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In this paper, some time-dependent flows of a non-Newtonian fluid between two side walls over
a plane wall are investigated. The following three problems have been studied: (i) flow due to an
oscillating plate, (ii) flow due to an accelerating plate, and (iii) flow due to applied constant stress.
The explicit expressions for the velocity field are determined by using the integral transforms. The
solutions that have been obtained, depending on the initial and boundary conditions, are written as
sum of the steady state and transient solutions. The similar solutions for second-grade and Newtonian
fluids can be deduced as limiting cases of our solutions. Furthermore, in absence of the side walls
they reduce to the similar solutions over an infinite plate. The effects of some important parameters
due to side walls on the flow field are investigated.
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1. Introduction

The study of non-Newtonian fluids have received
great attention during the recent years, because tra-
ditional Newtonian fluids cannot precisely describe
the rheological characteristics of many fluids used
in industrial and engineering applications. Such flu-
ids have a nonlinear relationship between the stress
and the rate of strain at a point and exhibit some
worth notice facts which are due to their elastic na-
ture. Many materials of industrial significance, notably
polymer systems (melt and solutions) and multi-phase
system such as foams, emulsions, and slurries, dis-
play a range of non-Newtonian characteristic including
shear thinning/shear thickening, shear-dependent vis-
cosity, stress relaxation, normal stress difference etc.
Hence, due to the practical and fundamental associ-
ation of non-Newtonian fluids to industrial applica-
tions, several studies [1 – 10] of these fluids in differ-
ent geometries have been carried out. Amongst non-
Newtonian fluids the Jeffrey model is one of the sim-
plest types of model to account for rheological effects
of viscoelastic fluids. The Jeffrey model is a relatively
simple linear model using the time derivatives instead
of convected derivatives. Some recent works on Jeff-
rey model can be found in [11 – 14] and the references
therein.

The present work has been undertaken in order to
obtain the exact analytical solutions for the three un-
steady flows of a Jeffrey fluid between two side walls
over a plane wall. Starting solutions are developed by
the Fourier sine and Laplace transform methods. The
paper is organized in the following way. In Section 2,
the governing equations are outlined. In the subsequent
three sections, we derive the solutions for (i) flow due
to an oscillating plate, (ii) flow due to an accelerating
plate, and (iii) flow due to applied constant stress. The
limiting case when d → ∞ is presented in Section 6.
Numerical results and discussions are given in Sec-
tion 7, and finally conclusions are made in Section 8.

2. Equations of Motion

The constitutive equation for a Jeffrey fluid [11, 14]
is given by

T =−pI+S,

S =
µ

1+λ1

[
A1 +λ2

(
∂A1

∂ t
+V ·∇

)
A1

]
,

(1)

where T is the Cauchy stress tensor, S the extra stress
tensor, µ the dynamic viscosity, and λi (i = 1,2) the
material parameters of the Jeffrey fluid; the Rivlin–
Ericksen tensor A1 is defined through

A1= ∇V+(∇V)T . (2)
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The fundamental equations governing the unsteady
flow of an incompressible fluid are given by

∇ ·V = 0, (3)

ρ
dV
dt

= divT, (4)

in which V is the velocity field and ρ the density.
For two-dimensional flow, we shall assume a veloc-

ity and a stress field of the form

V(y,z, t) = u(y,z, t)i, S = S(y,z, t), (5)

where i is the unit vector along the x-direction of the
Cartesian coordinate system. For these flows, the con-
straint of incompressibility is automatically satisfied.

Substituting (5) into (1) and having in mind the ini-
tial condition

S(y,z,0) = 0, (6)

it results that Sxx = Syy = Szz = Syz = 0 for all time and

Sxy =
µ

1+λ1

∂

∂y

(
1+λ2

∂

∂ t

)
u(y,z, t) (7)

and

Sxz =
µ

1+λ1

∂

∂ z

(
1+λ2

∂

∂ t

)
u(y,z, t), (8)

where Sxy and Sxz are the non-trivial tangential stresses.
In the absence of a pressure gradient in the flow di-

rection the balance of linear momentum (4) along with
(5), (7), and (8) yield the governing equation

∂u(y,z, t)
∂ t

=
ν

1+λ1

(
1+λ2

∂

∂ t

)
·
[

∂ 2

∂y2 +
∂ 2

∂ z2

]
u(y,z, t),

(9)

where ν = µ/ρ is the kinematic viscosity of the fluid.

