description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli K12 strain</td>
<td>Strain used for general cloning F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ araIle19788 endA1 nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>One Shot® TOP10F⁺ electrocompetent E. coli</td>
<td>Mobilizing donor strain, thi pro recA hsdR hsdM RP4-2-Tc::Mu-Km::Tn7</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>E. coli K12 strain S17-1</td>
<td>Cloning vector, Amp’, Kan’</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pCR®-2.1-TOPO®</td>
<td>EPSPS from transgenic soybean (GTS 40-3-2) in pCR®2.1.-TOPO®</td>
<td>This work</td>
</tr>
<tr>
<td>pT-35S-EPSPS</td>
<td>pRJ1042</td>
<td>Acuña et al. (1987)</td>
</tr>
<tr>
<td>pRJ35S-EPSPS</td>
<td>pRJ1042</td>
<td>This work</td>
</tr>
</tbody>
</table>

Table I. Bacterial strains and plasmids used.
DNA (pRJ-35S-EPSPS) was added to exponentially grown *B. japonicum* cultures (OD₆₀₀ = 1) at different concentrations (10 ng ml⁻¹, 100 ng ml⁻¹, 250 ng ml⁻¹, 500 ng ml⁻¹, and 1 μg ml⁻¹). Samples with plasmid DNA at equivalent concentrations were mixed with cultures for plate and liquid transformations, respectively. For plate transformations, 15 μl of *B. japonicum* suspensions mixed with plasmid DNA were spotted on PSY agar. In parallel, 10-fold concentrated mixtures were also spotted. After incubation for 48 h or 62 h at 30 °C, spots were re-suspended in 1 ml of PSY medium and plated on PSY medium containing 100 μg ml⁻¹ kanamycin for the selection of clones harbouring the pRJ-35S-EPSPS vector. For the *B. japonicum* transformations, cells were grown in liquid cultures (200 rpm, 30 °C) at different stages of the exponential growth phase (OD₆₀₀ = 0.5, 0.65, and 0.8). Aliquots of 100 μl were plated at 12-h intervals onto selective plates, which were then incubated at 30 °C. All experiments were done in triplicate.

Results

Field studies

PCR amplification of DNA from *B. japonicum* revealed discrete amplified DNA sequences indicating the presence of *B. japonicum* in nodules isolated from this field trial (Fig. 1a). The same probes were used for the amplification of the soybean lectin gene and the transgenic *EPSPS* gene. As shown in Fig. 1b and c, PCR products were of the expected sizes; 413 bp for lectin DNA and 509 bp for the *EPSPS* sequence. The presence of these genes was expected because the nodule structure contains both plant and bacterial genes. Isolated bacteroids were then cultivated over two passages in the presence of 1 mM glyphosate. This herbicide concentration resulted in a selection pressure, still allowing bacterial growth (Wagner et al., 2008). *B. japonicum*-specific sequences could be confirmed (Fig. 1d). However, no *EPSPS* PCR amplification product could be found in any of the 200 cultivated bacteroid samples analysed.

Cloning the 35S-EPSPS construct into the *B. japonicum* integration vector pRJ1042

The 35S-EPSPS cassette was excised from the vector pT-35S-EPSPS by digestion with EcoRI and integrated into the vector pRJ1042. The 35S-EPSPS construct possesses an EcoRI site between the *EPSPS* gene and the NOS terminator. This resulted in loss of the NOS terminator sequence (296 bp). The NOS terminator sequence

![Image](a) ![Image](b) ![Image](c) ![Image](d)

Fig. 1. (a) Identification of *B. japonicum* in nodules of transgenic soybean; P, positive control (cultivated *B. japonicum*); M, bp marker. (b) Detection of the lectin gene in nodules of transgenic soybean. PCR was carried out with lectin-specific primers that resulted in a 413-bp product; P, positive control (soybean leaf DNA); M, bp marker. (c) Detection of the CP4-EPSPS gene in nodules of transgenic soybean. PCR was carried out with *EPSPS* and 35S-CaMV promoter-specific primers that resulted in a 509-bp product; P, positive control (RR soybean leaf DNA); M, bp marker. (d) Identification of *B. japonicum* in cultivated bacteroids. P, positive control (*B. japonicum* strain); M, bp marker.
was therefore absent in the cloning procedures. Translation of the 35S-EPSPS construct lacking the NOS terminator region was expected to finish at two stop codons at the 3’-end of the EPSPS gene, allowing for the correct protein expression in bacteria without the requirement of an additional terminator sequence.

