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In this paper, we study the bifurcations and dynamic behaviour of the travelling wave solutions of
the perturbed nonlinear Schrödinger equation (NLSE) with Kerr law nonlinearity by using the theory
of bifurcations of dynamic systems. Under the given parametric conditions, all possible representa-
tions of explicit exact solitary wave solutions and periodic wave solutions are obtained.
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1. Introduction

In the recent years, many direct methods have been
developed to construct travelling wave solutions to
the nonlinear partial differential equations (NLPDEs),
such as the trigonometric function series method [1, 2],
the modified mapping method and the extended map-
ping method [3], the modified trigonometric function
series method [4], the dynamical system approach
and the bifurcation method [5], the exp-function
method [6], the multiple exp-function method [7], the
transformed rational function method [8], the symme-
try algebra method (consisting of Lie point symme-
tries) [9], the Wronskian technique [10], and so on. In
addition they are efficient alternative methods for solv-
ing fractional differential equations, see [11 – 13].

In this paper, we investigate the perturbed NLSE
with Kerr law nonlinearity [2]

iut +uxx +α|u|2u+ i[γ1uxxx + γ2|u|2ux

+ γ3(|u|2)xu] = 0,
(1)

where γ1 is the third-order dispersion, γ2 is the non-
linear dispersion, while γ3 is also a version of non-
linear dispersion. More details are presented in [1].
It must be very clear that γ3 is not Raman scattering
in general, but only if γ3 is purely imaginary. More-
over, Raman scattering is not a Hamiltonian pertur-
bation and therefore it is not an integrable perturba-

tion. More details are presented in [4]. Equation (1) de-
scribes the propagation of optical solitons in nonlinear
optical fibers that exhibits a Kerr law nonlinearity. Re-
cently, there are lots of contributions about (1) (see for
instance [2, 4, 5, 14 – 20] and references therein). Equa-
tion (1) has important applications in various fields,
such as semiconductor materials, optical fiber commu-
nications, plasma physics, fluid and solid mechanics.
More details are presented in [21].

It is worth mentioning that Zhang et al. [3 – 5, 14]
considered the NLSE (1) with Kerr law nonlinearity
and obtained some new exact travelling wave solu-
tions of (1). In [3], by using the modified mapping
method and the extended mapping method, Zhang et
al. derived some new exact solutions of (1), which are
the linear combination of two different Jacobi ellip-
tic functions and investigated the solutions in the limit
cases. In [4], by using the modified trigonometric func-
tion series method, Zhang et al. studied some new ex-
act travelling wave solutions of (1). In [5], by using
the dynamical system approach, Zhang et al. obtained
the travelling wave solutions in terms of bright and
dark optical solitons and cnoidal waves. The authors
found that (1) has only three types of bounded travel-
ling wave solutions, namely, bell-shaped solitary wave
solutions, kink-shaped solitary wave solutions, and Ja-
cobi elliptic function periodic solutions. Moreover, we
pointed out the region in which these periodic wave so-
lutions lie. We show the relation between the bounded
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travelling wave solution and the energy level h. We ob-
serve that these periodic wave solutions tend to the cor-
responding solitary wave solutions as h increases or
decreases. Finally, for some special selections of the
energy level h, it is shown that the exact periodic so-
lutions evolute into solitary wave solutions. In [14], by
using the modified (G′

G )-expansion method, Miao and
Zhang obtained the travelling wave solutions, which
are expressed by hyperbolic functions, trigonometric
functions, and rational functions.

In the absence of γ1, γ2, γ3 (i.e. γ1 = γ2 = γ3 = 0),
(1) reduces to

iut +uxx +α|u|2u = 0. (2)

It is well known that the NLSE (2) admits the bright
soliton solution [22] or [4, pp. 2]

u(x, t) = k

√
2
α

sech(k(x−2µt))ei[µx−(µ2−k2)t]

for the self-focusing case α > 0, where α and k are ar-
bitrary real constants, and the dark soliton solution [23]
or [4, pp. 2]

u(x, t) = k

√
− 2

α
tanh(k(x−2µt))ei[µx−(µ2+2k2)t]

for the de-focusing case α < 0, where α and k are ar-
bitrary real constants. For related problems, we refer
to [24, 25] and the references therein.

