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In this work we propose fast and high accuracy numerical methods for the solution of the one-
dimensional nonlinear Klein–Gordon (KG) equations. These methods are based on applying fourth-
order time-stepping schemes in combination with discrete Fourier transform to numerically solve
the KG equations. After transforming each equation to a system of ordinary differential equations,
the linear operator is not diagonal, but we can implement the methods such as for the diagonal case
which reduces the time in the central processing unit (CPU). In addition, the conservation of energy
in KG equations is investigated. Numerical results obtained from solving several problems possessing
periodic, single, and breather-soliton waves show the high efficiency and accuracy of the mentioned
methods.
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1. Introduction

The Klein–Gordon (KG) equation, that is also
known as Klein–Gordon–Fock equation, arises in the
study of theoretical physics [1]. This equation is
the relativistic version of the Schrödinger equation.
It represents the equation of motion of a quantum
scalar or a pseudo-scalar field, which is a field whose
quanta are spinless particles. Such a problem ap-
pears naturally in the study of some nonlinear dy-
namical problems of mathematical physics, among
them radiation theory, general relativity of scatter-
ing, and stability of kinks, vortices, and other co-
herent structures. The KG equation is known as one
of the nonlinear wave equations arising in relativis-
tic quantum mechanics. This equation has attracted
much attention in studying solitons and condensed
matter physics [2], in investigating the interaction
of solitons in collisionless plasma, the recurrence of
initial states, in lattice dynamics, and in examining
the nonlinear wave equations [1]. The KG equation
plays a significant role in many scientific applications
such as solid state physics and nonlinear optics the-
ory [3]. The nonlinear KG equation has the general

form

∂ 2u
∂ t2 (x, t)−q

∂ 2u
∂x2 (x, t) =

dV (u(x, t))
du

,

(x, t) ∈ [a,b]× [0,T ],
(1)

where dV (u(x,t))
du is a nonlinear function of u chosen

as the derivative of a potential energy V (u). Equa-
tion (1) occurs in a series of physical situations,
as the propagation of waves in ferromagnetic ma-
terials carrying rotations of the direction of magne-
tization and of laser pulses in two-state media [4,
7].

The nonlinear KG equations which will be exam-
ined in this paper have the following forms [5, 6, 8]:

∂ 2u
∂ t2 −α

2 ∂ 2u
∂x2 +βu− γu2 = 0, (2)

∂ 2u
∂ t2 −α

2 ∂ 2u
∂x2 +αu−βu3 = 0, (3)

∂ 2u
∂ t2 −α

∂ 2u
∂x2 +βu− γu7 = 0, (4)

∂ 2u
∂ t2 −α

2 ∂ 2u
∂x2 − sin(u) = 0, (5)

c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com
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with the initial conditions

u(x,0) = ϕ1(x), x ∈ [a,b],
∂u
∂ t

(x,0) = ϕ2(x), x ∈ [a,b],
(6)

and the periodic boundary condition

u(a, t) = u(b, t), t ∈ [0,T ]. (7)

The main property of (1) is the conservation of energy.
The energy E for (1) is given by the following expres-
sion [5, 9]:

E = E(t) =
1
2

∫
R

[
(ut)2 +q(ux)2−2V (u)

]
dx. (8)

For (2) – (5), V (u) and q are

V (u) =−β

2
u2 +

γ

3
u3, q = α

2,

V (u) =−α

2
u2 +

β

4
u4, q = α

2,

V (u) =−β

2
u2 +

γ

8
u8, q = α,

V (u) = 1− cos(u), q = α
2,

respectively. In the literature several numerical
schemes have been developed for solving KG equa-
tions. Strauss and Vázquez [10] derived a three-time
level scheme with conserved energy using standard
finite-difference approximations. Li and Vu-Quoc [11]
studied the finite difference invariant structure of
a class of algorithms for the nonlinear KG equation
and derived algorithms that preserve energy or linear
momentum. Jiménez and Vázquez [9] analysised four
finite difference schemes for approximating the nonlin-
ear KG equation. They observed undesirable character-
istics in some of the numerical schemes, in particular
a loss of spatial symmetry and the onset of instabil-
ity for large values of a parameter in the initial condi-
tion of the equation. In [12], an analysis of the schemes
described in [9] as applied to a linear problem is car-
ried out, and these indicate that the instability arises
from the use of explicit finite difference schemes rather
than any failure of energy conservation. This conjec-
ture is further supported by an analysis of two fur-
ther schemes. The KG equation is solved in [13] us-
ing the variational iteration method. Guo et al. devel-
oped a conservative Legendre spectral method in [14].
The author of [15] obtained the approximate and/or

