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In the current work, the telegraph equation in its general form and with an integral condition is
investigated. Also the well-known homotopy analysis method (HAM) is applied and an interesting
iterative algorithm is proposed for solving the problem in general form. Some numerical examples
are given and compared with the exact solution to show the effectiveness of the proposed method.
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1. Introduction

Boundary value problems with integral conditions
constitute a very interesting and important class of
problems which are widely used for mathematical
modelling of various processes of physics, ecology,
chemistry, biology, and industry [1 – 6], when it is im-
possible to determine the boundary or initial values
of the unknown function. The presence of an integral
term in a boundary condition causes that the theoreti-
cal study of nonlocal problems is connected with great
difficulties and also the application of many standard
numerical techniques such as finite difference, finite el-
ements, spectral methods, and so on, for solving these
types of problems can be greatly complicated. There-
fore, to apply them widely to problems of practical in-
terests, in general, it is important to convert nonlocal
boundary value problems into more desirable forms. In
recent years, several numerical techniques have been
presented to solve various types of nonlocal boundary
value problems [7 – 14].

In this paper, we consider the nonlocal boundary
value problem for the telegraph equation

∂ 2v
∂ t2 +α

∂v
∂ t

= β
2 ∂ 2v

∂x2 +F(v,x, t),

(x, t) ∈Ω = (0, `)× (0,T ],
(1)

with the initial conditions

v(x,0) = r(x), 0≤ x≤ `,
vt(x,0) = s(x), 0≤ x≤ `,

(2)

the Neumann condition

vx(0, t) = p(t), 0 < t ≤ T, (3)

and the integral (nonlocal) condition

∫ `

0
v(x, t)dx = q(t), 0 < t ≤ T, (4)

where F(v,x, t), r, s, p, and q are given functions, and
α > 0, ` > 0, T > 0, and β ∈ R. Note that the force
F(v,x, t) can be a linear or nonlinear function. In [15],
the authors investigated this problem and discussed the
existence and uniqueness of the solution of this impor-
tant problem by using the Rothe method. In [16], the
author proposed an iterative method for solving this
problem. Recently, Salkuyeh and Roohani in [17] ap-
plied the variational iteration method for solving an
special case of this problem (the problem with linear
forcing). Throughout these papers, we assume that F
is sufficiently smooth to produce a smooth classical
solution v. Here we mention that the functions r and s
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satisfy the following compatibility conditions:

r′(0) = p(0),
∫ `

0
r(x)dx = q(0),

s′(0) = p′(0),
∫ `

0
s(x)dx = q′(0).

As we know, the homotopy analysis method
(HAM) [18 – 24] is a powerful device for solving
differential equations. This method has been applied
successfully to solve many problems of various fields
of science and engineering. Recently, Mohyud-Din
and Yıldırım in [25] applied HAM for solving two-
dimensional diffusion with an integral condition. In
the next section, we will present an iterative algorithm
based on HAM to solve the problem given in (1) – (4).

2. Homotopy Analysis Method for the Telegraph
Equation

For the sake of simplicity and also for finding a sys-
tematic algorithm based on the homotopy analysis
method, we first transform (1) with the initial condi-
tions (2) and inhomogeneous conditions (3) and (4)
to an equivalent one with homogenous conditions. To
do so, we use the transformation u(x, t) = v(x, t)−
z(x, t) [14, 15], where

z(x, t) = p(t)
(

x− `

2

)
+

q(t)
`

.

In this case, by a simple manipulation the problem is
transformed to

∂ 2u
∂ t2 +α

∂u
∂ t

= β
2 ∂ 2u

∂x2 + F̄(u(x, t),x, t),

(x, t) ∈Ω = (0, `)× (0,T ],
(5)

u(x,0) = r̄(x), 0≤ x≤ `,
ut(x,0) = s̄(x), 0≤ x≤ `,

(6)

ux(0, t) = 0, 0 < t ≤ T, (7)∫ `

0
u(x, t)dx = 0, 0 < t ≤ T, (8)

where

F̄(u(x, t),x, t) = F(u(x, t)+ z(x, t),x, t)− ∂ 2z
∂ t2 −α

∂ z
∂ t

,

r̄(x) = r(x)− z(x,0),

s̄(x) = s(x)− ∂ z
∂ t

(x,0).

