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We show the existence of new localized nonlinear structures for the electrostatic potential and the
electron density in the form of bright and W-shaped solitons in quantum electron plasmas, respec-
tively, which is modelled by the coupled nonlinear Schrödinger–Poisson equations. The robustness
and the conservation of the energy of the solitons are demonstrated by numerical simulations. The
sensitivity of the coupling constant on the stability of the paired solitons in the quantum electron
plasmas are investigated.
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Quantum mechanical effects in dense plasmas be-
come increasingly important when the de Broglie
length of the charge carriers is comparable to the di-
mension of the plasma system. Quantum hydrody-
namic (QHD) models for charged particle systems and
collective interactions have been proposed for describ-
ing the behaviours of dense quantum plasmas [1 – 5].
Ubiquitous presences of quantum plasmas in micro-
mechanical systems and ultra-small electronic devices,
in laser and microplasmas [6], in dense astrophysi-
cal environments [7], as well as in next generation
intense laser-solid density plasma interaction exper-
iments and in quantum X-ray free-electron lasers,
have brought active research interests (see [8] for re-
view).

Shukla and Eliasson [9] have recently investigated
the formation and dynamics of dark and gray enve-
lope solitons and two-dimensional vortices in quantum
electron plasmas with fixed ion background, based on
a nonlinear Schrödinger–Poisson (SP) system of equa-
tions[1 – 5, 8], in the form of

i
∂Ψ

∂ t
+A∇2

Ψ +φΨ −|Ψ |4/D
Ψ = 0, (1)

∇2
φ = |Ψ |2−1, (2)

where the wave function Ψ is normalized by the
equilibrium electron density

√
n0, the electrostatic

potential φ by TF/e, the time t by h̄/TF, and the
space coordinate r by the Debye length λD, where
λD = (ε0TF/n0e2)1/2 [4, 8]. In here, TF ∼ h̄2n2/3

0 /me is
the Fermi temperature (neglecting relevant dimension-
less constant), me is the electron mass, e is the mag-
nitude of the electron charge, ε0 is the electric permit-
tivity, h̄ is the Plank constant divided by 2π [8 – 10].
The quantum coupling constant A = ΓQ/2, where
ΓQ = me2/h̄2

ε0n1/3
0 , is the most important parameter

for the system, which can be both smaller and larger
than unity depending on the physical situation under
consideration [8]. More recently, we showed that the
localized nonlinear structures in the form of domain-
wall (DW) solitons can exist in (1) – (2), admitting
a set of conserved quantities [11]. Quasi-stationary so-
lutions in the form of DW solitons, which show anti-
correlation between the electron density and the elec-
trostatic potential, were tested numerically to check
their robustness [11].

In this work, we show the existence of new local-
ized nonlinear structures for the electrostatic potential
and the electron density in the form of bright and W-
shaped solitons in quantum electron plasmas, in the SP
system, respectively. We demonstrate their robustness
by numerical simulations, identify the boundary condi-
tion and the quantum coupling constant range for such
stable paired solitons.
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The one-dimensional quasi-stationary form of (1)
and (2) for the solution moving with a constant ve-
locity v0 with the ansatz Ψ = W (ξ )exp(iKx− iΩ t),
where W is a complex-valued function of the argument
ξ = x− v0t, K is the wave number, where K = v0/2A,
and Ω is the frequency shift, is written as [9, 10]:

d2W
dξ 2 +λW +

φ(ξ )W
A

− |W |
4W

A
= 0, (3)

d2
φ

dξ 2 = |W |2−1, (4)

where λ = 1/A and Ω = 1+ v2
0/4A are obtained from

the boundary conditions; φ(ξ ) = 0 and |W | = 1 at
|ξ |= ∞.

To search for possible solutions by a numerical
method, we substitute a complex function W (ξ ) =
w1(ξ ) + ıw2(ξ ), where w1 and w2 are real functions,
into (3) and (4) to obtain a set of coupled nonlinear
differential equations:

w
′′
i =− 1

A

[
wi−φwi +(w2

i +w2
3−i)w3−i

]
,

φ
′′
= w2

i +w2
3−i−1, i = 1,2,

(5)

where w
′′
i = d2wi/dξ 2 and φ

′′
= d2φ/dξ 2. These

coupled equations can be solved for stationary solu-
tions using a numerical shooting method based on
the Newton–Ralphson iteration scheme [12] with the

boundary conditions, i.e., |W | =
√

w2
1 +w2

2 = 1 and
φ(ξ ) = 0 at |ξ |= ξb.