exact solutions of the generalized Klein–Gordon and
sine-Gordon-type equations. With the aid of the sym-
bolic computation system Mathematica, many exact
solutions for the KG equation with a quadratic non-
linearity are constructed in [16]. Abbasbandy in [17]
presented a numerical solution of nonlinear KG equa-
tions with power law nonlinearities by the applica-
tion of He’s variational iteration method. Dehghan and
Shokri in [18, 19] proposed a numerical method based
on radial bases functions. Also the boundary integral
equation approach for solving the one-dimensional
sine-Gordon equation (5) is proposed in [20]. A nu-
merical method based on employing the boundary in-
tegral equation method and the dual reciprocity bound-
ary element method (DRBEM) is suggested in [21].
Some compact finite difference approaches for the so-
lution of KG problems are given in [22 – 24]. A spline
collocation approach for the solution of the KG equa-
tion is presented in [25]. The method of lines approach
is used in [5] to transform the sine-Gordon equation
into a first-order nonlinear initial-value problem and
then replacing the matrix exponential term in a recur-
rence relation by rational approximation which leads
to the second-order methods in both space and time
variables. Bratsos proposed another approach in [6] for
solving (5) which has second-order accuracy in space
and fourth-order accuracy in the time variable. Finally,
Bratsos in [4, 7] developed a predictor-corrector (PC)
scheme based on the use of rational approximation of
second order to the matrix exponential term in a three-
time level recurrence relation.

Most of the existing methods in the literature for
solving KG equations are time consuming schemes
and have a low order of accuracy. In this paper we
propose some numerical schemes for solving (2) – (5)
with periodic boundary conditions which are fast and
accurate. These methods are based on applying fourth-
order time-stepping schemes in combination with dis-
crete Fourier transform. The outline of this paper is as
follows. In Section 2, we state the spatial discretiza-
tion and implementation of the methods and give an
approach to save the linear operator of the problems as
diagonal case. In Section 3, we briefly introduce the
exponential integrators schemes such as the Runge–
Kutta integrating factor (IFRK), the Runge–Kutta ex-
ponential time differencing (ETDRK) methods, and
the Cauchy integral approach of Kassam and Tre-
fethen [26] for calculating ETDRK coefficients. In
Section 4, we report the numerical experiments of solv-
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ing KG equations with the applied method for several
problems, and the conservation of energy is presented.
Finally, a conclusion is drawn in Section 5.

2. Spatial Discretization

The spatial discretisation for (2) – (5) is done using
a Fourier spectral method with periodic boundary con-
ditions [27, 28]. It is given a function u which is peri-
odic on an appropriate spatial grid x j. From the defini-
tion of discrete Fourier transform (DFT), we have [28]

ûk = h
N

∑
j=1

eikx j u j, k =−N
2

+1, ...,
N
2

,

in which N is the number of grid points on a periodic
grid, h is the spacing of the grid points, and k are the
Fourier wave numbers. The inverse DFT is

u j =
1

2π

N/2

∑
k=−N/2+1

eikx j ûk, j = 1, . . .,N.

Let w be the nth derivative of v. For calculating w, we
first compute v̂ then put ŵ = (ik)nv̂. We can obtain w
by applying the inverse Fourier transform.

If we show the general form of (2) – (5) with utt =
α2uxx + F(u, t) and put ut = v then the following sys-
tem of partial differential equations (PDEs) is resulted:

ut = v

vt = α
2uxx +F(u, t).

(9)

If we show U = [u v]T by applying the DFT method
to (9) and leaving the time component t, the follow-
ing system of ordinary differential equations (ODEs)
is obtained:

Ût = LÛ + N̂(U ), (10)

where N̂(U ) = [v̂ F̂(u, t)]T and the linear operator L
has the following non-diagonal form:

L2N×2N =
[

0 0
DN×N 0

]
, (11)

where DN×N is a diagonal matrix whose diagonal en-
tries are −α2k2. In applying DFT in combination with
exponential integrators, we need only to store D and
implement the methods as for the diagonal case. In
fact, in the exponential integrators we need to calculate
the inverse and exponential of the matrix ∆tL which
have definite structures and are stated in the following
lemmas.