Ligation of the 35S-EPSPS cassette in the vector pRJ1042 (14.7 kb) yielded the vector pRJ-35S-EPSPS, which was transformed into E. coli donor strain S17-1. Plasmids from 20 transformants were isolated, and the integration of the 35S-EPSPS (1,920 bp) construct into pRJ1042 (14.7 kb) was verified by enzymatic digestion, PCR amplification of the insert, and DNA sequencing.

B. japonicum transformation by electroporation

Attempts to transform B. japonicum 110spc4 cells by electroporation were carried out, including modifications of the described procedures (Guerinot et al., 1990; Hattermann and Stacey, 1990). However, under the tested conditions, no positive transformants carrying the pRJ-35S-EPSPS plasmid insertion were obtained.

B. japonicum natural transformation

For plate transformation, mixtures of a bacterial culture and plasmid DNA were spotted on non-selective agar plates and incubated for 48 h or 62 h under standard conditions. After resuspension of the growing colonies and further incubation under kanamycin-selective pressure, 100 colonies from each experiment were analysed by PCR. However, no 35S-EPSPS insert was found. The development of a natural competence state under liquid conditions was assessed by adding plasmid DNA to B. japonicum 110spc4 shaking cultures at different time points of the exponential growth phase. Aliquots of the bacterial suspension were then plated on kanamycin-selective plates. Antibiotic-resistant colonies were screened by PCR for the 35S-EPSPS insertion. However, no PCR amplification product was found. All evaluated colonies were spontaneously resistant to kanamycin. Under the tested agar and liquid conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various excess amounts of recombinant plasmid DNA.

Discussion

Assessment of HGT under field conditions

Bacteria that have developed intricate symbiotic or pathogenic relationships with plants are theoretically exposed to the best conditions for gene transfer in nature (Kay et al., 2002). Thus, B. japonicum, as a symbiont of soybean and carrier of an EPSPS enzyme sensitive to glyphosate, could be an ideal candidate to monitor the uptake of the EPSPS gene from RR soybean DNA under glyphosate selection pressure in the nodule (Zablotowicz and Reddy, 2004). The mechanism by which such HGT could occur is likely to be related to the natural transformation of bacteria by DNA released from plants (Lorenz and Wackernagel, 1994).

The gene transfer from RR soybean to B. japonicum was evaluated under natural conditions and selection pressure to monitor for the likelihood of HGT. Roundup was applied according to agricultural practice over a period of three years. In a lysimeter study, the glyphosate content in the nodules reached about 63 μg g⁻¹ dry weight under normal glyphosate application doses (Grundmann et al., 2008), whereas in another study 39–147 ng g⁻¹ dry weight were detected (Reddy and Zablotowicz, 2003).

The nodule analysis documented, as expected, the presence of the transgenic CP4-EPSPS sequence. However, in bacteroids that were isolated from nodules and cultivated in the presence of glyphosate, this EPSPS gene could not be detected. This argues against the HGT transfer of the whole EPSPS gene under field conditions from transgenic soybeans to B. japonicum bacteria. These results are in agreement with a previous lysimeter study, also using glyphosate-tolerant soybeans and B. japonicum (Wagner et al., 2008), and with other reports on the field cultivation of GM plants lacking evidence of transgene transfer to bacteria (Paget et al., 1998; Gebhard and Smalla, 1998; Badosa et al., 2004; Demanèche et al., 2008; EFSA Statement, 2009). However, the methods used for the detection of the CP4-EPSPS gene might have been not sensitive enough, as about 1,000 copies of the gene were necessary to obtain an amplification product.
Assessment of HGT under laboratory conditions

The two main barriers of HGT from plant to microorganisms are the non-competent status of recipient cells and lack of sequence homology required for homologous recombination (Nielsen et al., 1998). Accordingly, in this study, attempts to enhance HGT to B. japonicum 110spc4 under controlled laboratory conditions included the optimization of sequence homology between DNA molecules to be recombined and evaluation of optimal conditions for natural transformation.