3. Flow Due to a Rigid Oscillating Plate

Let us consider an incompressible Jeffrey fluid at
rest over an infinite flat plate along the x-axis and be-
tween two side walls situated in the planes at y = ±d.
At time t > 0 the flat plate at z = 0 begins to oscillate
in its own plane. Due to the shear, the fluid above the
plate is gradually moved. The velocity field and gov-
erning equations are given in (5) and (9), respectively.

The associated boundary and initial conditions are

u(±d,z, t) = 0 for z≥ 0 and t > 0, (10)

u(y,0, t) = UH (t)cos(ωt) or UH (t)sin(ωt)
for all t,

(11)

u(y,z, t)→ 0 as z→ ∞ and t > 0, (12)

u(y,z,0) = 0 for z≥ 0 and −d < y < d, (13)

where U is the amplitude, ω the frequency of the veloc-
ity of the wall, and H(t) the Heaviside unit step func-
tion.

The first boundary condition suggests the following
form for u(y,z, t):

u(y,z, t) =
∞

∑
n=0

un(z, t)cos(bny) (14)

with bn = (2n+1)π/2d.
Introducing (14) into (9), multiplying both sides of

the results by sin(ξ z), and integrating the result with
respect to z from 0 to ∞, having in mind the boundary
conditions (11) and (12), gives[
1+

α

1+λ1

(
b2

n +ξ
2)] ∂ ūn (ξ , t)

∂ t

+
ν
(
b2

n +ξ 2
)

1+λ1
ūn (ξ , t)

=
4U (−1)n

ξ

(2n+1)π (1+λ1)

(
ν +α

∂

∂ t

)
H (t)cos(ωt) ,

(15)

respectively,[
1+

α

1+λ1

(
b2

n +ξ
2)] ∂ ūn (ξ , t)

∂ t

+
ν
(
b2

n +ξ 2
)

1+λ1
ūn (ξ , t)

=
4U (−1)n

ξ

(2n+1)π (1+λ1)

(
ν +α

∂

∂ t

)
H (t)sin(ωt) ,

(16)

where α = νλ2.
The Fourier sine transform ūn (ξ , t) of un(z, t) has to

satisfy the condition

ūn (ξ ,0) = 0 for ξ > 0. (17)

Now applying the Laplace transform to (15) and (16),
keeping in mind the initial condition (17), we obtain

Ūn (ξ ,q) =
4U (−1)n

ξ sn

(2n+1)πν (ξ 2 +b2
n)

(ν +αq)
q+ sn

· q
q2 +ω2 ,

(18)
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respectively,

Ūn (ξ ,q) =
4U (−1)n

ξ sn

(2n+1)πν (ξ 2 +b2
n)

(ν +αq)
q+ sn

· ω

q2 +ω2 ,
(19)

where Ūn (ξ ,q) is the Laplace transform of ūn (ξ , t)

and sn =
ν(b2

n+ξ 2)
1+λ1

/
[
1+ α

1+λ1

(
b2

n +ξ 2
)]

.