We emphasize that depending on the boundary con-
ditions in searching for a numerical solution, there may
exist numerous solutions in the form of oscillatory, pe-
riodic, and solitonic solutions because there are six
boundary conditions in the sixth-order system in (5).
For example, it was shown that the paired dark and
gray solitons [9] exist for the case that the phase shift
between the two boundaries is 180◦, meaning that W
was set to +1 on the left boundary and to −1 on the
right boundary, i.e., w1 = 1,w2 = 0 on the left and
w1 = 0,w2 = 1 on the right boundaries. For the case
of w1 = w2 = 1/

√
2 at both boundaries, it was demon-

strated that the SP system also permits DW solitons
at a stronger coupling constant region than that of the
dark or gray soliton [11].

Figures 1a – b present numerical solutions by plot-
ting the profiles of the electric potential φ(ξ ) and
the electron density |Ψ(ξ )|2, respectively, for three

values of A, under new boundary conditions, i.e.,
w1 = 1,w2 = 0 imposed at both the left and the right
boundary points with |ξb| = 30. The solutions pre-
sented in these figures are different from the paired
dark and gray solitons [9] and the DW solitons [11]
in the sense that the electrostatic potential has a flat-
top profile and the electron density shows a W-shaped
distribution. The electron density distribution is simi-
lar to that of the gray-soliton in [9] in the sense that it
has a localized ‘shoulder’ on both sides of the density.
However, it is interesting to note that the electron den-
sity has double W-shaped double density depletions.
It is clearly shown that each W-shaped electron den-
sity profile is anti-correlated to the electrostatic poten-
tial φ which has a flat top distribution. We also find
in Figures 1a – b that the width of the electron density
broaden as A increases, while both the height and the
flat-top area (or width) of the electrical potential in-
crease with increasing coupling constant.

We solve (1) – (2) utilizing the split-step Fourier
method applying the periodic boundary conditions [13,
14] using the stationary solutions in Figures 1a – c as
the initial profiles. Figures 2a – c present the time evo-
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Fig. 1 (colour online). (a) Electrostatic potential φ . (b) Elec-
tron density |Ψ |2. The W-shaped electron density profile is
anti-correlated to the electrostatic potential which has a flat
top distribution. The width of the electron density is broaden
as A increases, while both the height and the flat-top area
of the electrical potential increase with increasing coupling
constant.
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lutions of the electron density |Ψ |2 and the electro-
static potential φ for the case of zero velocity, i.e.,
K = v0/2 = 0, with increasing A. We find that the sta-
bility and robustness of the W-shaped solitons and the
electric potentials in the from of bright solitons are
well maintained up to t = 20. However, for the cases of
A = 7.47 and A = 11.14, the electrostatic potentials go
through breathing at early stage of the evolution before
entering into stable propagation after t ≈ 10. On the
other hand, both electron densities show stable propa-
gation with minor fluctuations in the W-shaped region.
However, for the case of A = 18.19, the initial potential
is quickly stabilized at t ≈ 5, while the electron den-
sity shows a stable propagation. This indicates that the
only system parameter A plays a central role in stabiliz-

Fig. 2 (colour online). Time
evolutions of the electro-
static potential φ and the
electron density |Ψ |2 for (a)
A = 7.47, (b) A = 11.14,
and (c) A = 18.19. The sta-
bility and robustness of the
W-shaped solitons and the
electric potentials are well
maintained up to t = 20. (d)
The normalized total energy
deviation after t ≈ 10 indicates
instability, however, which is
small enough (less than 1%) to
classify them as solitons.

ing both the electric potential and the electron density
during their propagations. The nonlinear Schrödinger–
Poisson system conserves the number of electrons as
well as their momentum and energy [8 – 10]. In Fig-
ure 2d we show the time development of the total en-
ergy of the system [11], defined as

ε(t) =
∫ [
−Ψ(x, t)∗A∂

2
x Ψ(x, t)

+
1
2
|∂xφ(x, t)|2 +

1
3
|Ψ(x, t)|6

]
dx,

(6)

in order to check the dynamical stability of the solitons.
We find that the normalized total energy fluctuates are
most strongly at A = 7.47 (solid line), while a minor
energy deviation is shown at A = 18.19 (dashed line),
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in agreement with the results in Figure 2. The energy
deviation after t ≈ 10 for all values of A indicates an
instability, however, which is small enough (less than
1%) to classify them as solitons.

