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In this paper, the generalized sub-equation method is extended to investigate localized nonlinear
waves of the one-dimensional nonlinear Schrodinger equation (NLSE) with potentials and nonlin-
earities depending on time and on spatial coordinates. With the help of symbolic computation, three
families of analytical solutions of this NLS-type equation are presented. Based on these solutions,
periodically and quasiperiodically oscillating solitons (dark and bright) and moving solitons are ob-
served. Some implications to Bose-Einstein condensates are also discussed.
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1. Introduction

The nonlinear Schrédinger equation (NLSE) is one
of the most important and universal nonlinear mod-
els of modern science. It appears in many branches of
physics and applied mathematics, including nonlinear
optics [1], Bose-Einstein condensates (BECs) [2-5],
biomolecular dynamics [6], and so on. Especially, with
the development of optical soliton communication and
the experimental realization of BECs, there have been
many theoretical and experimental investigations in
models based on the NLSE during the last few years.

Various nonlinear excitations in BECs such as dark
and bright solitons [7—11], vortices [12, 13], BEC dy-
namics in optical lattices [14, 15], and two-component
BECs [16] have been observed and studied. Theo-
retical and experimental studies have shown that the
properties of BECs, including their shape and collec-
tive nonlinear excitations, are determined by the sign
and magnitude of the s-wave scattering length, which
can be controlled by means of the external magnetic
or low-loss optical Feshbach-resonance (FR) tech-
nique [17-19]. These techniques offer us some op-
portunities to get a spatiotemporal management of the
local nonlinearity through the use of time-dependent
and/or nonuniform fields.

In nonlinear optics, after predictions of the possibil-
ity of the existence [20] and experimental discovery by

Mollenauer et al. [21], today, NLSE optical solitons are
regarded as the natural data bits and as an important al-
ternative for the next generation of ultrahigh speed op-
tical telecommunication systems [1, 22—-27]. Recent
developments [28 —30] have led to the discovery of
new classes of waves, such as the so-called optical
similariton and nonautonomous solitons, which arise
when the interaction of nonlinearity, dispersion, and
gain in a high-power fiber amplifier causes the shape
of an arbitrary input pulse to converge asymptotically
to a pulse whose shape is selfsimilar.

Since it is believed that atomic matter nonlinear ex-
citations are of importance for the development of ap-
plications of BECs, it is of interest to develop some
new mathematical algorithms or extend some known
effective methods to investigate some exact solutions,
especially bright and dark solitons, in realistic models.
With this motivation, in this work we will extend the
generalized subequation method [31] to explore some
exact solutions of the physical systems ruled by the
NLSE of the general form [32]

Y =~y (0, Y+ g(x,) |y Py (1

In the case of BECs, ¥ = y(x, ) represents the macro-
scopic wavefunction, v(x,t) is a space-dependent ex-
ternal potential which oscillates periodically in time
from attractive to expulsive behaviour, and g(x,7) de-
scribes the modulation of the nonlinearity in space and
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time. The signs of g(z,x) can be positive or negative,
indicating that the interactions are repulsive or attrac-
tive, respectively. In [32], the authors constructed ex-
plicit nontrivial solutions of (1) by using a similarity
transformation and gave some implications of the field
of matter waves. When v(x,7) = v(x) and g(x,t) = g(x),
Belmonte-Beitia et al. constructed explicit solutions
for (1) by Lie group theory and canonical transfor-
mation and discussed their applications to the field of
nonlinear matter waves [33]. When the atomic scatter-
ing length g(x,¢) is only time-dependent, and v(x,¢)
takes various different potentials, such as a parabolic
potential or a combined potential, many authors in-
vestigated (1) from different view points by different
methods [23, 24, 28 —31, 34 —40].

The paper is organized as follows: In Section 2, we
extend the generalized sub-equation method [31] to (1)
and successfully construct three families of analytical
solutions of it. In Section 3, we give the expressions of
periodically and quasiperiodically oscillating solitons
(dark and bright) and moving solitons. Finally, some
conclusions are given briefly.