Lemma 2.1 The exponential of matrix ∆tL in (11) is:

e∆tL =
[

IN×N 0
∆tD IN×N

]
,

where IN×N is the identity matrix of size N.

Proof. It is easy to check that Li = 0, i = 2,3, ...
So from Taylor expansion we have e∆tL = I2N×2N+
∆tL. �

We only store the vector q = [q1 q2]T, where q1 =
[1, . . .,1] and q2 = −∆tα2k2, and do all computations
of the method on this vector. The next lemma is used
in ETDRK and ETDRKB methods.

Lemma 2.2 The inverse of matrix zI − ∆tL, z 6= 0,
z ∈ Γ is:

(zI−∆tL)−1 =
1
z2 (zI +∆tL).

Proof. It is clear that zI−∆tL, z 6= 0, is invertible and
(zI−∆tL)−1(zI−∆tL) = I. �

Also in this case we store vector q = [q1 q2]T, where
q1 = 1

z [1, . . .,1] and q2 = 1
z2 ∆t(−α2k2), and do all com-

putations of the method on this vector.

3. Exponential Integrators

Exponential integrators are numerical schemes
specifically designed for solving differential equations
where it is possible to discretized the original PDE into
a linear and a nonlinear part and obtain a coupled sys-
tem of ODEs,

ut = Lu+N(u, t). (12)

In (12) Lu is the linear part and N(u, t) is the non-
linear part. The aim of the exponential integrators is
to treat the linear term exactly and allow the remain-
ing part of the integration to be integrated numeri-
cally using an explicit scheme. In this paper we im-
plement exponential integrators of the Runge–Kutta
type. We consider the Runge–Kutta integrating fac-
tor (IFRK) [26, 29, 30], the Runge–Kutta exponen-
tial time differencing (ETDRK) [26, 29], and the ET-
DRK method with improved accuracy by Krogstad
(ETDRKB) [31]. Further, we will use the numerically
stable scheme by Kassam and Trefethen [26] for cal-
culating the coefficients in the ETDRK methods. We
briefly introduce these methods.
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3.1. Runge–Kutta Integrating Factor (IFRK)

The idea is to make a change of variable that allows
us to solve the linear part exactly and then use a numer-
ical scheme of our choice to solve the transformed non-
linear equation. Starting with our discretised PDE (12),
we define

v = e−Ltu. (13)

Differentiating (13) gives

vt =−e−LtLu+ e−Ltut . (14)

If we multiply (12) by the integrating factor e−Lt , we
have

e−Ltut − e−LtLu = e−LtN(u), (15)

which gives

vt = e−LtN(eLt v). (16)

Now we can use a time-stepping method of our choice
to advance the transformed equation. We use a fourth-
order Runge–Kutta formula and obtain the IFRK
scheme. Regarding to (10), which is in the Fourier
space, the fourth-order formula of the IFRK method
to solve (12) is as follows [26, 29, 30]:

A = ∆tR(F(N(F−1(u)))),

B = ∆tR(F(N(F−1(e∆t L/2(u+A/2))))),

C = ∆tR(F(N(F−1(e∆t L/2u+B/2)))),

D = ∆tR(F(N(F−1(e∆t Lu+ e∆t L/2C)))),

un+1 = e∆t Lun +
1
6
(e∆t LA+2e∆t L/2(B+C)+D),

(17)

where R(.), F(.), and F−1(.) show the real part, the
Fourier transform, and the inverse Fourier transform of
considered functions, respectively.

3.2. Runge–Kutta Exponential Time Differencing
(ETDRK)

The idea of the ETD methods is similar to the
method of the integrating factor. We multiply both
sides of a differential equation by some integrating fac-
tor, then we make a change of variable that allows us
to solve the linear part exactly. In the derivation of the
ETD methods, instead of making a complete change

of variable, we integrate (15) over a single time step of
length ∆t (from t = tn to t = tn+1 = tn +∆t), getting

un+1 = e∆tLun

+ e∆tL
∫

∆t

0
e−∆tLN(u(tn + τ), tn + τ) dτ.

