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General solutions corresponding to the unsteady motion of second-grade fluids induced by an infi-
nite plate that applies a shear stress f (t) to the fluid are established. These solutions can immediately
be reduced to the similar solutions for Newtonian fluids. They can be used to obtain known solutions
from the literature or any other solution of this type by specifying the function f (·). Furthermore, in
view of a simple remark, general solutions for the flow due to a moving plate can be developed.
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1. Introduction

The classical viscous Newtonian fluid model cannot
describe flows of many polymeric liquids and biologi-
cal fluids, and so various non-Newtonian fluid models
have been proposed to describe them. Some of the non-
Newtonian fluids, especially dilute polymeric solutions
as well as some biological fluids, can well enough be
described by non-Newtonian fluids of differential type.
The simplest differential-type fluid is the incompress-
ible fluid of second grade. It has been widely used as
a first approximation to explain the normal stress dif-
ferences. Although this model has been used to study
a variety of flow problems, there is some controversy
concerning the nature of the material moduli that char-
acterize the fluid. Thus, any additional results that can
help to clarify its status and usage would be welcome,
especially in view of its extensive use.

The flow of a second-grade fluid over an infinite
plate, with suitable boundary and initial conditions, has
been investigated by many authors. It can be realized if
the plate is moving in its plane or applies a tangential
shear stress to the fluid. In the second case, unlike the
usual no slip condition, a boundary condition on the
shear stress is used. This is very important as in some
problems, what is specified is the force applied on the
boundary. It is also important to bear in mind that the
‘no slip’ boundary condition may not be necessarily

applicable to flows of polymeric fluids that can slip or
slide on the boundary. Thus, the shear stress bound-
ary condition is particularly meaningful. To the best of
our knowledge, the first exact solutions for motions of
non-Newtonian fluids in which the shear stress is given
on the boundary are those of Waters and King [1] and
Bandelli et al. [2]. Meanwhile, other exact solutions
for different motions of viscous and second-grade flu-
ids have been established [3 – 9].

The purpose of this note is to provide general solu-
tions for the unsteady motion of a second-grade fluid
induced by an infinite plate that applies a shear stress
f (t) to the fluid. In addition to being a study of a gen-
eral time-dependent problem, it leads to exact solu-
tions. Such solutions are uncommon in the literature
and they provide an important check for numerical
methods that are used to study flows of such fluids
in a complex domain. For generality, the solutions are
firstly established for the motion between two paral-
lel walls perpendicular to the plate. These solutions,
in the absence of the side walls, reduce to the simi-
lar solutions over an infinite plate. In order to illus-
trate their importance, some special cases are con-
sidered and known solutions from the literature are
recovered. Finally, relying on an immediate conse-
quence of the governing equations, an important rela-
tion with the motion over a moving plate is brought to
light.
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2. Flow Between Side Walls Perpendicular
to a Plate

Consider an incompressible second-grade fluid at
rest occupying the space above an infinite plate perpen-
dicular to the y-axis and between two side walls situ-
ated in the planes z = 0 and z = d of a fixed Cartesian
coordinate system x,y, and z. At time t = 0+ the plate is
pulled with the time-dependent shear stress f (t) along
the x-axis and f (0) = 0. Owing to the shear the fluid is
gradually moved and its velocity is of the form

v = v(y,z, t) = u(y, z, t) i , (1)

where i is a unit vector along the x-direction. For such
a flow the constraint of incompressibility is automat-
ically satisfied while the governing equation is given
by [5, 6]

∂u(y,z, t)
∂ t

=
(

ν +α
∂

∂ t

) (
∂ 2

∂y2 +
∂ 2

∂ z2

)
u(y,z, t);

y, t > 0 and z ∈ (0,d), (2)

where ν is the kinematic viscosity and α = α1/ρ (α1 is
a material constant and ρ is the density of the fluid).
The appropriate initial and boundary conditions are

u(y,z,0) = 0 for y > 0 and z ∈ [0,d], (3a)

