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The steady two-dimensional stagnation-point flow of an incompressible viscous fluid over an ex-
ponentially shrinking/stretching sheet is studied. The shrinking/stretching velocity, the free stream
velocity, and the surface temperature are assumed to vary in a power-law form with the distance from
the stagnation point. The governing partial differential equations are transformed into a system of or-
dinary differential equations before being solved numerically by a finite difference scheme known as
the Keller-box method. The features of the flow and heat transfer characteristics for different values
of the governing parameters are analyzed and discussed. It is found that dual solutions exist for the
shrinking case, while for the stretching case, the solution is unique.
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1. Introduction

Started from the last century, there have been nu-
merous sophisticated studies on boundary layer flow.
The effects of viscosity and thermal conductivity are
important in this layer. Thus, this leads to an urge to
understand the underlying physical, mathematical, and
modelling concepts inherent in boundary layers. In re-
ality, the majority of applications in industrial manu-
facturing processes have to deal with fluid flow and
heat transfer behaviours. Examples include the poly-
mer sheet extrusion from a dye, gaseous diffusion, heat
pipes, drawing of plastic film, etc. Such processes play
an important role to determine the quality of the final
products as explained by Karwe and Jaluria [1, 2].

Crane [3] has first initiated to discuss the two-
dimensional steady flow of an incompressible vis-
cous fluid induced by a linearly stretching plate. The
boundary layer equations were simplified using a sim-
ilarity transformation, which transformed the govern-
ing partial differential equations to a single ordinary
differential equation. Since then, there were simi-
lar flows that have been considered by several re-
searchers [4 – 8]. Such similar flows have been studied

extensively in various aspects, for example dealing
with suction/injection, stretching, the magnetohydro-
dynamic (MHD) effect, radiation or considering the
non-Newtonian fluids. Magyari and Keller [9] re-
ported the similarity solutions describing the steady
plane (flow and thermal) boundary layers on an ex-
ponentially stretching continuous surface with an ex-
ponential temperature distribution. This problem was
then extended by Bidin and Nazar [10], Sajid and
Hayat [11], and Nadeem et al. [12, 13] to include
the effect of thermal radiation, while Pal [14] and
Ishak [15] studied the similar problem but in the pres-
ence of a magnetic field. Sanjayanand and Khan [16]
studied the heat and mass transfer in a viscoelastic
boundary layer flow over an exponentially stretching
sheet. The mixed convection flow of a micropolar fluid
over an exponentially stretching sheet was considered
by El-Aziz [17]. The problems in non-Newtonian flu-
ids considered in [16, 17] do not admit similarity so-
lutions, and thus the authors reported local similarity
solutions with certain assumptions.

Recently, the shrinking aspect has become a brand
new topic. The abnormal behaviour in the fluid flow
due to a shrinking sheet has gained attention from sev-
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eral researchers. However, the work on it is relatively
little. The flow induced by a shrinking sheet was first
discussed by Miklavčič and Wang [18], where the ex-
istence and (non)uniqueness of solutions in both nu-
merical and exact solutions were proven. In extension
to that, Fang [19] has carried out the shrinking prob-
lem to power law surface velocity with mass transfer. It
was shown that the solution only exists with mass suc-
tion for the rapidly shrinking sheet problem. Further-
more, Wang [20] has investigated that the shrinking
sheet problem has many unique characteristics. Later
on, Sajid et al. [21] concerned with the MHD rotating
flow over a shrinking surface. It was found that the re-
sults in the case of hydrodynamic flow are not stable
for the shrinking surface and only meaningful in the
presence of a magnetic field. The flow over a shrink-
ing sheet in a porous medium was studied by Nadeem
and Awais [22]. On the other hand, Ishak et al. [23]
solved numerically the micropolar fluid flow problem
over a linearly shrinking sheet, and found that dif-
ferent from the stretching case, the solutions are not
unique. Very recently, Nadeem et al. [24 – 26] studied
the stagnation point flow over a shrinking sheet in non-
Newtonian fluids.