(18)

The various ETD methods come from how one ap-
proximates the integral in this expression. Cox and
Matthews derived in [29] a set of ETD methods based
on the Runge–Kutta time stepping, which they called
ETDRK methods. The fourth-order ETDRK scheme
formula is as follows [29]:

un+1 = un eL∆t +αN(un, tn)+2β [N(an, tn +∆t/2)
+N(bn, tn +∆t/2)]+ γN(cn, tn +∆t),

α = ∆t−2L−3[−4−∆tL+ e∆tL(4−3∆tL+(∆tL)2)],

β = ∆t−2L−3[2+∆tL+ e∆tL(−2+∆tL)],
(19)

γ = ∆t−2L−3[−4−3∆tL− (∆tL)2 + e∆tL(4−∆tL)],

an = e∆tL/2un +L−1(e∆tL/2− I)N(un, tn),

bn = e∆tL/2un +L−1(e∆tL/2− I)N(an, tn +∆t/2),

cn = e∆tL/2an +L−1(e∆tL/2− I)(2N(bn, tn +∆t/2)
−N(un, tn)).

It is shown in [31] that the main step of Cox–Matthews
method can be reproduced based on the techniques
of continuous Runge–Kutta methods. Motivated from
the same idea, but also applied to the internal stages
of the method, a new fourth-order method is derived
in [31]. This method, which is also based on the clas-
sical fourth-order Runge–Kutta method is as follows:

un+1 = e∆tLun +∆t[4φ2(∆tL)−3φ1(∆tL)
+φ0(∆tL)]N(un, tn)
+2∆t[φ1(∆tL)−2φ2(∆tL)]N(an, tn +∆t/2)
+2∆t[φ1(∆tL)−2φ2(∆tL)]N(bn, tn +∆t/2)
+∆t[4φ2(∆tL)−φ1(∆tL)]N(cn, tn +∆t/2),

where

an = e∆tL/2un +∆t/2φ0(∆tL/2)N(un, tn),

bn = e∆tL/2un +∆t/2[φ0(∆tL/2)−2φ1(∆tL/2)]
·N(un, tn)+∆tφ1(∆tL/2)N(an, tn +∆t/2),

cn = e∆tLun +∆t[φ0(∆tL)−2φ1(∆tL)]N(un, tn)
+2∆tφ1(∆tL)N(bn, tn +∆t).
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Also the functions φi are defined as

φ0(z) =
ez−1

z
, φ1(z) =

ez−1− z
z2 ,

φ2(z) =
ez−1− z− z2/2

z3 .

We label this fourth-order time-stepping method as
ETDRKB scheme to distinguish it from a standard
Runge–Kutta scheme and to be consistent with the no-
tation of [26, 29, 32].

Unfortunately, the ETDRK schemes suffer from
numerical instability when the linear operator L has
eigenvalues close to zero, because disastrous cancella-
tion errors arise. Kassam and Trefethen in [26] have
studied these instabilities and have found that they
can be removed by evaluating a certain integral on
a contour that is separated from zero. The procedure
is basically to change the evaluation of the coeffi-
cients, which is mathematically equivalent to the orig-
inal ETDRK scheme of [29], but in [33] it has been
shown to have the effect of improving the stability
of integration in time. Also, it easily can be imple-
mented and the impact on the total computing time is
small.

The approach of [26] is to evaluate f (z) via an inte-
gral over a contour in the complex plane that encloses
z and is well separated from 0 and is

f (z) =
1

2π i

∫
Γ

f (t)
t− z

dt,

where the contour Γ must contain z in its interior and
i2 =−1. This formula is the well known Cauchy inte-
gral formula. It transforms our problem to one of eval-
uating our function over a contour well away from the
problem area. For matrices, a similar form exists [26],
i.e.

f (L) =
1

2π i

∫
Γ

(tI−L)−1 f (t)dt,

in which Γ is any contour that encloses the eigenval-
ues of L. Contour integrals of analytic functions in the
complex plane are easy to evaluate by means of the
trapezoid rule.