τ(0,z, t) =
(

µ +α1
∂

∂ t

)
∂u(y,z, t)

∂y

∣∣∣∣
y=0

= f (t) for z ∈ (0,d) and t > 0,

(3b)

u(y,0, t) = u(y,d, t) = 0 for y, t > 0;

u(y,z, t)→ 0 as y→ ∞.
(3c)

In (3b) µ = ρν is the dynamic viscosity of the fluid
and τ(y,z, t) = Sxy(y,z, t) is one of the non-trivial shear
stresses.

In order to solve this initial and boundary value
problem, we use the Fourier transforms [10, 11]. Con-
sequently, multiplying (2) by

√
2/π cos(yξ )sin(λnz),

integrating the result with respect to y from 0 to ∞ and
z from 0 to d, respectively, and taking into account the
conditions (3), we obtain

∂ucn(ξ , t)
∂ t

+
ν(ξ 2 +λ 2

n )
1+α(ξ 2 +λ 2

n )
ucn(ξ , t)

=−
√

2
π

f (t)
ρλn

1− (−1)n

1+α(ξ 2 +λ 2
n )

; ξ , t > 0,

(4)

where λn = nπ/d and the double Fourier sine and co-
sine transform ucn(ξ , t) of u(y,z, t) must satisfy the ini-
tial condition

ucn(ξ ,0) = 0 for ξ > 0. (5)

Inverting this result by means of the Fourier inver-
sion formulae [10, 11], setting d = 2h, and changing
the origin of the coordinate system to the middle of the
channel, we can write the velocity field u(y,z, t) in the
suitable form

u(y,z, t) =
4

ρπh

∞

∑
n=1

(−1)n cos(µmz)
µm

·
∫

∞

0

cos(yξ )
1+α(ξ 2 + µ2

m)
(6)

·
∫ t

0
f (s)exp

[
−ν(ξ 2 + µ2

m)(t− s)
1+α(ξ 2 + µ2

m)

]
dsdξ ,

where µm = (2n−1)π/(2h).
In order to determine the shear stress in planes par-

allel to the bottom wall, as well as the shear stress on
the side walls, the expressions of the non-trivial shear
stresses are needed. The first of these, for instance, has
the form

τ(y,z, t) =−2 f (t)
h

∞

∑
n=1

(−1)n cos(µmz)
µm

·
{

e−µmy− 2
π

∫
∞

0

ξ sin(yξ )
(ξ 2 + µ2

m)[1+α(ξ 2 + µ2
m)]

dξ

}

− 4ν

πh

∞

∑
n=1

(−1)n cos(µmz)
µm

∫
∞

0

ξ sin(yξ )
[1+α(ξ 2 + µ2

m)]2

·
∫ t

0
f (s)exp

[
−ν(ξ 2 + µ2

m)(t− s)
1+α(ξ 2 + µ2

m)

]
dsdξ .

(7)

Taking α→ 0 into above relations, the similar solu-
tions

uN(y,z, t) =
4

ρπh

∞

∑
n=1

(−1)n cos(µmz)
µm

∫
∞

0
cos(yξ )

·
∫ t

0
f (s)e−ν(ξ 2+µ2

m)(t−s) dsdξ ,

(8)
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τN(y,z, t) = − 4ν

πh

∞

∑
n=1

(−1)n cos(µmz)
µm

∫
∞

0
ξ sin(yξ )

·
∫ t

0
f (s)e−ν(ξ 2+µ2

m)(t−s) dsdξ ,

(9)

corresponding to a Newtonian fluid performing the
same motion, are obtained. In view of the entry 5 of
Table 4 from [11] and its immediate consequence

∫
∞

0
ξ sin(yξ )e−νtξ 2

dξ =
y

4νt

√
π

νt
exp

(
− y2

4νt

)
,

the Solutions (8) and (9) can be written under the sim-
plified forms

uN(y,z, t) =
2

ρh
√

νπ

∞

∑
n=1

(−1)n cos(µmz)
µm

·
∫ t

0

f (t− s)√
s

exp

(
− y2

4νs
−νµ

2
ms

)
ds,

(10)

τN(y,z, t) = − y

h
√

νπ

∞

∑
n=1

(−1)n cos(µmz)
µm

·
∫ t

0

f (t− s)
s
√

s
exp

(
− y2

4νs
−νµ

2
ms

)
ds.