2. Exact Solutions of NLSE Systems with Time-
and Space-Modulated Nonlinearities

We now extend the generalized sub-equation
method [31] to investigate some exact solutions for (1).
According to the idea of the method, balancing the
highest-order derivative term and the nonlinear terms,
we assume the solutions of (1) as of the following gen-
eral form:

_ Aol 1) +A1(x,1)9(E) +Bi(x,1)9'(E)
I4a1(x,0)9(6) +b1(x,1)¢'(S) )
-expli® (x,1)],
where Ag(x,1), Ai(x,1), Bi(x,t), ai(x,t), bi(x,1),

0(x,t) are undetermined functions and ¢ (&) is deter-
mined by

97(8) = ho+19(8) +m0*(§)
+h39* (&) +hag*(8)
with & = & (x,t) and h; (i =0,1,2,3,4) being arbitrary
constants, where the prime denotes differentiation with
respect to &.
Next, substituting (2) with (3) into (1) at same time,
we take a new function

E=F(X), X=X(x,1) =y(@t)x+0(t), )

3
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where y(¢) is the inverse of the width of the localized
solution and —o(7)/y(z) is the position of its center of
mass. Then we get a set of huge numbers of differen-
tial equations (for simplification, we omit the set in this
paper). After some thorough analysis and some quite
tedious calculations, three families of exact solutions
for (1) are obtained under the following constraint con-
ditions:

glx,1) = My(F')%,

v(x,1) = W(Z)xz + f(0)x+h(x,1), (5)
__ Y2 O
O(x,1) = 4yx 2yx—&—p,
where
Vit %2 On O
w(t) = — 2L f(t)=———,
O=2-L j0-3-
[3(1;-///)2 _ ZFWF]}/Z o
= 6
hx.0) i NP ©)
o}
TP

with p as arbitrary function of r and M, N as constants
which are satisfied with different conditions in differ-
ent solutions.

Family 1. When h; = h3 = 0, the following series of
solutions of (1) can be derived:

Vi =Ciy/ 2 0(E)expliO(x.1)], ™
2h

M= 5. N=h, ®)
1

where O (x,t) and v, F are determined by (4)—(6), Ci,
hy, h4 are arbitrary constants, and ¢ (&) can be taken
as one of 33 solutions arranged in Table 1 of [41],
which include hyperbolic function solutions, Jacobi el-
liptic function solutions, trigonometric function solu-
tions, etc. For simplification, we do not list them in this

paper.
Family 2. When h, = hy = 0, the following two types

of solutions of (1) can be obtained:
Case 2.1

Yir = mﬁexp[i@(mﬂ, ©)

Shi

_ 3 h
- 128mC3

A —
8ho' © 8K]

(10)
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h h
Case 2.2 N:ﬁ, hz:ﬁ' (15)
3Cs3[ho —2mi¢(8)] [v . ..
2 310 1
= —expliO(x,1)], 11
v [3ho +2m19(E)] V F’ pliOw.1)] (b Case 3.2
7h? 3h? 4n’
=5 V=T = 12 o (= (uh—4h)9(8)] [ 2y
9C3ho 0 hy Vin ==+ 7
. 41+ ue(8)] haMF (16)
where O(x,7), ¥, and F are determined by (4)-(6), expli®(x,1)]
Cy, Cs, ho, hy are all non-zero constants, and ¢ (&) P .
is the following Weierstrass elliptic doubly periodic N— h% - h% 17
solution: T 8hy C T 4hy a7n
h
‘P(g)_lg(\/;é,gz,gs), h3 >0, Case 3.3
(13)
g = —4@, g3 = —4@. I3II -+ 4h4¢/(€) 2y
h3 hs [hs +4ha¢(E)] V MF’ (18)
Family 3. When Ay = h; = 0, three kinds of solutions -exp[i® (x,1)],
of (1) can be derived as follows: h% h%
N=-3 hy=-2 1
Case 3.1 e 2T dh (19)
T ¢(8) (2hg — uh3)y .
Vi = 1 MF' where O(x,7) and y,F are determined by (4)—(6), U,
[1+u1¢(S)] .
) (14)  h3, h4 are all non-zero constants, and ¢ (&) is one of
-expli® (x,1)], the following two hyperbolic function solutions:
| 4hyHysech? (@ &)
om(§) = NG YN (20)
20 +2(1 4 Ay)tanh (Y52&) — (2h3Hy + €))sech® (¥52&)
4h2H()SCCh2 @5
¢ (&) = (22¢) 1)

where hy > 0, Hy = exp(y/hoH;) is an arbitrary con-
stant, and A} = H02(4h2h4 — hgz), Ay = (dhyhy — /’l32),
.Q] =1 —Al, and QQ = H02 —Az.

