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Under investigation in this paper is an inhomogeneous nonlinear Schrödinger–Maxwell–Bloch sys-
tem with variable dispersion and nonlinear effects, which describes the propagation of optical pulses
in an inhomogeneous erbium-doped fiber. Under certain coefficient constraints, multi-soliton solu-
tions are obtained by the Hirota method and symbolic computation. Evolution and interaction of the
solitons are plotted, and the self-induced transparency effect caused by the doped erbium atoms is
found to lead to the change of the soliton velocity and phase. Overall phase shift can be observed
when the parameter accounting for the interaction between the silica and doped erbium atoms is
taken as a constant.
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1. Introduction

Propagation of the optical solitons in nonlinear
fibers has its potential applications in communication
systems [1]. Optical solitons, arisen as a result of the
balance between the group velocity dispersion (GVD)
and the nonlinear effect, have been regarded as an al-
ternative for the next generation of ultralong distance,
large capacity, and high-bit-rate communication sys-
tems [2]. The nonlinear Schrödinger (NLS) equation
has been used to describe the optical-soliton propaga-
tion in homogeneous optical fibers [3], while in real
fibers, there exist a number of factors which affect the
generation and dynamics of the optical solitons [4].
Correspondingly, inhomogeneous NLS (INLS) equa-
tions have been thought to be more realistic [5].
Another model is the Maxwell–Bloch (MB) system,
which describes the propagation of the self-induced
transparency (SIT) soliton in a resonant medium [6].
SIT solitons are coherent optical pulses propagating
through a resonant medium without any loss or distor-
tion [7]. The MB system takes the form of [8]

qz = p,

pt −2ikp = qη , ηt =−1
2
(q∗p+ p∗q),

(1)

where t and z are the normalized time and distance
along the direction of propagation, k measures the
frequency shift from the resonance, and the asterisk
denotes the complex conjugate, q(z, t) is the slowly-
varying-envelope axial field, p(z, t) and η(z, t) are
respectively given by 2ν1ν2

∗ and |ν2|2 − |ν1|2 with
ν1(z, t) and ν2(z, t) being the wave functions of two
energy levels of the resonant atoms and obeying the
Zakharov–Shabat equations [3]

∂ν1

∂ t
− ikν1 = qν2, (2a)

∂ν2

∂ t
+ ikν2 =−q∗ν1, (2b)

which are equivalent to (1.13) and (1.14) in [8].
Some researchers have devoted their attention to the

applications of fibers doped with two-level resonant
atoms, such as the erbium-doped fiber, which can in-
duce the pulse amplification [9]. In the erbium-doped
fibers, the optical pulse propagation is described by
the following nonlinear Schrödinger–Maxwell–Bloch
(NLS-MB) system [10]:

iqz +
1
2

qtt + |q|2q = 2i p,

pt −2ikp = 2qη , ηt =−(q∗p+ p∗q).
(3)
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In such system, the SIT soliton can coexist with the
NLS soliton, and this mixed state has been called the
SIT-NLS soliton [11]. Since the presentation by [12],
the coexistence of SIT soliton and NLS soliton in the
erbium-doped fibers has attracted some interest in op-
tical communications [10, 13].

Considering the effects of the inhomogeneities on
the propagation of SIT-NLS solitons in the erbium-
doped fibers, we will investigate an INLS-MB sys-
tem [14, 15],

iqz +α(z)qtt +β (z)|q|2q+ iδ (z)q =−iγ(z)p, (4a)

pt −2ikp = 2τ(z)qη , ηt =−τ(z)(q∗p+ p∗q), (4b)

where α(z), β (z) are the variable dispersion and non-
linearity parameters, and δ (z) represents the gain or
loss of the optical signal, τ(z) describes the interac-
tion between the propagating field and erbium atoms,
and γ(z) is the parameter accounting for the interaction
between silica and doped erbium atoms. Integrability
of System (4) has been reported in [14], where certain
constraints for the variable dispersion and nonlinear-
ity parameters have been derived through the Painlevé
analysis.