(11)

Integrating by parts the last integrals from (8) and
(9) and using the entries 6 and 7 of Tables 4 and 5
from [11], the Newtonian solutions can also be writ-
ten in equivalent forms

uN(y,z, t) =
2 f (t)

µh

∞

∑
n=1

(−1)n cos(µmz)
µ2

m

· e−µmy− 1
µh

∞

∑
n=1

(−1)n cos(µmz)
µ2

m

·
∫ t

0
f ′(t− s)

{
e−µmyErfc

(
µm
√

νs− y

2
√

νs

)

+eµmyErfc

(
µm
√

νs+
y

2
√

νs

)}
ds; µm 6= 0,

(12)

τN(y,z, t) =−2 f (t)
h

∞

∑
n=1

(−1)n cos(µmz)
µm

· e−µmy +
1
h

∞

∑
n=1

(−1)n cos(µmz)
µm

·
∫ t

0
f ′(t− s)

{
e−µmyErfc

(
µm
√

νs− y

2
√

νs

)

−eµmyErfc

(
µm
√

νs+
y

2
√

νs

)}
ds ,

(13)

in terms of the complementary error function of Gauss
Erfc(·) which can be obtained from tables [12].

To the best of our knowledge, the general Solu-
tions (6) and (7) for second-grade fluids, as well as
the Solutions (8) – (13) for Newtonian fluids, are new
in the literature and their value for theory and practice
can be significant. They can provide exact solutions for
different motions with physical relevance of these flu-
ids. In order to bring to light the theoretical importance
of these general solutions, some known solutions from
the literature will be recovered as limiting cases.

2.1. Case f (t) = f ta (a > 0): the Plate Applies an
Accelerated Shear to the Fluid

Putting f (t) = f ta into (6) and (7), the correspond-
ing Solutions (3.12) and (3.14) from [6] are recovered.
The solutions corresponding to a = 2, 3, . . .,n, as it was
proved in [6], can be written as simple or multiple in-
tegrals of u1(y,z, t) and τ1(y,z, t). The similar solutions
for Newtonian fluids are immediately obtained from
any one of (8) and (9), (10) and (11) or (12) and (13).
By setting f (t) = f t in (13), for instance, we obtain the
shear stress

τ1N(y,z, t) =−2 f t
h

∞

∑
n=1

(−1)n cos(µmz)
µm

· e−µmy +
f
h

∞

∑
n=1

(−1)n cos(µmz)
µm

·
∫ t

0

{
e−µmyErfc

(
µm
√

νs− y

2
√

νs

)

−eµmyErfc

(
µm
√

νs+
y

2
√

νs

)}
ds.

(14)

Further, unlike the next two cases, this motion is un-
steady and remains unsteady.
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2.2. Flow Due to an Oscillating Shear Stress

By now setting f (t) = f sin(ωt) into (6) – (9), the
corresponding solutions obtained in [7] and [9] are re-
covered. The velocity field for second-grade fluids

us(y,z, t) =
4 f

µπh

∞

∑
n=1

(−1)n cos(µmz)
µm

·
{

sin(ωt)
∫

∞

0

(ξ 2 + µ2
m) cos(yξ )

(ξ 2+µ2
m)2+(ω/ν)2[1+α(ξ 2+µ2

m)]2
dξ

− ω

ν
cos(ωt)