Thus, by selecting y(¢), o(t), a(r), and F(X), we
can generate pairs v(x,t), g(x,z), and obtain corre-
sponding analytical solutions from the above solutions.
It is necessary to point out that the results in [32] can be
reproduced from our Family 1 by setting g =0, hy =
W, hs= % and C; = 1. But to our knowledge, the other
solutions obtained here have not been reported earlier.

3. Periodically and Quasiperiodically Oscillating
Soliton and Moving Soliton

In order to understand the significance of these so-
lutions in Families 1—3 obtained in Section 2, we are
more interested in the main soliton features of them.

2y — 2(Ay + Ho?)tanh (Y2£) — (2h3Ho + Qp)sech? (Y2 £)

In the following, we mainly consider two examples of
these derived solutions as application.

Now, we are more willing to focus attention to the
case of specific nonlinearity which may produce some
example of interest. In fact, the choice of possible non-
linearity is very rich, here we suppose that it is given
explicitly by

g(x,1) = My(t)[1+ Aexp(-X?)]’, (22)
where A is a real parameter which controls the be-
haviour of the nonlinearity. This nonlinearity can
be obtained by the application of three modulated
Gaussian laser beams on the BEC, as experimen-
tally demonstrated [34] to realize optically controlled
interactions via the optical Feshbach resonance. To
better see this, we expand the term in (22) to get
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14+30e X £312e 2 £ 13e 3, with each Gaus-
sian term representing the action of a laser beam with
properly adjusted intensity, frequency, and waist [42].
At the same time, we may choose the function F(X) as

1
F(X)= Eﬂ,\/ﬁerf(X)—i—X. (23)
To make sure that frequency w(¢) and nonlinearity
g(x,1) are bounded for realistic case, the inverse of the
width of the localized excitation y(¢) is assumed as the
complex periodic function

¥(t) = 0.1+ [og + adn(kiz,ny) + Bdn(kat, n2))?, (24)

where o, o, B, ki,k; are real constants and ny, ny €
[0, 1] are the modules of the Jacobi elliptic functions.

3.1. Periodically and Quasiperiodically Oscillating
Soliton

Firstly, we consider the particular case when o (z)
=0.

i. One example is (7) and (8) with ¢ (&) expressed
by the Jacobi elliptic function cn(&;m) in [41] which
has the form

—hom? h
| 2m°Y 2
=i\ T e\ 5 S
lI/I 1 I’l4(2m2 _ 1)F/ Cn( 2m2 _ lé m) (25)
-expli®(x,1)],
2,201 .2
where iy > 0, hy <0, and by = %

The corresponding nonlinearity and the potential in
(4)—(6) has to be given by the form

_ 2hay(14Ae 7F)?

g(x,1) : (26)
P
y2x2 _ 2
1) = wle)a? - L2 =M
(e7* +1)? @7
PP+ Ay
ezyzxz ey2x2 +A —pPr-

In Figure 1, we plot w(z) in two cases to illustrate
its periodic and quasiperiodic features. In Figure 2, we
note that the potentials periodically oscillate from at-
tractive to expulsive behaviour mainly, except for the
small attractive or expulsive structures near the origin.
However, when this small allowed difference exist, the

0.67

o o
N
N |

w(t) 04

Fig. 1 (colour online). Plots of w(¢) in (6), for oy = 0.01, &
09,B8=0,k =1,n, =0.9,and for o =0.01, o =1, B
0.6, k1 =1, kp =2, ny =ny = 0.9, respectively.

solutions maintain the qualitative behaviour which is
displayed in Figure 3. So we deduce that (25) evolve
in time periodically or quasiperiodically, depending on
the way y(¢) in (24), showing that they are localized
excitations which we name periodic and quasiperiodic
bright solitons.