With p and η defined above and through the trans-
formations

ν1 = eikta1, ν2 = eikta2, (5)

System (4) can be written as [16]

iqz +α(z)qtt +β (z)|q|2q+ iδ (z)q
(6a)

+2iγ(z)a1a2
∗ = 0,

a1t = τ(z)qa2, a2t +2ika2 =−τ(z)q∗a1. (6b)

Accordingly, solutions for System (4) can be given
when those for System (6) are obtained. It has been
shown that System (6) is Painlevé integrable and has
the Lax pair [17] when 2α(z) = β (z) = constant,
γ(z) = constant, τ(z) = 1, and δ (z) = 0. To our knowl-
edge, only one-soliton solutions for System (4) have
been given [15].

This paper will be arranged as follows. In Section 2,
for System (6), the bilinear form will be derived, and
the N-soliton solutions will be deduced through the
formal parameter expansion, under certain parametric
constraints. N-soliton solutions for System (4) will be
derived through the relation between System (4) and
System (6). All solutions are obtained by symbolic

computation [18 – 20]. In Section 2, figures for Sys-
tem (4) will be plotted to graphically show the evo-
lution and interaction of the SIT-NLS solitons, and
the SIT effect will be found to be responsible for the
change of the soliton velocity and phase. Section 4 will
be our conclusion.

2. Bilinear Form and Soliton Solutions

In the following, we will use Hirota’s bilinear
method [21, 22] to construct the multi-soliton solutions
for System (4).

To solve System (4), we consider the following
Painlevé integrable constraints [14]:

δ (z) =
α(z)βz(z)−β (z)αz(z)

2α(z)β (z)
and

τ(z) =

√
β (z)

2α(z)
,

(7)

and can obtain the variable-coefficient bilinear form of
System (6) as(

iDz +α(z)D2
t

)
(g · f ) =−2iγ1(z)mh∗, (8a)

D2
t ( f · f ) = 2 |g|2, (8b)

Dt(m · f ) = gh, (8c)

Dt(h · f )+2ikh f =−g∗m, (8d)

with the dependent variable transformations

q =

√
2α(z)
β (z)

g
f
, a1 =

m
f
, a2 =

h
f
, (9)

where g, h, and m are the complex functions of z and

t, f is the real one, and γ1(z) =
√

β (z)
2α(z)γ(z). Dz and Dt

are the bilinear differential operators [21] defined by

Dl
zD

n
t ( f ·g) =

(
∂

∂ z
− ∂

∂ z′

)l

·
(

∂

∂ t
− ∂

∂ t ′

)n

f (z, t)g(z, t)
∣∣
z′=z, t ′=t .

(10)

Expand g, h, m, and f with respect to a formal expan-
sion parameter ε as below:

g = εg1 + ε
3g3 + ε

5g5 + . . . ,

m = 1+ ε
2m2 + ε

4m4 + ε
6m6 + . . . ,

h = εh1 + ε
3h3 + ε

5h5 + . . . ,

f = 1+ ε
2 f2 + ε

4 f4 + ε
6 f6 + . . . ,

(11)
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where g j, h j, and mn ( j = 1,3,5, . . . ;n = 2,4,6, . . .) are
the complex functions of z and t, and fn (n = 2,4,6, . . .)
are the real ones, which will be determined.

2.1. One-Soliton Solutions

In order to obtain one-soliton solutions for Sys-
tem (6), we choose

g = εg1, m = 1+ ε
2m2,

h = εh1, f = 1+ ε
2 f2.