4. Numerical Experiments

To study the validity and effectiveness of these
methods and compare the accuracy of the proposed

numerical schemes with other techniques known in
the bibliography, they are applied to various prob-
lems. We performed our computations using Mat-
lab 7 software on a Pentium IV, 2000 MHz CPU ma-
chine with 2 Gbyte of memory. The integration in (8)
was performed using the composite trapezoidal rule.
In all problems we use a 512-point Fourier spec-
tral discretization in x. Also we use fast Fourier
transform (FFT) routines in Matlab (i.e. fft and ifft)
to calculate Fourier transform and inverse Fourier
transform.

4.1. Problem 1

Consider the partial differential equation (3),

∂ 2u
∂ t2 −α

2 ∂ 2u
∂x2 +αu−βu3 = 0.

We solve this PDE with two different initial conditions.

4.1.1. Periodic Waves

We consider (3) with α = 1 and β = 0.1 on the re-
gion 0 < x < 1.28 and the initial conditions

ϕ1(x) = A

[
1+ cos

(
2πx
1.28

)]
,

ϕ2(x) = 0.

For the above problem, and due to the periodic
boundary conditions, the continuous solutions remain
always symmetric with respect to the center of the spa-
tial interval [4, 9]. Authors of [9] studied this prob-
lem and found undesirable characteristics in some of
the numerical schemes, in particular a loss of spatial
symmetry and the onset of instability for larger val-
ues of the parameter A (amplitude) in the initial con-
dition of the equation. Also, it was found that the nu-
merical results given in [4] were more accurate than
the other results given in [9, 10, 18]. In Figure 1, we
show the approximate solutions of Problem 4.1 with
A = 1.5 and A = 150. As we see, the calculated ap-
proximate solutions are similar to the results of [4].
Also the approximate solutions obtained remain sym-
metric with respect to the center of the spatial inter-
val, and the solution remained bounded for amplitude
A = 150 when t ∈ [0,36]. Table 1 gives the energy
E(t) at various time levels that show that the energy
is conserved.
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Fig. 1 (colour online). Approximate solutions of the periodic wave problem with A = 1.5 at T = 0, 200, 1000 (left panel) and
with A = 150 at T = 0, 0.1, 36 (right panel).

Table 1. Errors of calculated energy for periodic wave with
the IFRK method when t ∈ [0, 1000] and A = 1.5, ∆t =
0.001, N = 250, E(0) = 26.59641398628989.

Time (t) t = 1 t = 100 t = 500 t = 1000
|E(t)−E(0)| 1.8×10−10 9.8×10−10 4.6×10−9 8.9×10−9

4.1.2. Single Soliton

We consider the partial differential equation (3) with
the following exact solution:

u(x, t)=

√
2α

β
sech (λ (x− ct)), −10≤ x≤ 10,

where λ =
√

α

α2−c2 , α , β , α2 − c2 > 0. The initial

conditions can be obtained from the exact solution.
The exact solution represents a soliton which travels
with velocity c and whose amplitude is governed by
the real parameter

√
2α

β
. This problem is given in [4].

For comparison, we put parameters α,β , and c similar
to [4], i.e. α = 0.3, β = 1, and c = 0.25. We solved
the above problem with the methods presented in this
article for several values of ∆t and −10 ≤ x ≤ 10 at
final time T = 10. Figure 2 shows the convergence of
the applied methods for this problem. As we see, the
methods achieve an accuracy of order 10−11 in 10 s.
The IFRK method achieves better results in compar-
ison with ETD and ETDRK methods. In Table 2, the
conservation of energy is shown.

4.2. Problem 2

We consider the partial differential equation (2)

∂ 2u
∂ t2 −α

2 ∂ 2u
∂x2 +βu− γu2 = 0, −30≤ x≤ 30,

with the following exact solution

u(x, t) =
3β

2γ
sech2

(
1
2

√
β

α2− c2 (x− ct)
)

.

The initial conditions can be obtained from the exact
solution. This problem is used in [8]. We solved the
above problem with the methods presented in this arti-
cle for several values of ∆t and −30 ≤ x ≤ 30 at fi-
nal time T = 10. We put α = 0.3, β = 0.1, γ = 1,
and c = 0.1. Figure 3 shows the convergence of the ap-
plied methods for this problem. As we see, the methods
achieve an accuracy of order about 10−14 in 10 s. Also
from this figure, we can conclude that for this problem
all of the methods have similar results. Table 3 gives
the energy E(t) at various time levels that show that
the energy is conserved.