As we observe, the Neumann and the integral condi-
tions are now homogeneous. Hence, instead of looking
for v, we simply look for u. We focus our attention on
the problem given in (5) – (8). Following the standard
procedure of HAM, according to (5) and based on the
method of linear partition matching [23], we choose
the linear operator

L[φ(x, t;q)] =
∂ 2φ(x, t;q)

∂ t2 +α
∂φ(x, t;q)

∂ t

and define subsequently the nonlinear operator N as

N [φ(x, t;q)] =
∂ 2φ(x, t;q)

∂ t2 +α
∂φ(x, t;q)

∂ t

−β
2 ∂ 2φ(x, t;q)

∂x2 − F̄(φ(x, t;q),x, t).
(9)

The selection of the initial approximation is one of the
most important choices we can make when employ-
ing HAM. The initial approximation should satisfy the
initial and the boundary conditions of the problem. It
is clear that for this problem we can choose the ini-
tial approximation in the form u0(x, t) = r̄(x)+ ts̄(x),
which satisfies all conditions (6) – (8). Thus based on
HAM [18, 19], the general zero-order deformation
equation is

(1−q)L[φ(x, t;q)−u0(x, t)] = qh̄H(x, t)N[φ(x, t;q)],

with the corresponding initial conditions

φ(x,0;q) = r̄(x),
∂

∂ t
φ(x,0;q) = s̄(x),

where q ∈ [0,1] is an embedding parameter, h̄ 6= 0 is
a nonzero auxiliary parameter, H 6= 0 is an auxiliary
function (in this work, we choose H(x, t) = 1 for sim-
plicity), and φ(x, t;q) is an unknown function. Interest-
ingly, there is a marked great freedom in the choice of
auxiliary parameters in HAM. Obviously, when q = 0
and q = 1,

φ(x, t;0) = u0(x, t), φ(x, t;1) = u(x, t),

respectively hold. Thus as q increases from 0 to 1, the
solution φ(x, t;q) varies from the initial guess u0(x, t)
to the exact solution u(x, t). We now expand the func-
tion φ(x, t;q) in a Taylor series to the embedding pa-
rameter q in the form

φ(x, t;q) = u0(x, t)+
∞

∑
m=1

um(x, t)qm,
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where

um(x, t) =
1

m!
∂ mφ(x, t;q)

∂qm |q=0.

If the auxiliary linear operator L, the initial guess u0,
and the auxiliary parameter h̄ are all properly chosen,
then the above series converges, when q = 1, to end up
with

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t).

The associated high-order deformation equation is

L[um(x, t)−χmum−1(x, t)] = h̄(Rm(~um−1)) (10)

with the initial conditions

um(x,0) = 0,

ut,m(x,0) = 0,

in which

Rm(~um−1) =
1

(m−1)!
∂ m−1N [φ(x, t;q)]

∂qm−1 |q=0 (11)

and

χm =

{
0, m≤ 1,

1, m > 1.

From (11) and (9), we have

Rm(~um−1) = utt,m−1(x, t)

+αut,m−1(x, t)−β
2uxx,m−1(x, t)

− 1
(m−1)!

∂ m−1F̄(φ(x, t;q),x, t)
∂qm−1 |q=0,

(12)

where the indexes x and t denote differentiation with
respect to x and t, respectively. So, we can present the
following systematic iterative algorithm for solving the
problem (1) – (4):

u0(x, t) = r̄(x)+ ts̄(x),

um(x, t) = χmum−1(x, t)+L−1[h̄(Rm(~um−1))], m≥ 1,

um(x,0) = 0, ut,m(x,0) = 0. (13)

In particular, for the well-known telegraph equation
with linear forcing,

∂ 2v
∂ t2 +α

∂v
∂ t

= β
2 ∂ 2v

∂x2 + γv+F(x, t),

(x, t) ∈Ω = (0, `)× (0,T ],

with conditions (2) – (4), we can obtain the following
systematic iterative algorithm based on HAM:

u0(x, t) = r̄(x)+ ts̄(x),

um(x, t) = χmum−1(x, t)+ h̄L−1[utt,m−1(x, t)

+αut,m−1(x, t)−β
2uxx,m−1(x, t)− γum−1(x, t)

− (1−χm)F̄(x, t))], m≥ 1,

um(x,0) = 0, ut,m(x,0) = 0,

(14)

where F̄(x, t) = F(x, t)− ∂ 2z
∂ t2 −α

∂ z
∂ t + γz. Now we can

obtain the Mth-order approximate solution UM(x, t) =
∑

M
m=0 um(x, t) by computing the ui’s from solving the

ordinary differential equation presented in (13).

3. Numerical Examples

In this section, we analyze some examples of the
problem (1) – (4) and choose proper h̄ with the help
of h̄-curves.