(12)

Substituting (12) into (8a) – (8d) and collecting the
terms with the same power of ε , we have the following
solutions:

g1 = eθ1 , m2 = d1 eθ1+θ∗1 ,

h1 = b1 eθ∗1 , f2 = c1 eθ1+θ∗1 ,
(13)

with

θ1 = k1t + ik2
1

∫
α(z)dz+

2i
2k + ik1

∫
γ1(z)dz+ξ1,

b1 =
i

2k− ik∗1
, c1 =

1
(k1 + k∗1)2 ,

d1 =
(2k + ik1)

(2k− ik∗1)(k1 + k∗1)2 ,

where ξ1, k1 are all arbitrary complex constants. One-
soliton solutions for System (6) can be explicitly ex-

pressed as

q =

√
α(z)
2β (z)

1
√

c1
eiφ1sechχ, a2 =

b1

2
√

c1
e−iφ1sechχ,

(14)
a1 =

1
2

eiϕ1(1+ tanh χ)+
1
2
(1− tanh χ),

with

ϕ1 =−i ln
2k + ik1

2k− i k∗1
, χ =

θ1 +θ ∗1 + lnc1

2
,

φ1 = Im(θ1).

Then, the one-soliton expressions for System (4) are
given as follows:

q =

√
α(z)
2β (z)

1
√

c1
eiφ1sechχ, (15)

p =
b1

2
√

c1
eiφ1sechχ

[
eiϕ1(1+ tanh χ)

+(1− tanh χ)
]
,

(16)

η =
b2

1

4c1
sech2

χ− 1
4

[
(eiϕ1 −1) tanh χ +(eiϕ1 +1)

]
(17)

·
[
(e−iϕ∗1 −1) tanh χ +(eiϕ∗1 +1)

]
.

2.2. Two-Soliton Solutions

Employing the following expansions

g = εg1 + ε
3g3, m = 1+ ε

2m2 + ε
4m4,

h = εh1 + ε
3h3, f = 1+ ε

2 f2 + ε
4 f4,

(18)

we obtain the two-soliton solutions for System (6) as

q =

√
2α(z)
β (z)

eθ1 + eθ2 +n31 eθ1+θ2+θ∗1 +n32 eθ1+θ2+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
, (19)

a1 =
1+d11 eθ1+θ∗1 +d21 eθ2+θ∗1 +d12 eθ1+θ∗2 +d22 eθ2+θ∗2 +d4 eθ1+θ∗1 +θ2+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
, (20)

a2 =
b1 eθ∗1 +b2 eθ∗2 +b31 eθ1+θ∗2 +θ∗1 +b32 eθ2+θ∗1 +θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
, (21)

with

b j =
i

2k− ik∗j
, θ j = k jt + ik2

j

∫
α(z)dz+

2i
2k + ik j

γ1(z)dz+ξ j for j = 1,2,

n31 =
(k1− k2)2

(k2 + k∗1)2(k1 + k∗1)2 , b31 =
i(2k + ik1)(k∗1− k∗2)

2

(2k− ik∗1)(2k− ik∗2)(k1 + k∗2)2(k1 + k∗1)2 ,
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n32 =
(k1− k2)2

(k1 + k∗2)2(k2 + k∗2)2 , b32 =
i(2k + ik2)(k∗1− k∗2)

2

(2k− ik∗1)(2k− ik∗2)(k2 + k∗1)2(k2 + k∗2)2 ,

c11 =
1

(k1 + k∗1)2 , c12 =
1

(k1 + k∗2)2 , c21 =
1

(k2 + k∗1)2 ,

c22 =
1

(k2 + k∗2)2 , d11 =
(2k + ik1)

(2k− ik∗1)(k1 + k∗1)2 , d21 =
(2k + ik2)

(2k− ik∗1)(k2 + k∗1)2 ,

d12 =
(2k + ik1)

(2k− ik∗2)(k1 + k∗2)2 , c4 =
|k1− k2|4

(k1 + k∗1)2(k2 + k∗2)2|k2 + k∗1|4
,

d22 =
(2k + ik2)