Among the enormous diversity in the bacterial kingdom, more than 40 species from different environments are known so far to be naturally transformable (Lorenz and Wackernagel, 1994; Nielsen et al., 1998; de Vries et al., 2001). Because nearly every transformable organism has its own specific set of conditions that induces competence (Lorenz and Wackernagel, 1994), several parameters were varied to find the optimal conditions for the potential natural transformation of B. japonicum 110spc4. The plasmid used in this study for B. japonicum transformations carried a non-essential DNA region of the B. japonicum genome that constituted the recombination site of the plasmid into the chromosome (Acuña et al., 1987). Previous natural transformation experiments were performed with engineered plasmids in the highly natural transformable bacterium Acinetobacter sp. BD413, containing a partially deleted antibiotic resistance gene that was completed after a successful transformation (Chamier et al., 1993; Nielsen et al., 1997; Gebhard and Smalla, 1998; de Vries and Wackernagel, 2002). This system has been already extended to other soil bacterial species like Erwinia chrysanthemi (Schlüter et al., 1995) and Pseudomonas stuizeri (de Vries et al., 2001). Additionally, Acinetobacter baylyi has been transformed with DNA from transgenic plants, using the same antibiotic recombination system under controlled laboratory conditions, although transformation frequencies with plant DNA have been shown to be drastically reduced compared to transformation with recombinant plasmid DNA (Gebhard and Smalla, 1998; de Vries and Wackernagel, 2002).

HGT requires the genomic integration of the transferred gene to achieve high genetic stability without the need for selective pressure (de Vries et al., 2003). Chromosomal integration can then be monitored by antibiotic selection. Therefore, we used an integration vector designed for the chromosomal homologous recombination of foreign DNA into the B. japonicum genome (Acuña et al., 1987). However, under all conditions tested, no natural transformation events were observed in B. japonicum strain 110spc4, indicating lack of functional transfer of the gene. This is in contrast to the transformation of B. japonicum strain 211 and might be traced back to a different competence of various strains of B. japonicum (Marečková, 1969).

Naturally transformable bacteria are able to integrate homologous DNA. However, when they were transformed with plant DNA, the transformation frequency dropped below the detection limit. One of those bacteria is A. baylyi, which is a model organism for gene-transfer studies (Metzgar et al., 2004) and has the highest natural transformation frequency found in vitro with homologous chromosomal DNA (10^{-2} transformants per recipient) (Nielsen et al., 1997; Palmen and Hellingwerf, 1997). The second most transformable bacterium is Ralstonia solanacearum, a bacterium able to develop natural competence in vitro, which was transformed with recombinant plasmid DNA but at a much lower transformation rate (10^{-7}) (Bertolla et al., 1997). In both cases, when Acinetobacter or Ralstonia were incubated with non-homologous DNA, the transformation rate was much lower than with recombinant plasmid DNA and at times was even undetectable (Gebhard and Smalla, 1998; Bertolla et al., 2000; de Vries and Wackernagel, 2002). Since B. japonicum strain 110spc4 is not able to undergo natural transformation with recombinant plasmid DNA (Gebhard and Smalla, 1998; de Vries and Wackernagel, 2002), the number of bacteroids analysed in this study might have be too small to detect a HGT. In addition, if naturally occurring resistances are present in the field, such as point mutations in the EPSPS gene, no selection pressure and specific selective advantage for these bacteria would exist, as reported recently for antibiotic-resistant soil bacteria in transgenic plant fields (Demanèche et al., 2008).
Acknowledgements

We are grateful to Cosima Wiese, Eva Pell, and Daniel Royse (Penn State University, University Park, USA) for their assistance and support during our stay at the Buckhout lab. Ivo O. Brants and David B. Carson (Monsanto) are gratefully acknowledged for carefully reading the manuscript. RR soybean seeds were kindly provided by Monsanto Europe (Brussels, Belgium). This work was supported in part by Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen.

Chamier B., Lorenz M. G., and Wackernagel W. (1993), Natural transformation of Acinetobacter calcoaceti-

Demanèche S., Kay E., Gourbière F., and Simonet P. (2001), Natural transformation of Pseudomonas flou-