4.3. Problem 3

We consider the partial differential equation (4),

∂ 2u
∂ t2 −α

∂ 2u
∂x2 +βu− γu7 = 0, −10≤ x≤ 10,
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Fig. 2 (colour online). Convergence of applied methods for single soliton problem for−10≤ x≤ 10 at final time T = 10. The
methods achieve an accuracy of order about 10−11 in 10 s.

Fig. 3 (colour online). Convergence of applied methods for Problem 2 for −30 ≤ x ≤ 30 at final time T = 10. The methods
achieve an accuracy of order about 10−14 in 10 s.

Table 2. Errors of calculated energy for single soliton with
the IFRK method when t ∈ [0, 20] and ∆t = 0.01, N = 250,
E(0) = 0.11890408663357.

Time (t) t = 1 t = 5 t = 10 t = 20
|E(t)−E(0)| 3.5×10−12 1.3×10−11 2.6×10−11 5.2×10−11

Table 3. Errors of calculated energy for Problem 2 with the
IFRK method when t ∈ [0, 20] and ∆t = 0.01, N = 250,
E(0) = 0.00314710595919.

Time (t) t = 1 t = 5 t = 10 t = 20
|E(t)−E(0)| 1.2×10−16 3.1×10−16 9.2×10−16 3.0×10−14
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Table 4. Errors of calculated energy for Problem 3 with the
IFRK method when t ∈ [0, 20] and ∆t = 0.001, N = 512,
E(0) = 0.13997199493915.

Time (t) t = 1 t = 5 t = 10 t = 20
|E(t)−E(0)| 1.1×10−12 8.8×10−12 1.2×10−9 1.7×10−5

Fig. 4 (colour online). Convergence of applied methods for Problem 3 for −10 ≤ x ≤ 10 at final time T = 10. The methods
achieve an accuracy of order about 10−8 in under 10 s.

Fig. 5 (colour online). Convergence of applied methods for Problem 4 for −30 ≤ x ≤ 30 at final time T = 10. The methods
achieve an accuracy of order about 10−11 in under 10 s.

Table 5. Errors of calculated energy for Problem 4 with the
IFRK method when t ∈ [0, 20] and ∆t = 0.001, N = 512,
E(0) = 14.31083505599865.

Time (t) t = 5 t = 10 t = 20
|E(t)−E(0)| 1.0×10−14 1.1×10−14 1.1×10−14
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Fig. 6 (colour online). Surface plots of approximate solutions for Problems 3 (left panel) and 4 (right panel).

with the following exact solution:

u(x, t) =
6

√√√√4b sech2
(

3
√

b
a−c2 (x− ct)

)
k

.

The initial conditions can be obtained from the ex-
act solution. This problem is used in [3, 8]. We
solved the above problem for several values of ∆t and
−10 ≤ x ≤ 10 at final time T = 10. Figure 4 shows
the convergence of the applied methods for this prob-
lem and in Table 4, the conservation of energy is
shown. From this figure, we can conclude that the
IFRK method achieves better results in comparison
with ETD and ETDRK methods.

4.4. Problem 4: Breather Soliton

We consider the partial differential equation (5),

∂ 2u
∂ t2 −α

2 ∂ 2u
∂x2 − sin(u) = 0, −30≤ x≤ 30,

with the following exact solution:

u(x, t) = 4 tan−1
(

sin(cλ t) sech(xλ )
c

)
,

where λ = 1√
1+c2

. The initial conditions can be ob-

tained from the exact solution. This problem is given

in [4, 20], known as the breather solution of the sine-
Gordon equation, and represents a pulse-type structure
of a soliton. We solved this problem with the meth-
ods presented in this paper for several values of ∆t and
−30 ≤ x ≤ 30 at final time T = 10. Figure 5 shows
the convergence of the applied methods for this prob-
lem. As we see, the methods achieve an accuracy of
order 10−11 in under 10 seconds and for this problem
the ETDRK method achieves better results in com-
parison with IFRK and ETD methods. Table 5 gives
the energy E(t) at various time levels that show that
the energy is conserved. Figure 6 presents the sur-
face plots of approximate solutions for Problems 3
and 4.