In [26], Kodama considered the perturbed higher-
order nonlinear Schrödinger equation

∂Ψ

∂ z
= iα1

∂ 2Ψ

∂ t2 + iα2|Ψ |2Ψ +α3
∂ 3Ψ

∂ t3

+α4
∂Ψ |Ψ |2

∂ t
+α5Ψ

∂ |Ψ |2

∂ t
,

(3)

where Ψ is a slowly varying envelop of the electric
field, the subscripts z and t are the spatial and tempo-
ral partial derivative in retard time coordinates, and α1,
α2, α3, α4, and α5 are real parameters related to group
velocity, self-phase modulation, third-order dispersion,
self-steepening, and self-frequency shift arising from
stimulated Raman scattering, respectively. Since α5 is
real valued, this perturbation term represents a nonlin-
ear dispersion.

Recently, Liu [27] obtained some new exact travel-
ling wave solutions of (3) by using the generally pro-
jective Riccati equation method. In [28], by using the

extended Jacobi elliptic function expansion methods,
El-Wakil and Abdou investigated new exact travelling
wave solutions of (3) which include a new solitary or
shock wave solution and envelope solitary and shock
wave solutions. Later on, by using the generalized aux-
iliary equation method, Abdou [29] studied (3) and
obtained some new types of exact travelling wave so-
lutions, including soliton-like solutions, trigonometric
function solutions, exponential solutions, and rational
solutions.

However, in our contribution, we investigate the bi-
furcations and dynamic behaviour of travelling wave
solutions of the NLSE (1) with Kerr law nonlinearity
by using the theory of bifurcations of dynamic sys-
tems. Furthermore, under the given parametric condi-
tions, we obtain all possible representations of explicit
exact solitary wave solutions and periodic wave solu-
tions.

Remark 1.1. There are discussions on more exact
solutions of the standard nonlinear Schrodinger equa-
tion in [9], which the authors should better mention
while discussing the bright and dark solitons of the
equation. On exact solutions to soliton equations, there
is a new and interesting discovery recently presented
on the basis of the linear superposition principle. More
details are present in [32]. This even gives linear sub-
spaces of solutions to nonlinear equations.

2. Bifurcations and Exact Travelling Wave
Solutions

In this section, we will investigate the profiles of the
travelling wave solutions and give all possible exact ex-
plicit parametric representations for the bounded trav-
elling wave solutions.

Assume that (1) has travelling wave solutions in the
form [2]

u(x, t) = φ(ξ )exp(i(Kx−Ω t)), ξ = k(x− ct), (4)

where c is the propagating wave velocity.
Substituting (4) into (1) yields

i(γ1k3
φ
′′′−3γ1K2kφ

′+ γ2kφ
2
φ
′+2γ3kφ

2
φ
′− ckφ

′

+2Kkφ
′)+(Ωφ + k2

φ
′′−K2

φ +αφ
3 +3γ1Kk2

φ
′′

+ γ1K3
φ − γ2Kφ

3) = 0,

where γi (i = 1,2,3), α , k are positive constants and
the prime meaning differentiation with respect to ξ .
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By virtue of [2, pp. 3065], we have

Aφ
′′(ξ )+Bφ(ξ )+Cφ

3(ξ ) = 0(A 6= 0), (5)

where A = γ1k2, B = 2K−c−3γ1K2, and C =− 1
3 γ2 +

2
3 γ3.

Indeed, (5) is the well known Duffing equation
which is the equation governing the oscillations of
a mass attached to the end of a spring transmitting ten-
sion (or compression) [30].

Let x = φ(ξ ) and y = φ ′(ξ ), then (5) reduces to the
following planar dynamic system:

dφ

dξ
= y,

dy
dξ

=−B
A

φ +
C
A

φ
3.

(6)

For simplicity, we assume β = B
A , γ = −C

A . Then (6)
has the Hamiltonian function

H(φ ,y) =
1
2

y2 +
1
2

βφ
2 +

1
4

γφ
4 = h, (7)

where h ∈ R is an integral constant.
Now, we discuss the bifurcations of the phase por-

traits of (6) in space (parameter β , γ). Clearly, there
are three equilibrium points O(0,0), φ1(φ1,0), and

φ2(φ2,0) for (6) on the φ -axis, where φ1 =
√
−β

γ
,

φ2 = −
√
−β

γ
, and βγ < 0 (We consider only this

case. Otherwise, the system has one equilibrium point
O(0,0) which is a trivial case.) By qualitative analy-
sis [31], we have the following results:

Case 1. If β > 0, γ < 0, then the equilibrium point
O(0,0) is a center point, while the equilibrium points

P−(−
√
−β

γ
,0) and P+(

√
−β

γ
,0) are saddle points

of (6).
Case 2. If β < 0, γ > 0, then the equilibrium point

O(0,0) is a saddle point, while the equilibrium points

P−(−
√
−β

γ
,0) and P+(

√
−β

γ
,0) are center points

of (6).
According to the above results, we obtain the phase

portraits of (6) (see Figs. 1 and 2). Now, we consider
Case 1 (β > 0, γ < 0).