In order to determine ūn (ξ , t), we first write (18)
and (19) under the simpler form as

Ūn (ξ ,q) =
4U (−1)n

ξ sn

(2n+1)πν (ξ 2 +b2
n)

1
q

G(ξ ,q) , (20)

where

G(ξ ,q) =
(ν +αq)q2

(q+ sn)(q2 +ω2)

= α +
s2

n (ν−αsn)
s2

n +ω2

1
q+ sn

+
ω2 (ν−αsn)

s2
n +ω2

q
q2 +ω2 −

ω
(
αω2 +νsn

)
s2

n +ω2

ω

q2 +ω2 ,

(21)

respectively,

G(ξ ,q) =
ω (ν +αq)q

(q+ sn)(q2 +ω2)

=−ωsn (ν−αsn)
s2

n +ω2

1
q+ sn

+
ω
(
αω2 +νsn

)
s2

n +ω2

q
q2 +ω2 +

ω2 (ν−αsn)
s2

n +ω2

ω

q2 +ω2 ,

(22)

and use the inverse Laplace transform to (20); in com-
bination with the convolution theorem [15], we obtain

ūn (ξ , t) =
4U (−1)n

ξ sn

(2n+1)πν (ξ 2 +b2
n)

[
− sn (ν−αsn)

s2
n +ω2 e−snt

+
ω (ν−αsn)

s2
n +ω2 sin(ωt)+

(
αω2 +νsn

)
s2

n +ω2 cos(ωt)

]
, (23)

respectively,

ūn (ξ , t) =
4U (−1)n

ξ sn

(2n+1)πν (ξ 2 +b2
n)

[
ω (ν−αsn)

s2
n +ω2 e−snt

+

(
αω2 +νsn

)
s2

n +ω2 sin(ωt)− ω (ν−αsn)
s2

n +ω2 cos(ωt)

]
. (24)

Finally, application of the inverse Fourier sine trans-
form to (23) and (24) gives the velocity field in the fol-
lowing form:

un(z, t) =
8U (−1)n H (t)
(2n+1)π2ν

·

{
−
∫ ∞

0

(
νsn−αs2

n

)
sn e−snt

(s2
n +ω2)(ξ 2 +b2

n)
ξ sin(ξ z) dξ

+ω sin(ωt)
∫ ∞

0

(
νsn−αs2

n

)
(s2

n +ω2)(ξ 2 +b2
n)

ξ sin(ξ z) dξ

+cos(ωt)
∫ ∞

0

(
αω2sn +νs2

n

)
(s2

n +ω2)(ξ 2 +b2
n)

ξ sin(ξ z) dξ

}
,

(25)

respectively,

un(z, t) =
8U (−1)n H (t)
(2n+1)π2ν

·

{∫ ∞

0

(
νωsn−αωs2

n

)
e−snt

(s2
n +ω2)(ξ 2 +b2

n)
ξ sin(ξ z) dξ

+ sin(ωt)
∫ ∞

0

(
αω2sn +νs2

n

)
(s2

n +ω2)(ξ 2 +b2
n)

ξ sin(ξ z) dξ

−ω cos(ωt)
∫ ∞

0

(
νsn−αs2

n

)
(s2

n +ω2)(ξ 2 +b2
n)

ξ sin(ξ z) dξ

}
.

(26)

However, for equivalent but simpler forms of the
above expressions, we can write∫ ∞

0

snξ sin(ξ z)
(s2

n +ω2)(ξ 2 +b2
n)

dξ =
να

(α2ω2 +ν2)

·
∫ ∞

0

[
ξ 2 +b2

n + 1+λ1
α

]
ξ sin(ξ z)[

ξ 2 +b2
n + αω2(1+λ1)

α2ω2+ν2

]2
+ ω2ν2(1+λ1)2

(α2ω2+ν2)2

dξ

(27)

and∫ ∞

0

s2
nξ sin(ξ z)

(s2
n +ω2)(ξ 2 +b2

n)
dξ =

ν2

(α2ω2 +ν2)

·
∫ ∞

0

[
ξ 2 +b2

n

]
ξ sin(ξ z)[

ξ 2 +b2
n + αω2(1+λ1)

α2ω2+ν2

]2
+ ω2ν2(1+λ1)2

(α2ω2+ν2)2

dξ .
(28)

We know that∫ ∞

0

[
ξ 2 +b2

n + αω2(1+λ1)
α2ω2+ν2

]
ξ sin(ξ z)[

ξ 2 +b2
n + αω2(1+λ1)

α2ω2+ν2

]2
+ ω2ν2(1+λ1)2

(α2ω2+ν2)2

dξ

=
π

2
e−Anz cos(Bnz)