(2k− ik∗2)(k2 + k∗2)2 , d4 =
(2k + ik1)(2k + ik2)|k1− k2|4

(2k− ik∗1)(2k− ik∗2)(k1 + k∗1)2(k2 + k∗2)2|k2 + k∗1|4
,

where k1, k2, ξ1, ξ2 are all arbitrary complex constants. Similarly, the two-soliton solutions for System (4) can
be expressed as

q =

√
2α(z)
β (z)

eθ1 + eθ2 +n31 eθ1+θ2+θ∗1 +n32 eθ1+θ2+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
, (22)

p = 2
b∗1 eθ1 +b∗2 eθ2 +b∗31 eθ1+θ2+θ∗1 +b∗32 eθ2+θ1+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2

· 1+d11 eθ1+θ∗1 +d21 eθ2+θ∗1 +d12 eθ1+θ∗2 +d22 eθ2+θ∗2 +d4 eθ1+θ∗1 +θ2+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
,

(23)

η =
(b1 eθ∗1 +b2 eθ∗2 +b31 eθ1+θ∗2 +θ∗1 +b32 eθ2+θ∗1 +θ∗2 )(b∗1 eθ1 +b∗2 eθ2 +b∗31 eθ1+θ2+θ∗1 +b∗32 eθ1+θ2+θ∗2 )

(1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2 )2

− 1+d11 eθ1+θ∗1 +d21 eθ2+θ∗1 +d12 eθ1+θ∗2 +d22 eθ2+θ∗2 +d4 eθ1+θ∗1 +θ2+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
(24)

· 1+d∗11 eθ1+θ∗1 +d∗21 eθ1+θ∗2 +d∗12 eθ2+θ∗1 +d∗22 eθ2+θ∗2 +d∗4 eθ1+θ∗1 +θ2+θ∗2

1+ c11 eθ1+θ∗1 + c21 eθ2+θ∗1 + c12 eθ1+θ∗2 + c22 eθ2+θ∗2 + c4 eθ1+θ∗1 +θ2+θ∗2
.

With (7), the N-soliton solutions for System (6) in
the sense of [23] can be expressed as

q(z, t) =

√
2α(z)
β (z)

g(z, t)
f (z, t)

, a1(z, t) =
m(z, t)
f (z, t)

,

a2(z, t) =
h(z, t)
f (z, t)

,

(25)

where

f (z, t) = ∑
µ=0,1

′
exp

( 2N

∑
l=1

µlθl +
2N

∑
l< j

ϕ(l, j)µl µ j

)
,

g(z, t) = ∑
µ=0,1

′′
exp

( 2N

∑
l=1

µlθl +
2N

∑
l< j

ϕ(l, j)µl µ j

)
,

g∗(z, t) = ∑
µ=0,1

′′′
exp

( 2N

∑
l=1

µlθl +
2N

∑
l< j

ϕ(l, j)µl µ j

)
,

m(z, t) = ∑
µ=0,1

′
exp

[ 2N

∑
l=1

µl(θl +ψ(l))

+
2N

∑
l< j

ϕ(l, j)µl µ j

]
,

(26)

m∗(z, t) = ∑
µ=0,1

′
exp

[ 2N

∑
l=1

µl(θl−ψ(l))

+
2N

∑
l< j

ϕ(l, j)µl µ j

]
,

h(z, t) = i ∑
µ=0,1

′′′
exp

[ 2N

∑
l=1

µl(θl +ψ(l))
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+
2N

∑
l< j

ϕ(l, j)µl µ j

]
,

h∗(z, t) =−i ∑
µ=0,1

′′
exp

[ 2N

∑
l=1

µl(θl−ψ(l))