Case i. Corresponding to H(φ ,y) = −β 2

4γ
, we have

two heteroclinic orbits of (6) connecting the equi-
librium points P− and P+. The Hamiltonian func-

Fig. 1. Phase portrait of (6) with β > 0, γ < 0.

Fig. 2. Phase portrait of (6) with β < 0, γ > 0.

tion (7) can be written as

y2 = −α2

2γ
−βφ

2− 1
2

γφ
4

=−1
2
(φ1−φ)2(φ −φ2)2.

(8)

By using (8) and the first equation of (6), we obtain the
following two parametric representations:

φ(ξ ) =±

√
−β

γ
tanh

(√
β

2
ξ

)
. (9)

Hence, we obtain the kink and the anti-kink wave so-
lution of (1) as

u(x, t) =±

√
−β

γ
tanh

(√
β

2
k(x− ct)

)
· exp(i(Kx−Ω t)).

(10)

Setting β = 2, γ =−2, k = 1,c = 1, then (10) reduces
to |u|= |tanh(x− t)| (see Fig. 3). Here, |u| is the norm
of u.
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Fig. 3 (colour online). Phase
portraits of (10), (13), (18),
and (19), respectively.

Case ii. Corresponding to H(φ ,y) = h, h ∈
(0,−α2

4γ
), we have a family of periodic orbits of (6)

enclosing the equilibrium point O(0,0), for which the
function (7) can be written as

y2 = 2h−βφ
2− 1

2
γφ

4 =−1
2
(a2−φ

2)(b2−φ
2), (11)

where a2 = − 1
γ
(β +

√
β 2 +4hγ), b2 = − 1

γ
(β −√

β 2 +4hγ).
By using (11) and the first equation of (6), we obtain

the following parametric representation of the family
of periodic orbits:

φ(ξ ) = bsn(ω1ξ ,k1), (12)

where ω1 = a
√
− γ

2 , k2
1 = b2

a2 < 1. It follows that

u(x, t) = bsn(ω1k(x− ct),k1)exp(i(Kx−Ω t)). (13)

This give rise to a family of periodic wave solutions
of (1).

Setting a = 2, b = 1, γ = −1, ω1 = 1, k1 = 1
4 , k =

1, c = 1, then (13) reduces to |u| = |sn(x− t, 1
4 )| (see

Fig. 3).

Now, we consider Case 2 (β < 0, γ > 0).
Case iii. Corresponding to H(φ ,y) = h, h ∈

(h2,h1), where h1 = H(φ1,0), h2 = H(φ2,0), we have
two families of periodic orbits of (6), for which the
Hamiltonian function (7) can be written as

y2 = 2h−βφ
2− 1

2
γφ

4

=
1
2

γ(r4−φ)(φ − r1)(φ − r2)(φ − r3),
(14)

y2 = 2h−βφ
2− 1

2
γφ

4

=
1
2

γ(r4−φ)(r3−φ)(r2−φ)(φ − r1),
(15)

where ri (i = 1, . . .,4) can be obtained by solving the
following algebraic equation with respect to

φ : H(φ ,0) = h, h ∈ (h2,h1).

Note that for concrete parameters, we can get the val-
ues ri by solving the algebraic equation H(φ ,0) = h,
that is γr4 + 2β r2− 4h = 0. By using the first equa-
tion of (6) and (14), (15), we obtain the following two
parametric representations:
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φ(ξ ) = r3 +
(r3− r2)(r3− r1)

(r2− r1)sn2(ω2ξ ,k2)− (r3− r1)
, (16)

φ(ξ ) = r1 +
(r4− r1)(r3− r1)

(r4− r3)sn2(ω2ξ ,k2)+(r3− r1)
, (17)

where ω2 =
√

(r4−r2)(r3−r1)γ
8 , k2 =

√
(r4−r3)(r2−r1)
(r4−r2)(r3−r1) < 1.

Hence, there exist the following periodic travelling so-
lutions of (1):

u(x, t) = r3 +
(r3− r2)(r3− r1)

(r2− r1)sn2(ω2k(x− ct),k2)− (r3− r1)
· exp(i(Kx−Ω t)), (18)

u(x, t) = r1 +
(r4− r1)(r3− r1)

(r4− r3)sn2(ω2k(x− ct),k2)+(r3− r1)
· exp(i(Kx−Ω t)). (19)

Setting γ1 = 1, γ2 = 2, γ3 = 3, γ4 = 4, ω2 = 1, k2 =
√

3
2 ,

k = 1, c = 1, then (18) and (19) become

|u|=
∣∣∣∣3+

2

sn2(x− t,
√

3
2 )−2

∣∣∣∣,
|u|=

∣∣∣∣1+
6

sn2(x− t,
√

3
2 )+2

∣∣∣∣,
respectively (see Fig. 3).