(29)
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and∫ ∞

0

ξ sin(ξ z)[
ξ 2 +b2

n + αω2(1+λ1)
α2ω2+ν2

]2
+ ω2ν2(1+λ1)2

(α2ω2+ν2)2

dξ

=
π

2

(
α2ω2 +ν2

)
νω (1+λ1)

e−Anz sin(Bnz)

(30)

with

2A2
n =

[(
b2

n +
αω2 (1+λ1)
α2ω2 +ν2

)2

+
ν2ω2 (1+λ1)

2

(α2ω2 +ν2)2

]1/2

+
(

b2
n +

αω2 (1+λ1)
α2ω2 +ν2

)
,

2B2
n =

[(
b2

n +
αω2 (1+λ1)
α2ω2 +ν2

)2

+
ν2ω2 (1+λ1)

2

(α2ω2 +ν2)2

]1/2

−
(

b2
n +

αω2 (1+λ1)
α2ω2 +ν2

)
.

In view of (27) – (30), we find for the velocity field the
expressions

u(y,z, t)
U

=
∞

∑
n=0

8(−1)n H (t)
(2n+1)π2

·

[
−
∫ ∞

0

(
νsn−αs2

n

)
sn e−snt

ν (s2
n +ω2)(ξ 2 +b2

n)
ξ sin(ξ z) dξ

+
π

2
e−Anz cos(ωt−Bnz)

]
cos(bny) ,

(31)

respectively,

u(y,z, t)
U

=
∞

∑
n=0

8(−1)n H (t)
(2n+1)π2

·

[∫ ∞

0

(
νωsn−αωs2

n

)
e−snt

ν (s2
n +ω2)(ξ 2 +b2

n)
ξ sin(ξ z) dξ

+
π

2
e−Anz sin(ωt−Bnz)

]
cos(bny) .

(32)

The starting solutions (31) and (32) are presented
as sum of the steady and transient solutions. For large
values of time t, these starting solutions reduce to the
steady state solutions given by

u(y,z, t)
U

=
∞

∑
n=0

4(−1)n

(2n+1)π
e−Anz

· cos(ωt−Bnz)cos(bny) ,
(33)

respectively,

u(y,z, t)
U

=
∞

∑
n=0

4(−1)n

(2n+1)π
e−Anz

· sin(ωt−Bnz)cos(bny) ,
(34)

which are periodic in time and independent of the ini-
tial condition.

4. Flow Due to an Accelerating Plate

Now, we consider the flow problem for which the
bottom plate after time t > 0 begins to move with
a constant acceleration A in the positive x-direction and
induces the motion to the fluid. The governing problem
consists of (9), (10), (12), (13), and

u(y,0, t) = At. (35)

Employing the methodology of the previous section,
we reach at the following form for un(z, t):

un(z, t) =
8A(−1)n

(2n+1)π2ν

·
{
−
∫ ∞

0

(αsn−ν) e−snt

sn (ξ 2 +b2
n)

ξ sin(ξ z) dξ

+
∫ ∞

0

(αsn−ν)ξ sin(ξ z)
sn (ξ 2 +b2

n)
dξ +νt

∫ ∞

0

ξ sin(ξ z)
(ξ 2 +b2

n)
dξ

}
.

(36)

We know that∫ ∞

0

ξ sin(ξ z)
(ξ 2 +b2

n)
dξ =

π

2
exp(−bnz)

and ∫ ∞

0

ξ sin(ξ z)

(ξ 2 +b2
n)

2 dξ =
πz
4bn

exp(−bnz) , bn 6= 0.