Example 1. For the first example, we consider the fol-
lowing nonlinear telegraph equation [16]:

∂ 2

∂ t2 v(x, t)+
∂

∂ t
v(x, t) =

∂ 2

∂x2 v(x, t)+ v2(x, t)+ f (x, t),

(x, t) ∈Ω = (0,1.0)× (0,1.0]

with

f (x, t) = e(−2t)[−9t2(1−3x2)2

+6et(−1+3x2 +6t +3t2(1−3x2)2)

−3e(2t)(2−6x2 +12t +3t2(1−3x2)2)]/4,

0≤ x≤ 1.0, 0 < t ≤ 1.0,

r(x) = 0, s(x) = 0, 0≤ x≤ 1.0,

p(t) = 0, q(t) = 0, 0 < t ≤ 1.0.

The exact solution of this problem is v(x, t) =
3
2 (t e−t − t)(1−3x2). For this problem, we consider

L[vm(x, t)] =
∂ 2

∂ t2 vm(x, t)+
∂

∂ t
vm(x, t),

Rm(~vm−1) = vtt,m−1(x, t)+ vt,m−1(x, t)− vxx,m−1(x, t)

−
m−1

∑
j=0

v j(x, t)vm− j−1(x, t)− (1−χm) f (x, t),

and we use v0(x, t) = 0 as the initial guess. Thus from
(13), we can obtain an analytical approximate solu-
tion for the problem. To assess the impact of h̄ on the
convergence of the obtained approximate solution, we
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Fig. 1 (colour online). h̄-curve for 14th-order approximate for
Example 1; U14,2t(0,0).

first plot the so-called h̄-curve of U14,2t(0,0) in Fig-
ure 1. From this figure it is evident that the valid do-
main of h̄ is h̄ ∈ (−1.5,−0.5) for the convergence of
the series solution. To show the convergence behaviour
of the series solutions, the values of ‖v−Vm‖∞ where
Vm = ∑

m
i=0 vi for some valid convergence control pa-

rameters h̄ and different values of m are given in Ta-
ble 1; the last row in this table shows the obtained re-
sult by the author of [16]. Clearly, we can observe that
the approximate solutions obtained when h̄ = −1 are
more accurate than the approximate solutions obtained
form another choice of h̄. As the numerical results in
this table show, the proposed method is very effective
for solving this type of difficult problems, and it is ev-
ident that the efficiency of HAM can be dramatically
enhanced by computing further terms of the truncated
series. For more investigation, the absolute error

E(x, t) = {|v(x, t)−V14(x, t)|,
(x, t) ∈Ω = (0,1.0)× (0,1.0]}

for h̄ =−1 is plotted in Figure 2. As we observe, there
is a very good agreement between the approximate so-
lution obtained by HAM and the exact solution.

Example 2. For the second example, we consider the
following nonlinear telegraph equation:

m 6 8 10 12 14
h̄ =−0.9 8.2819e-3 9.2871e-4 1.5826e-4 1.7111e-5 1.8869e-6
h̄ =−1.0 1.7878e-3 1.9267e-4 1.2631e-5 8.9721e-7 6.5211e-8
h̄ =−1.1 2.9641e-3 2.4364e-4 4.1228e-5 6.6278e-6 4.2167e-7
‖v− v225‖∞ presented in [16]' 8e-4

Table 1. Numerical results
for Example 1.

∂ 2

∂ t2 v(x, t)+2
∂

∂ t
v(x, t) =

∂ 2

∂x2 v(x, t)+F(v(x, t),x, t),

(x, t) ∈Ω = (0,2π)× (0,1.0],

with

F(v,x, t) = v2−2ve−t(x−π)− e−2t(sin2(x)
−2sin(x)(x−π)),

r(x) = sinx, s(x) =−sinx, 0≤ x≤ 2π,

p(t) = e−t , q(t) = 0, 0 < t ≤ 1.0.

The exact solution of this problem is v(x, t) = e−t sinx.
For this problem, we can obtain

z(x, t) = e−t(x−π),

F̄(u,x, t) = u2 + f (x, t),

f (x, t) =−e−t(−x+π + e−t sin(x)2−2e−t sin(x)x

+2e−t sin(x)π + e−tx2−2e−txπ + e−t
π

2),
r̄(x) = sinx− x+π,

s̄(x) =−sinx+ x−π.

For this case, we consider u0(x, t) = (1− t)(sin(x)−
x+π) as the initial guess. Now, similar to the previous
example, we can employ HAM and obtain an analyti-
cal solution for this example from (13) by using

u0(x, t) = (1− t)(sin(x)− x+π),

L[um(x, t)] =
∂ 2

∂ t2 um(x, t)+2
∂

∂ t
um(x, t),

Rm(~um−1) = utt,m−1(x, t)+2ut,m−1(x, t)−uxx,m−1(x, t)

−
m−1

∑
j=0

u j(x, t)um− j−1(x, t)− (1−χm) f (x, t).