It is easy to get the dark soliton solutions of (1) if we
choose ¢ (&) expressed by the Jacobi elliptic function
sn(&;m) in [41] when m — 1 in (7) and (8). Here, we
do not list this situation in this paper.

ii. Another example is (9) and (10); we rewrite it
here by the form

vl = 4hoCo /T ( VIR E 83, 83)
I —
\m[4ho+hllﬂ(@§,g27gs)]
-expli® (x,1)],

(28)

where /13 >0, g2 = —47L, and g3 = —472.
The corresponding nonlinearity and the potential
in (4)—(6) has to be given by the form

_ Shiy(14Ae 1)

29
y2x2 _ 2
1) = wie)a — AL 2T ZA)x
(er™ 4+ 1)2 30)
v G N VR
8 €27 RZCEgY -

In Figure 4, we still plot w(z) in two cases to illustrate
its periodic and quasiperiodic features. In Figure 5, we
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(b)
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Fig. 4 (colour online). Plots of w(z) in (6), with op = 0.1, oc =
1, B =0,k =1,n; =0.2 for the line with smaller amplitude,
and with op = 0.1, @ = 0.03, B =0.01, k; =1, kp = 3.2,
n1 = ny = 0.9 for the line with larger amplitude, respectively.

(a) (b)

Fig.2 (colour online). Plots
of v(x,t) in (27). (a) p =
0,A=050m)p=0,1=
—0.5, and the other param-
eters are the same as the
parameters in Figure 1: the
line with the smaller ampli-
tude for (a), the line with the
larger amplitude for (b), re-
spectively.

Fig. 3 (colour online). Plots of
|w|?> of solution (25), with
A=405 m=1,C =1,
hy =1, hy = —1, and the
other parameters are the same
as the parameters in Figure 1:
the line with the smaller am-
plitude for periodic (a), the
line with the larger amplitude
for quasiperiodic (b), respec-
tively.

note that the potentials periodically oscillate from at-
tractive to expulsive behaviour mainly. But here the
attractive or expulsive structures near the origin are
obvious and do not change if w(z) ist periodically or
quasiperiodically. In this case, in Figures 6 and 7, if we
change A — —A, the periodic and quasiperiodic dark
solitons become bright solitons, but at the same time
maintain the same shape at the condition of the same
potential.

3.2. Moving Solitons

In fact, to observe the moving solitons, we must
present solutions of (1) when the center of mass of the
soliton moves with non-zero velocity. In order to arrive

Fig.5 (colour online). Plots
of v(x,t) in (30). (a) p =
0, A = 0.05 and w(r) is the
same as in Figure 4 (small
amplitude); (b) p =0, A =
—0.05, and w(r) is the same
as in Figure 4 (large ampli-
tude).
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Fig. 6 (colour online). Plots
of |y|? of solution (28) with
A =0.05, C; =0.01, hy =
0.1, Ay = 0.001, the other
parameters are the same as
in Figure 4, the small am-
plitude line for periodic (a)
and the large amplitude line
for quasiperiodic (b), re-
spectively.

Fig. 7 (colour online). Plots
of |y|? of solution (28) with
A =-0.05,C,=0.01, hy =
0.1, Ay = 0.001, the other
parameters are the same as
periodic (a) Figure 4a (small
amplitude) and quasiperi-
odic (b); Figure 4b (large
amplitude), respectively.

Fig. 8 (colour online). (a)
Density plot of |y]|? of solu-
tion (25) with the parameters
‘ m=1,Ci=0p=k =hy=

\ —h=a=10y=0n =
\ 0.9, A = 0.1; (b) Density
\ plot of |y|? of solution (28)
with the parameters C; =
0.0l,00=ki=0=1,hy=

SR ———

RN -—————
o

-20

this aim, we set () =0 and o (¢) # 0 in (5) and (6),
then we derive
o(t) = o [ y(e7 31)
where oy is an arbitrary constant.
Obviously, the center of mass of the solition will
move in a complex way according to (31). In Figure 8,

we show the moving track of (25) and (28) while the
center of mass of the solition moves according to (31).

|
[
o
o
[
o
N
o

0.1, hy = —0.001, o = 0,
t n =02,1=0.1.

4. Summary and Discussion

In this paper, by extending the generalized sub-
equation method, we present three families of an-
alytical solutions of the one-dimensional nonlinear
Schrodinger equation with potentials and nonlinear-
ities depending on time and on spatial coordinates.
Then, based on these solutions, periodically and
quasiperiodically oscillating solitons (dark and bright)
and moving solitons are observed. At the same time,
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at different choice of potentials and nonlinearities, fea-
tures of soltion solutions are discussed. These results
provide some potential applications in many physi-
cal fields, such as Bose-Einstein condensate, nonlin-
ear optics, etc., and open up opportunities for fur-
ther studies on relative experiments, such as con-
trolling Bose—Einstein condensates by designing po-
tentials and nonlinearities depending on time and
space.
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