Therefore, after simplification in the above expression
(see [16]), we finally get the velocity field under the
form

u(y,z, t) =
∞

∑
n=0

8A(−1)n

(2n+1)π2ν

·
{
−
∫ ∞

0

(αsn−ν) e−snt

sn (ξ 2 +b2
n)

ξ sin(ξ z) dξ

+
π

2
exp(−bnz)

[
νt− (1+λ1)z

2bn

]}
cos(bny) ,

(37)

valid for bn 6= 0.
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5. Flow Due to an Applied Constant Stress

Here, the flow due to the bottom plate that applies
a constant stress σH (t) to the fluid is considered. The
governing problem again consists of (9), (10), (12),
(13), and

µ

1+λ1

∂

∂ z

(
1+λ2

∂

∂ t

)
u

∣∣∣∣
z=0

=−σH (t) . (38)

Invoking (14) into (9), multiplying both sides of the
resulting equation by cos(ξ z) , integrating the result
with respect to z from 0 to ∞, and taking into account
the boundary condition (38), the problem reduces to
the solution of the following differential equation:[
1+

α
(
ξ 2 +b2

n

)
1+λ1

]
∂ ūn (ξ , t)

∂ t
+

[
ν
(
ξ 2 +b2

n

)
1+λ1

]
ūn (ξ , t)

=
4(−1)n

σH (t)
(2n+1)πρ

. (39)

Adopting a similar procedure as before, the expres-
sion for un(z, t) is

un(z, t) =
8(−1)n

σ (1+λ1)H (t)
(2n+1)π2ρν

(40)

·
[∫ ∞

0

cos(ξ z)
(ξ 2 +b2

n)
dξ −

∫ ∞

0

e−snt cos(ξ z)
(ξ 2 +b2

n)
dξ

]
.

With the help of following expression,∫ ∞

0

cos(ξ z)
(ξ 2 +b2

n)
dξ =

π

2bn
exp(−bnz) , bn 6= 0,

we finally obtain the velocity field of the form

u(y,z, t) =
∞

∑
n=0

8(−1)n
σ (1+λ1)H (t)

(2n+1)π2ρν
(41)

·
{
−
∫ ∞

0

e−snt cos(ξ z)
(ξ 2 +b2

n)
dξ +

π

2bn
exp(−bnz)

}
cos(bny),

valid for bn 6= 0.
In the limiting case, when t→∞, the above equation

reduces to the steady-state solution given by

u(y,z) =
∞

∑
n=0

4(−1)n
σ (1+λ1)

(2n+1)πνρ

· exp(−bnz)
bn

cos(bny) .
(42)

6. Limiting Case d→ ∞→ ∞→ ∞ (Flow over an Infinite
Plate)

In absence of the side walls, namely when d goes
to infinity, the above obtained solutions reduce to the
corresponding solutions for the motion over an infinite
plate. Consequently, for instance, (31) and (32) take the
forms

u(z, t)
U

=
∞

∑
n=0

8(−1)n H (t)
(2n+1)π2

·

[
−
∫ ∞

0

(
ν s̃−α s̃2

)
s̃e−s̃t

ν (s̃2 +ω2)
sin(ξ z)

ξ
dξ

+
π

2
e−Ãz cos

(
ωt− B̃z

)]
,

(43)

respectively,

u(z, t)
U

=
∞

∑
n=0

8(−1)n H (t)
(2n+1)π2

·

[∫ ∞

0

(
νω s̃−αω s̃2

)
e−s̃t

ν (s̃2 +ω2)
sin(ξ z)

ξ
dξ

+
π

2
e−Ãz sin

(
ωt− B̃z

)]
,

(44)

where s̃ = νξ 2

1+λ1
/
[
1+ α

1+λ1
ξ 2
]

and corresponding
steady-state solutions are

u(z, t)
U

=
∞

∑
n=0

4(−1)n

(2n+1)π
e−Ãz cos

(
ωt− B̃z

)
, (45)

respectively,

u(z, t)
U

=
∞

∑
n=0

4(−1)n

(2n+1)π
e−Ãz sin

(
ωt− B̃z

)
, (46)

in which

2Ã2 =
ω (1+λ1)

[√
α2ω2 +ν2 +αω

]
(α2ω2 +ν2)

and

2B̃2 =
ω (1+λ1)

[√
α2ω2 +ν2−αω

]
(α2ω2 +ν2)