To assess the impact of h̄ on the convergence of the ob-
tained approximate solution, we first plot the h̄-curve
of U5,2t(0,0) in Figure 3. From this figure it is evident
that the valid domain of h̄ is h̄ ∈ (−1.2,−0.8) for the
convergence of the series solution. For more investiga-
tion, the absolute error function

E(x, t) = {|v(x, t)−V5(x, t)|,
(x, t) ∈Ω = (0,2π)× (0,1.0]}
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6. 10 8

Fig. 2 (colour online). Depiction of the absolute error for Example 1 with M = 14 and h̄ =−1.
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Fig. 3 (colour online). h̄-curve for 5th-order approximate
(u5,2t(0,0)) for Example 2.

for h̄ = −1 is plotted in Figure 4, where V5 = U5 + z.
As we observe, there is a very good agreement between
the approximate solution obtained by HAM and the ex-
act solution for this nonlinear equation.

Example 3. For the third example, we consider the
following linear telegraph equation:

∂ 2

∂ t2 v(x, t)+12
∂

∂ t
v(x, t) =

∂ 2

∂x2 v(x, t)−4v(x, t)

+F(x, t), (x, t) ∈Ω = (0,π)× (0,1.0],

with

F(x, t) = 4sinx(cos t−3sin t),
0≤ x≤ π, 0 < t ≤ 1.0,

r(x) = sinx, s(x) = 0, 0≤ x≤ π,

p(t) = cos t, q(t) = 2cos t, 0 < t ≤ 1.0.

The exact solution of this problem is v(x, t) = cos t sinx
[17, 26, 27]. For this problem, we obtain

z(x, t) =
2πx−π2 +4

2π
cos(t),
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Fig. 4 (colour online). Depiction of the absolute error for Example 2 with M = 5 and h̄ =−1.

F̄(x, t) = 4sinx(cos t−3sin t)− 3(2πx−π2 +4)
2π

cos t

+
6(2πx−π2 +4)

π
sin t,

r̄(x) = sinx− 2πx−π2 +4
2π

,

s̄(x) = 0.

Now, based on the HAM, we can obtain a semi-
analytical solution for this problem from (14) by using

u0(x, t) = sin(x)− 2πx−π2 +4
2π

,

L[um(x, t)] =
∂ 2

∂ t2 um(x, t)+12
∂

∂ t
um(x, t),

Rm(~um−1) = utt,m−1(x, t)+12ut,m−1(x, t)
−uxx,m−1(x, t)+4um−1(x, t)− (1−χm)F̄(x, t).

Similar to the previous cases, to assess the impact of h̄
on the convergence of the obtained approximate solu-
tion, we first plot the so-called h̄-curve of U10,x,4t(0,0),

 –1.4 –1.2 –1.0 –0.8 –0.6 –0.4

–0.015

–0.010

–0.005

0.000

0.005

0.010

Fig. 5 (colour online). h̄-curve for 10th-order approximate
for Example 3; dashed line: U10,x,4t(0,0); bold line:
U10,x,5t(0,0); thick line: U10,x,6t(0,0).

U10,x,5t(0,0), and U10,x,6t(0,0) in Figure 5. From this
figure it is evident that the valid domain of h̄ is h̄ ∈
(−1.1,−0.9) for the convergence of the series solu-
tion. To show the convergence behaviour of the se-
ries solutions, the values of ‖v−Vm‖∞ for some valid
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m 2 4 6 8 10
h̄ =−0.9 1.4371e-3 3.0518e-5 3.6379e-7 2.0586e-9 2.8421e-11
h̄ =−1.0 3.0285e-3 6.1178e-6 3.3358e-9 8.0075e-13 8.9599e-17
h̄ =−1.1 1.7266e-2 1.0145e-3 2.3786e-5 5.0199e-7 9.8166e-9
Maximum of error in [17] 4.204e-10

Table 2. Numerical results
for Example 3.

Fig. 6 (colour online). Depiction
of the absolute error for Exam-
ple 3 with M = 10 and h̄ =−1.

convergence control parameters h̄ and different values
of m are given in Table 2. For more investigation, the
absolute error

E(x, t) = {|v(x, t)−V10(x, t)|,
(x, t) ∈Ω = (0,π)× (0,1.0]}

for h̄ = −1 is plotted in Figure 6. From the presented
results through the Table 2 and Figure 6 it is evident
that there is a very good agreement between the ap-
proximate solution obtained by HAM and the exact so-
lution.