+
2N

∑
l< j

ϕ(l, j)µl µ j

]
,

with

θl = klt + ik2
l

∫
α(z)dz+

2i
2k + ikl

γ1(z)dz+ξl

for l = 1,2, . . . ,2N,

θl+N = θ
∗
l , kl+N = k∗l for l = 1,2, . . . ,N,

ϕ(l, j) = ln
1

(kl + k j)2 for l = 1,2, . . . ,N

and j = N +1, . . . ,2N,

ϕ(l, j) =− ln
1

(kl− k j)2 for l = 1,2, . . . ,N

and j = 1,2, . . . ,N,

or l = N +1, . . . ,2N and j = N +1, . . . ,2N,

ψ(l) = ln(2k + ikl) for l = 1,2, . . . ,N,

ψ(l) =− ln(2k− ikl) for l = N +1, . . . ,2N,

where kl and ξl are all complex constants related to
the amplitude and phase of the lth soliton, ∑

2N
l< j in-

dicates the summation over all possible combinations
taken from 2N elements with the condition l < j, and
∑
′
µ=0,1, ∑

′′
µ=0,1, and ∑

′′′
µ=0,1 indicate the summations

over all possible cases of µl = 0,1 for l = 1,2, . . .,N
under the conditions

N

∑
l=1

′
µl =

N

∑
l=1

′
µl+N ,

N

∑
l=1

′′
µl = 1+

N

∑
l=1

′′
µl+N ,

1+
N

∑
l=1

′′′
µl =

N

∑
l=1

′′′
µl+N .

Then, the N-soliton solutions for System (4) can be
given in the form of

q = q, p = 2a1a2
∗, and η = |a2|2−|a1|2. (27)

3. Results and Discussions

Based on the solutions for System (4) involving two
arbitrary functions α(z) and β (z), whose different val-
ues correspond to various physical systems, we will

consider some special cases in the literature. In this
paper, we choose a periodic distributed amplification
with the varying GVD and nonlinear parameters in the
following form [24]:

α(z) =
1

D0
exp(σz)β (z),

β (z) = R0 +R1 sin(ρz),
(28)

where R0, R1, and ρ are the parameters describing Kerr
nonlinearity and D0 is the parameter related to the ini-
tial peak power in the system. For the sake of conve-
nience, we assume the parameters as R0 = 0, R1 = 1,
and D0 = 1.

The soliton velocity via (15) can be given as

V =− |2k + k1|2

i(k1− k∗1)|2k + k1|2α(z)+2γ1(z)

with γ1(z) =

√
β (z)

2α(z)
γ(z).

(29)

With suitable choice of the parameters in (15), (16),
and (17), we will give Figures 1 and 2. It should be
noted that in Figure 1, σ = 0 corresponds to the case
of the fibers without any loss or gain. In such case, the
pulse does not suffer any broadening or compression
except the possible phase shift induced by the SIT
effect. To study the influence of the SIT effect to the
solitons, we choose γ(z) = 0 in Figure 2, which illus-
trates the soliton propagation without the SIT effect.
For comparison, k1, ξ1, α(z), and β (z) are of the same
values in Figures 1 and 2. As shown in Figure 1, the
solitons propagate along the z-axis with the periodic
oscillation, as a result of periodic distributed amplifica-
tion (28). However, Figure 2 illustrates that the solitons
oscillate periodically in a fixed area. From the compar-
ison between Figures 1 and 2, one can find that the SIT
effect is responsible for introducing the change of soli-
ton velocity and phase. In addition, one can observe
the bright and dark two-peak solitons in Figure 1b
and c, respectively, as well as in Figure 2b and c.