Motivated by the above investigations, in this paper
we study the steady two dimensional stagnation point
flow over an exponentially shrinking/stretching sheet.
The shrinking/stretching velocity, the free stream ve-
locity, and the surface temperature are assumed to vary
in an exponential form with the distance from the stag-
nation point. The skin friction coefficient and the local
Nusselt number are determined for the understanding
of the flow and heat transfer characteristics. The practi-
cal applications include the cooling of extruded materi-
als in industrial processes using an inward directed fan
or conical liquid jets. To the best of our knowledge, this
kind of exponential shrinking/stretching sheet problem
has never been considered before.

Fig. 1. Physical model and coordi-
nate system.

2. Problem Formulation

Consider a stagnation-point flow over an exponen-
tially shrinking/stretching sheet immersed in an incom-
pressible viscous fluid as shown in Figure 1. The Carte-
sian coordinates (x,y) are taken such that the x-axis
is measured along the sheet, while the y-axis is nor-
mal to it. It is assumed that the free stream velocity,
the shrinking/stretching velocity, and the surface tem-
perature are given by U∞ = aex/L, Uw = bex/L, and
Tw = T∞ + cex/L, respectively, where a, b, and c are
constants, and L is the reference length. The boundary
layer equations are [9, 27, 28]

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂ u
∂ x

+ v
∂ u
∂ y

= U∞

dU∞

dx
+ν

∂ 2u
∂ y2 , (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 , (3)

subject to the boundary conditions

u = Uw, v = 0, T = Tw at y = 0,

u→U∞, T → T∞ as y→ ∞,
(4)

where u and v are the velocity components along the x-
and y-axes, respectively, α is the thermal diffusivity of
the fluid, and ν is the kinematic viscosity.

Introducing the following similarity transformation
(see Magyari and Keller [9]),

η =
(

a
2νL

)1/2

ex/(2L)y, u = aex/L f ′(η),

v =−
(

νa
2L

)1/2

ex/(2L)( f +η f ′), θ(η) =
T −T∞

Tw−T∞

,

(5)
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the continuity equation (1) is automatically satisfied,
and (2) and (3) reduce to

f ′′′+ f f ′′−2 f ′2 +2 = 0, (6)
1
Pr

θ
′′+ f θ

′−2 f ′θ = 0, (7)

where primes denote differentiation with respect to η

and Pr = ν/α is the Prandtl number. The transformed
boundary conditions are

f (0) = 0, f ′(0) = ε, θ(0) = 1,

f ′(η)→ 1, θ(η)→ 0 as η → ∞,
(8)

with ε = b/a being the shrinking/stretching parameter.
We note that ε < 0 is valid for shrinking, ε > 0 for
stretching, and ε = 0 corresponds to a fixed sheet.

The main physical quantities of interest are the skin
friction coefficient and the local Nusselt number, which
are proportional to the quantities f ′′(0) and−θ ′(0), re-
spectively. Thus, our task is to investigate how the values
of f ′′(0) and−θ ′(0) vary with the shrinking/stretching
parameter ε and the Prandtl number Pr.

3. Numerical Method

The transformation of the governing partial differen-
tial equations into ordinary ones using similarity vari-
ables reduced the numerical work significantly. Equa-
tions (6) and (7) subject to the boundary conditions (8)
are integrated numerically using a finite difference
scheme known as the Keller-box method, which is de-
scribed in [29, 30]. This method is unconditionally sta-
ble and has been successfully used by several authors
to solve various problems in fluid mechanics and heat

Fig. 2. Variation of the skin friction co-
efficient f ′′(0) with ε .

transfer [31 – 37]. The solution is obtained in the fol-
lowing four steps:
1. Reduce (6) and (7) to a first-order system.
2. Write the difference equations using central differ-

ences.
3. Linearize the resulting algebraic equations by New-

ton’s method, and write them in matrix-vector
form.