∫
∞

0

[1+α(ξ 2 + µ2
m)] cos(yξ )

(ξ 2+µ2
m)2+(ω/ν)2[1+α(ξ 2+µ2

m)]2
dξ

+
ω

ν

∫
∞

0

[1+α(ξ 2 + µ2
m)]cos(yξ )

(ξ 2 + µ2
m)2 +(ω/ν)2[1+α(ξ 2 + µ2

m)]2

·exp

[
− ν(ξ 2 + µ2

m)t
1+α(ξ 2 + µ2

m

]
dξ

}
,

(15)

is identical to that given by [9, Eq. (23)]. It is pre-
sented as a sum of steady-state and transient solu-
tions and describes the motion of the fluid some
time after its initiation. After this time, when the
transients disappear, it tends to the steady-state so-
lution that is periodic in time and independent of
the initial condition. However, it satisfies the bound-
ary conditions and the governing equation. An im-
portant problem regarding the technical relevance of
starting solutions is to find the approximate time af-
ter which the fluid is moving according to the steady-
state solutions. More exactly, in practice, it is nec-
essary to find the required time to reach the steady-
state.

2.3. Case f (t) = f H(t): Flow Due to a Plate that
Applies a Constant Shear to the Fluid

In this case, as well as for f (t) = f H(t)cos(ωt),
where f is a constant and H(·) is the Heaviside step
function, the solution is obtained following the same
way as in [13]. However, it is worth pointing out that
the corresponding solutions can also be obtained from
the general Solutions (6) and (7). Taking f (t) = f H(t)
into (6), for instance, the corresponding velocity field

u0(y,z, t) takes the simplified form [6, Eq. (3.16)]

u0(y,z, t) =
2 f
µh

∞

∑
n=1

(−1)n cos(µmz)
µm

·
{

e−µmy

µm
− 2

π

∫
∞

0

cos(yξ )
(ξ 2 + µ2

m)

·exp

[
− ν(ξ 2 + µ2

m)t
1+α(ξ 2 + µ2

m)

]
dξ

}
,

(16)

which is equivalent to the result obtained by Yao and
Liu [5, Sect. 4]. By now setting α = 0 in (16), the so-
lution (16) from [4] is recovered. Of course, this last
solution is equivalent to the velocity field

u0N(y,z, t) =
2 f
µh

∞

∑
n=1

(−1)n cos(µmz)
µ2

m

· e−µmy − f
µh

∞

∑
n=1

(−1)n cos(µmz)
µ2

m

·
[

e−µmyErfc

(
µm
√

νt− y

2
√

νt

)
+eµmyErfc

(
µm
√

νt +
y

2
√

νt

)]
,

(17)

resulting from (12) for f ′(t) = f H ′(t) = f δ (t), where
δ (·) is the Dirac delta function. The corresponding
shear stress, namely

τ0N(y,z, t) = − 2 f
h

∞

∑
n=1

(−1)n cos(µmz)
µm

· e−µmy +
f
h

∞

∑
n=1

(−1)n cos(µmz)
µm

·
{

e−µmyErfc

(
µm
√

νt− y

2
√

νt

)
−eµmyErfc

(
µm
√

νt +
y

2
√

νt

)}
,

(18)

is immediately obtained from (13). It is clearly seen
from (16), (17), and (18) that for large times the last
terms tend to zero. Consequently, this flow also be-
comes steady and the steady solutions are the same
for both types of fluids (Newtonian and second-grade).
Furthermore, as it immediately results from (14) and
(18),

τ1N(y,z, t) =
∫ t

0
τ0N(y,z,s)ds.
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3. Limiting case h→ ∞h→ ∞h→ ∞: Flow over an Infinite Plate

In the absence of the side walls, namely when h→
∞, the general Solutions (6) – (9) take the simplified
forms

u(y, t) = − 2
ρπ

∫
∞

0

cos(yξ )
1+αξ 2

·
∫ t

0
f (s)exp

[
−νξ 2(t− s)