Above analysis and plots are based on the considera-
tion γ(z) = constant. Next, we analyze the optical pulse
propagation for other forms of γ(z). Without loss of
generality, we assume γ(z) = 0.1z and γ(z) = sinz and
respectively plot Figures 3 and 4 with the same param-
eter values as those in Figure 1. From these two figures
we can notice that the profile of the soliton changes
compared with Figure 2. The corresponding evolution
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Fig. 1 (colour online). One soliton represented by (15), (16), and (17) for (28). Parameters adopted here are ρ = 1, k1 =
1.3+0.6i, ξ1 = 2+ i, σ = 0, k = 0.001, and γ(z) = 1.
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Fig. 2 (colour online). Same as Figure 1 except for γ(z) = 0.
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Fig. 3 (colour online). Same as Figure 1 except for γ(z) = 0.1z.
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Fig. 4 (colour online). Same as Figure 1 except for γ(z) = sinz.
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Fig. 5 (colour online). Periodic interaction of the two-soliton solutions via (22), (23), and (24) for (28). Parameters are ρ = 0.6,
k1 = 1+1.2i, k2 = 1−1.2i, ξ1 = 1, ξ2 = 1, γ(z) = 1, k = 0.001, and σ = 0.
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Fig. 6 (colour online). Same as Figure 5 except for γ(z) = 0.
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Fig. 7 (colour online). Same as Figure 5 except for ρ = 0.8, k1 = 1+1.3i, k2 = 1−1.3i, and σ = 0.1.

of one-soliton solutions for p and η are also plotted,
and the bright and dark two-peak solitons can been also
seen in Figures 3 and 4.

Furthermore, we will display the interaction of the
two-soliton solutions for System (4). Figure 5 depicts
the periodic interaction of the two solitons with equal
amplitudes. Two solitons propagate with their original
shapes and amplitudes, and only have a phase shift at
the moment of the collision, which is one of the im-

portant properties of the solitons. A phase shift can
be also observed from the comparison between Fig-
ures 5 and 6, which illustrates the interaction without
the SIT effect, and there exists the velocity change as
well.

In addition, we consider the periodic interaction of
the two-soliton solutions for System (4) for the case of
σ = 0.1 and give Figure 7. As shown in Figure 7a, the
amplitudes of the two solitons increase as t increases.
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Fig. 8 (colour online). Same as Figure 5 except for ρ = 0.8, k1 = 1.1+1.3i, k2 = 1.1−1.3i, and σ =−0.1.

This phenomenon is owing to the choice of σ > 0,
which corresponds to the dispersion-increasing fiber.

Similarly, the case of σ = −0.1 is also consid-
ered, and the periodic interaction is shown by Fig-
ure 8. Unlike that shown in Figure 7a, the amplitudes
of the two solitons decrease while propagating in the
fibers, which can be seen in Figure 8a, as a result
of the negative value of σ . In this case, it represents
the dispersion-decreasing fiber. Relevant issues can be
seen in e.g. [25 – 27].

4. Conclusions

In this paper, we have investigated an INLS-MB sys-
tem, namely System (4), which describes the optical
pulse propagation in the erbium-doped fiber with the
variable dispersion, nonlinearity, and gain/loss param-
eters. Wave functions ν1 and ν2 and transformations
in (5) have been introduced, so as to generate Sys-
tem (6). By way of the bilinear form (8a) – (8d) for
System (6) and with the constraints of (7), we have
derived the one-soliton solutions (15) – (17), the two-
soliton solutions (22) – (24,) and the N-soliton solu-
tions (25) – (27) for System (4), through the relation
between System (4) and System (6). Evolution and in-
teraction properties of the solitons have been graphi-

cally presented (see Figs. 1 – 8), under the periodic dis-
tributed amplification of (28).

Our work has shown that System (4) admits the
propagation and interaction of the SIT-NLS soli-
tons. With certain parametric choices, (16) and (17)
have been found to express the bright and dark
two-peak solitons, respectively (see Figs. 1 and 2).
Based on (15) and the velocity expression in (29),
the SIT effect caused by the doped erbium atoms
has been studied, which leads to the change of the
soliton velocity and phase (see Figs. 1 and 2). In-
teraction parameter γ(z) has been considered, and
the profile of the soliton changes with γ(z), as seen
in Figures 3 and 4. Two solitons via (22) keep
their characters invariant after colliding with each
other in the fiber without gain/loss (see Figs. 5
and 6). However, when the solitons propagate in
the dispersion-decreasing (σ < 0) and dispersion-
increasing (σ > 0) fibers, their amplitudes correspond-
ingly decrease and increase (see Figs. 7 and 8, respec-
tively).
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