Example 4. Consider the problem

∂ 2

∂ t2 v(x, t)+2
∂

∂ t
v(x, t) =

∂ 2

∂x2 v(x, t)− v(x, t)

+F(x, t), (x, t) ∈Ω = (0,4)× (0,3],

with

F(x, t) = 2(t2− x− x2)e−t , 0≤ x≤ 4, 0 < t ≤ 3,

r(x) = 0, s(x) = 0, 0≤ x≤ 4,

p(t) =−t2 e−t , q(t) =−88
3

t2 e−t , 0 < t ≤ 3.

The exact solution of this problem is v(x, t) =
−(x2 + x)t2 e−t [17]. Here, we have

z(x, t) =−1
3

t2(3x+16)e−t ,

F̄(x, t) =
2
3
(−3x2 +3t2 +16)e−t ,

r̄(x) = 0, s̄(x) = 0.

For this example, we use u0(x, t) = 0 as the initial
guess. Similar to the previous example, we can obtain
a semi-analytical solution for this problem from (14).
In Table 3 the values of ‖v−Vm‖∞ for some values of m
using h̄ =−1 are given and in Figure 7 the error func-
tion for this problem obtained from 15th-order HAM
is plotted, showing the convergence behaviour of the
series solutions.

Example 5. For the last example, we consider

∂ 2

∂ t2 v(x, t)+2
∂

∂ t
v(x, t) =

∂ 2

∂x2 v(x, t)− v(x, t),

(x, t) ∈Ω = (0,4)× (0,4],

with

r(x) = ex, s(x) =−2ex, 0≤ x≤ 4,

p(t) = e−2t , q(t) = e−2t(e4−1), 0 < t ≤ 4.
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m 5 7 10 13 15
‖v−Vm‖∞ 2.1633e-3 4.8581e-6 8.2827e-11 2.6767e-16 2.7934e-20

Table 3. Numerical results
for Example 4 with h̄ =−1.

m 5 7 10 12 15
‖v−Vm‖∞ 9.1856e-2 4.4907e-4 2.9100e-8 1.9347e-11 1.1266e-16

Table 4. Numerical results
for Example 5 with h̄ =−1.

0
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3

4

x

0

1

2

3

t

0

1. 10 20

2. 10 20

Fig. 7 (colour online). De-
piction of the absolute er-
ror for Example 4 with
M = 15 and h̄ =−1.
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Fig. 8 (colour online). h̄-curve for 15th-order approximate
for Example 5; dashed line: U15,2t,x(0,4); bold line:
U15,3t,x(0,4); thick line: U10,4t,x(0,5).

The exact solution of this problem is v(x, t) = ex−2t

[24]. Here, we have

z(x, t) =
1
4

e−2t(e4−9+4x),

F̄(x, t) =−1
4

e−2t(e4−9+4x),

0
1

2
3

4
x

0

1

2
3

4
t

0

5. ×10–17

1. ×10–16

Fig. 9 (colour online). Depiction of the approximate solution
for Example 5 with M = 15 and h̄ =−1.

r̄(x) =
1
4
(9− e4)+ ex− x,

s̄(x) =
1
2
(e4−9+4x−4ex).

Based on the proposed approach, we consider
u0(x, t) = 1

4 (2t − 1)(e4 − 9 + 4x− 4ex) as the initial
guess, employ HAM for this example, and obtain an
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analytical solution from (14). In Figure 8 the h̄-curves
of U15,2t,x(0,4), U15,3t,x(0,4), and U15,4t,x(0,4) are
plotted, showing a guideline to assess the impact of h̄
on the convergence of the obtained approximate solu-
tion. Based on this figure, we find that the valid domain
of h̄ is h̄ ∈ (−1.2,−0.6). To show the convergence be-
haviour of the series solutions, the values of ‖v−Vm‖∞

for some values of m with h̄ =−1 are given in Table 4
and also the error function is plotted in Figure 9.

4. Conclusions

In this paper, the homotopy analysis method (HAM)
has been demonstrated to be applicable in the solution
of the telegraph equation in both linear and nonlin-
ear cases with integral condition, and a systematic al-

gorithm for solving this problem has been presented.
Equipped with a flexibility in choosing h̄, the HAM
exhibits a unique feature for controlling the conver-
gence of the approximation series to the solution of
this problem. The results obtained by using HAM are
very highly accurate when compared with those results
which already exist in the literature. The obtained re-
sults presented in this paper show that the proposed
method can solve the problem effectively and achieve
a good approximate solution with the exact solution.
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