.
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7. Graphical Results and Discussion

In this section, we have investigated the behaviour
of the velocity field graphically. Here, we have pre-
sented the profiles of the velocity field for the first case
when the flow is due to an oscillating plate. The anal-
ysis is further concerned with both cosine and sine os-
cillations of the plate. To analyze and interpret the rele-
vant physical effects of the obtained results, the graphs
of u(0,z, t)/U giving the velocity profiles at the mid-
dle of the channel as well as u(z, t)/U giving the ve-
locity profiles over an infinite plate are drawn. Also,
a comparison amongst the profiles of Jeffrey, second-
grade, and Newtonian fluids is made.
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Fig. 1. Profiles of the velocity field u(0,z, t)/U , given by (33) [(a) cosine oscillation] and (34) [(b) sine oscillation], for various
times t in the presence of side walls.
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Fig. 2. Profiles of the velocity field u(z, t)/U , given by (45) [(a) cosine oscillation] and (46) [(b) sine oscillation], for various
times t in the absence of side walls.

Figures 1 and 2 show the profiles of the velocity for
different values of time t for both cosine and sine os-
cillations of the boundary by keeping other parame-
ters fixed. It is clearly seen from these figures that the
maximum displacement of fluid particles occurs near
the bottom plate. These oscillations dies out far away
from the bottom plate. Also, it is noted that the am-
plitude of oscillations in the presence of side walls is
smaller as compared with the absence of side walls.
Moreover, it is observed that the boundary layer thick-
ness reduces in the presence of side walls. This is due
to the increasing shearing force from the side walls.
Hence, one can say that due to this increasing shear
force from the side walls, the velocity dies out and ap-
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proaches to zero much earlier in the presence of side
walls.

Figure 3 depicts the effect of the non-Newtonian pa-
rameter λ1 of a Jeffrey fluid on the velocity field in the
presence of side walls for the cosine oscillation of the
boundary. To analyze the effects of the non-Newtonian
parameter λ1, the other parameters are kept constant.
It appears that the velocity is a strong function of the
non-Newtonian parameter λ1. From this figure, it is ob-
served that for a given position z, the velocity gets in-
creased with an increase in λ1. In other words, increas-
ing the non-Newtonian parameter λ1 has the effect of
increasing the boundary layer thickness.
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Fig. 3. Profiles of the velocity field u(0,z, t)/U , given by (33),
for various values of λ1 in the presence of side walls.
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Fig. 4. Time series of the flow velocity, given by (33), for
various z in the presence of the side walls.
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Fig. 5. Comparison of the profiles of velocity u(0,z, t)/U for
different fluids for cosine oscillation in the presence of side
walls. (Jeffrey fluid: α = 0.2, λ1 = 0.8; second-grade fluid:
α = 0.2, λ1 = 0.0; Newtonian fluid: α = 0.0, λ1 = 0.0).

The time series of the velocity profile for various
values of z has been plotted in Figure 4. Here, we note
that by increasing the parameter z lowers the amplitude
of oscillation of the velocity.

Figure 5 displays a comparison amongst the profiles
of Jeffrey, second-grade, and Newtonian fluids. One
can see that the Jeffrey fluid is the swiftest while the
second-grade fluid is the slowest.

8. Conclusions

In this paper, we have studied some unsteady flows
of a Jeffrey fluid between two side walls perpendicular
to a plane wall. Three time-dependent flows are consid-
ered. Analytical expressions for the velocity field are
determined by means of the integral transform treat-
ment. The final results are decomposed as a sum of
steady-state and transient solutions. The effects of the
various pertinent parameters on the velocity are de-
picted graphically. Moreover, in order to see the effects
of side walls, a comparison of the velocity field corre-
sponding to the flow over an infinite plate is made with
that for flow between two side walls perpendicular to
the plate. It is demonstrated that the presence of the
side walls have a significant effect on the velocity field.
Finally, it is worth pointing out that the correspond-
ing solutions for the second-grade fluid, performing
the same motions, are obtained as limiting cases of the
general solutions.
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