1+αξ 2

]
dsdξ ,

(19)

τ(y, t) = f (t)− 2
π

f (t)
∫

∞

0

sin(yξ )
ξ (1+αξ 2)

dξ

+
2ν

π

∫
∞

0

ξ sin(yξ )
(1+αξ 2)2

·
∫ t

0
f (s)exp

[
−νξ 2(t− s)

1+αξ 2

]
dsdξ ,

(20)

uN(y, t) = − 2
ρπ

∫
∞

0
cos(yξ )

·
∫ t

0
f (s)e−νξ 2(t−s) dsdξ ,

(21)

and

τN(y, t) =
2ν

π

∫
∞

0
ξ sin(yξ )

·
∫ t

0
f (s)e−νξ 2(t−s) dsdξ ,

(22)

corresponding to the motion over an infinite plate that
applies a shear stress f (t) to the fluid. The Newtonian
solutions, as they result from (10), (11), (13), (21), and
the identity∫

∞

0

1− e−νξ 2t

ξ 2 cos(yξ )dξ =
√

νπt exp

(
− y2

4νt

)
− πy

2
Erfc

(
y

2
√

νt

)
,

can also be written in the equivalent forms

uN(y, t) =− 1

ρ
√

νπ

∫ t

0

f (t− s)√
s

exp

(
− y2

4νs

)
ds, (23)

τN(y, t) =
y

2
√

νπ

∫ t

0

f (t− s)
s
√

s
exp

(
− y2

4νs

)
ds , (24)

respectively,

uN(y, t) =
y
µ

∫ t

0
f ′(t− s)Erfc

(
y

2
√

νs

)
ds

− 2
µ

√
ν

π

∫
∞

0

√
s f ′(t− s) exp

(
− y2

4νs

)
ds ,

(25)

τN(y, t) =
∫ t

0
f ′(t− s)Erfc

(
y

2
√

νs

)
ds . (26)

If f (t) is a periodic function, all general solutions
that have previously been developed can be written as
a sum of steady-state and transient solutions. The New-
tonian shear stress (24), for example, can be written as

τN(y, t) = τNs(y, t)+ τNt(y, t), (27)

where

τNs(y, t) =
y

2
√

νπ

∫
∞

0

f (t− s)
s
√

s
exp

(
− y2

4νs

)
ds,

τNt(y, t) =− y

2
√

νπ

∫
∞

t

f (t− s)
s
√

s
exp

(
− y2

4νs

)
ds .

(28)

Choosing f (t) = f sin(ωt) into the last relations, we
find that

τN(y, t) =
f y

2
√

νπ

∫
∞

0

sin[ω(t− s)]
s
√

s
exp

(
− y2

4νs

)
ds

− f y

2
√

νπ

∫
∞

t

sin[ω(t− s)]
s
√

s
exp

(
− y2

4νs

)
ds .

(29)

Under this form, the corresponding boundary condi-
tion τN(0, t) = f sin(ωt) seems not to be satisfied. In
order to do away with this inconvenience, we shall
present the steady-state Solution (28)1 in a more suit-
able form. Indeed, making the change of variable s =
1/σ and using the fact that cosx = cosh(ix), sinx =
−i sinh(ix), and the known result∫

∞

0

exp[−a2s− (b2/4s)]
s
√

s
ds =

√
π

2a
e−ab,

we find after lengthy but straightforward computations

τNs(y, t) = f exp

(
−y

√
ω

2ν

)
· sin

(
ωt− y

√
ω

2ν

)
.