Case iv. Corresponding to H(φ ,y) = h1, where
h1 = H(φ1,0), we have two homoclinic orbits of (6).
The function (7) can be written as

y2 = 2h1−βφ
2− 1

2
γφ

4

=
1
2

γ(φ − r2)2(r3−φ)(r3−φ)(φ − r1).
(20)

By using the first equation of (6) and (20), we obtain
the following two parametric representations:

φ(ξ ) =
(21)

r2 +
2(r3− r2)(r2− r1)

(r3− r1)cos(ω3ξ )− (r3−2r2 + r1)
,

φ(ξ ) =
(22)

r2 +
2(r3− r2)(r2− r1)

(r1− r3)cosh(ω3ξ ,)− (r3−2r2 + r1)
,

where ω3 =
√

(r2−r1)(r3−r2)γ
2 . Therefore, we obtain two

solitary wave solutions of (1) of peak and valley type,

respectively, as follows:

u(x, t) =

r2 +
2(r3− r2)(r2− r1)

(r3− r1)cos(ω3k(x− ct))− (r3−2r2 + r1)
· exp(i(Kx−Ω t)),

(23)

u(x, t) =

r2 +
2(r3− r2)(r2− r1)

(r1− r3)cos(ω3k(x− ct))− (r3−2r2 + r1)
· exp(i(Kx−Ω t)).

(24)

Setting γ = 2, γ1 = 1, γ2 = 2, γ3 = 3, γ4 = 4, ω3 = 1,
k = 1, c = 1, then (23) and (24) become

|u|=
∣∣∣∣2+

1
cos(x− t)

∣∣∣∣,
|u|=

∣∣∣∣2− 1
cos(x− t)

∣∣∣∣,
respectively (see Fig. 4).

Case v. Corresponding to H(φ ,y) = h, h ∈ (h1,∞),
we have a family of periodic orbits of (6) enclosing
three equilibrium points O, A1, and A2, for which the
function (7) can be written as

y2 = 2h−βφ
2− 1

2
γφ

4

=
1
2

γ(r2−φ)(φ − r1)
[
(φ −g1)2 +g2

2

]
,

(25)

where g1 and g2 are real constants. By using (25) and
the first equation of (6), we obtain the following para-
metric representations:

φ(ξ ) =
(r1F− r2G)(r2− r1)cn(ω4ξ ,k3)+ r1F + r2G

(F−G)cn(ω4ξ ,k3)+F +G
,

(26)

where

ω4 =

√
FGγ

2
, k2

3 =
(r2− r1)2− (F−G)2

4FG
,

F2 = (r2−g1)2 +g2
2, G2 = (r1−g1)2 +g2

2.

Thus, we have the following periodic travelling wave
solutions of (1):

u(x, t) =
(r1F− r2G)(r2− r1)cn(ω4k(x− ct),k3)+ r1F + r2G

(F−G)cn(ω4k(x− ct),k3)+F +G
· exp(i(Kx−Ω t)). (27)
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Fig. 4 (colour online). Phase
portraits of (23), (24), and
(27), respectively.

Setting γ = 2, γ1 = 1, γ2 = 2, g1 = 0, g2 =
√

3, ω4 = 2,
F = G = 2, k3 − 1

4 , k = 1,c = 1, then (23) and (27)
become

|u|=
∣∣∣∣32 − 3cn(2(x− t), 1

4 )
4

∣∣∣∣
(see Fig. 4).

3. Summary

In this article, in order to find the travelling wave
solutions of nonlinear partial differential equations
(NPDEs), we introduce the wave variables u(x, t) =
u(ξ ) and ξ = k(x− ct), where k and c are constants.
So, we obtain the following ordinary differential equa-
tion (ODE): Aφ ′′(ξ )+Bφ(ξ )+Cφ 3(ξ ) = 0. Then we

establish the travelling wave solutions of NPDEs by
using the theory of bifurcations of dynamic systems.
Under the given parametric conditions, all possible
representations of explicit exact solitary wave solu-
tions and periodic wave solutions are obtained. Fi-
nally, it is worth while to mention that the method can
also be applied to solve many other NPDEs in mathe-
matical physics which will be investigated in another
work.
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