Most of the existing methods in the literature for
the numerical solution of the KG equation are time
consuming and have low order of accuracy. From Ta-
bles 1 – 5 and Figures 1 – 5, we can conclude that the
proposed methods are fast and have a high order of ac-
curacy.

5. Concluding Remarks

We have applied fourth-order time-stepping
schemes (IFRK, ETDRK, and ETDRKB) in combi-
nation with discrete Fourier transform to numerically
solve KG equations with periodic boundary conditions
and achieved excellent results (in both accuracy
and CPU time). After transforming the equations
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to a system of ordinary differential equations, the
linear operator is not diagonal, but we can imple-
ment the methods such as for the diagonal case
and reduce the CPU time. For all problems the
conservation of energy was investigated and the
corresponding tables were presented. It would be in-
teresting to implement these methods for non-periodic
boundary conditions and two-dimensional Klein–

Gordon problems which is the subject of our future
work.
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Polo di Ricerca di Crema.

[33] Q. Du and W. Zhu, BIT Numer. Math. 45, 307 (2005).

http://dx.doi.org/10.1007/BF02724733
http://dx.doi.org/10.1007/BF02724733
http://dx.doi.org/10.1016/j.cnsns.2006.08.005
http://dx.doi.org/10.1016/j.cnsns.2006.08.005
http://dx.doi.org/10.1002/num.20383
http://dx.doi.org/10.1002/num.20383
http://dx.doi.org/10.1080/00207169608804516
http://dx.doi.org/10.1080/00207169608804516
http://dx.doi.org/10.1080/00207160701473939
http://dx.doi.org/10.1080/00207160802545890
http://dx.doi.org/10.1080/00207160802545890
http://dx.doi.org/10.1016/j.chaos.2005.08.145
http://dx.doi.org/10.1016/j.chaos.2005.08.145
http://dx.doi.org/10.1016/0096-3003(90)90091-G
http://dx.doi.org/10.1016/0096-3003(90)90091-G
http://dx.doi.org/10.1016/0021-9991(78)90038-4
http://dx.doi.org/10.1016/0021-9991(78)90038-4
http://dx.doi.org/10.1137/0732083
http://dx.doi.org/10.1137/0732083
http://dx.doi.org/10.1016/S0168-9274(98)00128-7
http://dx.doi.org/10.1007/s11071-006-9194-x
http://dx.doi.org/10.1007/s11071-006-9194-x
http://dx.doi.org/10.1002/nme.1924
http://dx.doi.org/10.1002/nme.1924
http://dx.doi.org/10.1016/j.cam.2008.12.011
http://dx.doi.org/10.1016/j.cam.2008.12.011
http://dx.doi.org/10.1002/num.20289
http://dx.doi.org/10.1002/num.20289
http://dx.doi.org/10.1002/num.20325
http://dx.doi.org/10.1002/num.20325
http://dx.doi.org/10.1016/j.cpc.2010.04.008
http://dx.doi.org/10.1016/j.cpc.2010.04.008
http://dx.doi.org/10.1007/s11075-009-9296-x
http://dx.doi.org/10.1007/s11075-009-9296-x
http://dx.doi.org/10.1016/j.amc.2010.01.122
http://dx.doi.org/10.1016/j.amc.2010.01.122
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1006/jcph.1999.6351
http://dx.doi.org/10.1006/jcph.1999.6351
http://dx.doi.org/10.1016/j.jcp.2004.08.006
http://dx.doi.org/10.1007/s10543-005-7141-8

	Fast and High Accuracy Numerical Methods for the Solution of Nonlinear Klein--Gordon Equations
	1 Introduction
	2 Spatial Discretization
	3 Exponential Integrators
	3.1 Runge--Kutta Integrating Factor (IFRK)
	3.2 Runge--Kutta Exponential Time Differencing (ETDRK)

	4 Numerical Experiments
	4.1 Problem 1
	4.1.1 Periodic Waves
	4.1.2 Single Soliton

	4.2 Problem 2
	4.3 Problem 3
	4.4 Problem 4: Breather Soliton

	5 Concluding Remarks