(30)
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Finally, taking the function f (t) to be f (t) = f H(t) or
f (t) = f t in (26), we obtain for the shear stress the
simple but elegant expressions

τ0N(y, t) = f Erfc

(
y

2
√

νt

)
and

τ1N(y, t) = f
∫ t

0
Erfc

(
y

2
√

νs

)
ds,

(31)

which are identical as form to v0n(y, t) and v1n(y, t) cor-
responding to the flow due to a flat plate that moves in
its plane with the velocities V H(t) and Vt, respectively.

4. Conclusions

The motion of a second-grade fluid due to an infi-
nite plate that applies a time-dependent shear f (t) to
the fluid is studied by means of integral Fourier trans-
forms. General solutions are firstly obtained for the
motion between two infinite parallel walls perpendic-
ular to the plate. These solutions can easily be used to
recover different known solutions from the literature
or to develop new similar solutions for suitable selec-
tions of the function f (t). Similar solutions for New-
tonian fluids performing the same motion are obtained
as special cases of the general solutions. They are also
written in simpler forms, (10) – (13), in terms of the el-
ementary function exp(·) and the complementary error
function Erfc(·).

In the absence of the side walls, namely when the
distance between walls tends to infinity, the general
solutions take simplified forms like those given by
(19) – (26) and correspond to the motion over an in-
finite plate. If the plate applies an oscillating shear to
the fluid, the corresponding solutions can be presented
as a sum of steady-state and transient solutions. These
solutions describe the motion of the fluid some time
after its initiation. After that time, when the transients
disappear, they tend to the steady-state solutions that
are periodic in time and independent of the initial con-
ditions. However, they satisfy the initial and boundary
conditions. Some of the present results can be extended
to fluid motions in cylindrical domains [14].

Finally, taking f (t) = f t, f sin(ωt) or f H(t) in (20),
we obtain the shear stresses

τ(y, t) = f t− 2 f
νπ

∫
∞

0

{
1− exp

(
− νξ 2t

1+αξ 2

)}
· sin(yξ )

ξ 3 dξ ,

(32)

τ(y, t) = f sin(ωt)− 2 f
π

ω

ν
cos(ωt)

·
∫

∞

0

ξ sin(yξ )
ξ 4 +(ω/ν)2(1+αξ 2)2 dξ

− 2 f
π

(
ω

ν

)2
sin(ωt)

·
∫

∞

0

(1+αξ 2) sin(yξ )
ξ [ξ 4 +(ω/ν)2(1+αξ 2)2]

dξ

+
2 f
π

ω

ν

∫
∞

0

ξ sin(yξ )
ξ 4 +(ω/ν)2(1+αξ 2)2

· exp

(
− νξ 2t

1+αξ 2

)
dξ ,

(33)

respectively,

τ(y, t) = f H(t)
[

1− 2
π

∫
∞

0

sin(yξ )
ξ (1+αξ 2)

·exp

(
− νξ 2t

1+αξ 2

)
dξ

]
,

(34)

corresponding to the motion due to an infinite plate
that, after time t = 0, applies the shear stresses f t,
f sin(ωt) or f H(t) to a second-grade fluid. As form,
these expressions are identical to those of the veloc-
ity field v(y, t) (see [15, Eq. (23)], [16, Eq. (3.9)],
and [13, Eq. (3)]) corresponding to the motion induced
by a plate that moves in its plane with the velocities Vt,
V sin(ωt) or V H(t), respectively. This is not a surprise
because a simple analysis shows that the shear stress
τ(y, t) in such motions of second-grade fluids satisfies
the governing equation

∂τ(y, t)
∂ t

=
(

ν +α
∂

∂ t

)
∂ 2τ(y, t)

∂y2 , (35)

which is identical to that for the velocity v(y, t) [2,
Eq. (2.12)]. Consequently, the velocity field v(y, t) cor-
responding to the unsteady motion of a second-grade
or Newtonian fluid due to an infinite plate that slides in
its plane with a velocity V (t)(= 0 for t ≤ 0) is given
by anyone of the relations (20), (22), (24), (26) or (27)
with V (t) instead of f (t).
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