We further test how the dynamics of the solutions
in Figure 1 are influenced by a perturbation of the cou-
pling constant A. For example, we use the set of solu-
tions in Figure 1a and perturb A by A

′
= A+η , where

η = 0.1A = 0.747, to plot their propagations in Fig-
ure 3. As shown in Figures 3a – b, the electrostatic po-
tential grows rapidly at t ≈ 10, while the W-shaped
electron density becomes highly unstable. This is more
clearly illustrated in Figure 1c by the huge energy in-
crease at t ≈ 10 and t ≈ 19, which indicates a high in-
stability. Even not shown here, we have confirmed that
both the stability of electrostatic potential and the elec-
tron density is guaranteed as long as the perturbation is
below |η |< 0.5A. We also mention that those solitons
in Figures 2a – c under random white noises with less

Fig. 4 (colour online). Interaction of two copropagating W-shaped solitons for (a) A = 10.67, (b) A = 16.00, and (c) A =
18.67. The most stable propagation of |Ψ |2 occurs at A = 10.67. (d) The energy evolution shows the largest deviation at
A = 16.00.

Fig. 3 (colour online). Time evolutions of (a) the electrostatic
potential φ and (b) the electron density |Ψ |2, corresponding
to Figure 1a with perturbed coupling constant A′ = A + η ,
where η = 0.1A = 0.747. (c) Huge energy increase at t ≈ 10
and t ≈ 19 indicate high instability.
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than 5% of the peak amplitude showed stable propaga-
tions.

Finally, we show in Figures 4a – c the interaction of
two copropagating electron densities for three different
A values in increasing order. It is clearly demonstrated
that a more stable propagation of |Ψ |2 is obtained at
the lowest coupling constant A = 10.67 as shown in
Figure 4a. In this case, the shape of the center region
of two solitons changes slightly before t ≈ 5, which
is indicated by the energy oscillation during its evo-
lution (solid line) in Figure 4d. A stronger interaction
at A = 16.00 is shown to occur between the electron
densities in Figure 4b. In fact, its energy deviates most
strongly, as indicated by the dotted line in Figure 4d.
For the case of A = 18.67, two electron densities are
initially attracted most strongly, however, they repel
each other after t ≈ 5 when the energy approaches to
the initial value. From this, we conclude that two elec-
tron densities under certain coupling constant regime
can be both stable and keep their individual robustness
as solitons.

In summary, we have shown the existence of new
localized nonlinear structures for the electrostatic po-
tential and the electron density in the form of bright
and W-shaped solitons in quantum electron plasmas,
respectively, which is modelled by a coupled nonlin-
ear Schrödinger–Poisson equation, admitting a set of

conserved quantities. The quasi-stationary solutions,
which show anti-correlation between the W-shaped
electron density and the bright-type electrostatic po-
tential, were tested numerically to check their dynam-
ical robustness by using them as initial profiles. It was
shown that both the electrostatic potential and the elec-
tron density propagate stably by conserving the to-
tal energy, as demonstrated in Figure 2. It was found
that the stability of both solitons are destroyed when
we perturb the coupling constant of the system up to
η = 0.1A, as shown in Figure 3. Finally, the copropa-
gating two electron densities were shown to maintain
their stability for a distance at the strong coupling con-
stant regime. It was demonstrated that the only parame-
ter A of the system plays two roles: A controls the width
of the quasi-stationary solution as shown in Figure 1
and acts as the coefficient of the dispersion term in (1).
Before closing, we mention that the stability of the nu-
merical solution may shed light on finding some ana-
lytical solutions by some symbolic computations [15]
or approximate analytical solutions by variational anal-
ysis approach [16].
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