4. Solve the linear system by the block-tridiagonal-
elimination technique.

The step size ∆η in η , and the position of the edge of
the boundary layer η∞ have to be adjusted for differ-
ent values of parameters involved to maintain the nec-
essary accuracy. To conserve space, the details of the
solution procedure are not presented here.

4. Results and Discussion

Graphical results are presented for different physical
parameters appearing in the present model. We note
that (6) and (7) are decoupled, and thus the flow field
is not affected by the thermal field.

Figure 2 shows the variations of the skin friction
coefficient f ′′(0) against the shrinking/stretching pa-
rameter ε , while the respective local Nusselt numbers
−θ ′(0) are presented in Figure 3. Two branches of so-
lutions are found to exist within the range εc < ε ≤−1,
while for ε >−1, the solution is unique. It is seen that
for negative values of ε (shrinking case), there is a crit-
ical value εc where the upper branch meets the lower
branch. Based on our computation, εc

∼= −1.4872.
Beyond this critical value, no solution exists. In these
figures, the solid lines denote the upper branch, while
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Fig. 3. Variation of the local Nusselt
number −θ ′(0) with ε for various val-
ues of Pr.

the dash lines denote the lower branch solutions. It is
also evident from these figures, that the range of ε for
which the solution exists is very small for the shrink-
ing case. This is due to the vorticity that almost can-
not be confined in the boundary layer. It is observed
in Figure 3 that the lower branch solutions show dis-
continuity at ε ∼= −1.145, −1.255, and −1.375 for
Pr = 0.72, 1.0, and 1.5, respectively. This phenomenon
has been observed by other researchers in the litera-
ture, for different problems, for example Ridha [38]
and Ishak et al. [39, 40]. Further, it is found that when
ε = 1 (stretching case), the value of the skin friction
coefficient f ′′(0) is zero. This is because when ε = 1,
the stretching velocity is equal to the external velocity,
and thus there is no friction between the fluid and the
solid surface. Furthermore, when ε = 1, the exact so-
lution of (6) subject to the boundary condition (8) can

Fig. 4. Velocity profile f ′(η) for various
values of ε < 0.

be obtained, and is given by f (η) = η , which then im-
plies f ′′(η) = 0 for all η . The present numerical result
agreed with this exact solution. It is also observed that
for the upper branch solution, f ′′(0) > 0 when ε < 1
and f ′′(0) < 0 when ε > 1. Physically, a positive value
of f ′′(0) means the fluid exerts a drag force on the
sheet, and negative value means the opposite. On the
other hand, the negative value of f ′′(0) for the lower
branch solution as shown in Figure 2 is due to the back
flow, see Figure 4. The velocity gradient at the surface
is negative for ε = −1 and ε = −1.2, but is positive
for ε = −1.45, which is in agreement with the results
presented in Figure 2.

Figure 5 shows the effects of ε < 0 (shrinking) on
the temperature profiles when Pr = 1. For the upper
branch solution, with increasing negative values of ε ,
the temperature gradient at the surface increases, re-
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Fig. 5. Temperature profile θ(η) for var-
ious values of ε < 0 when Pr = 1.

sulting in an increase of the local Nusselt number. The
opposite trend is observed for the lower branch solu-
tion, increasing ε (in absolute sense) is to decrease the
temperature gradient at the surface.

The temperature profiles for different values of Pr
when ε = −1.45 are presented in Figure 6. It is seen
that the temperature gradient at the surface increases as
Pr increases. Thus, the local Nusselt number −θ ′(0),
which represents the heat transfer rate at the surface
increases (in absolute sense) as the Prandtl number Pr
increases.

The temperature overshoot shown in Figures 5 and 6
stems from the balancing act between the heat trans-
fer from the solid boundary and its diffusion into the
boundary layer and convection from the moving flows.
It is dependent upon the Prandtl number Pr and the
stretching/shrinking parameter ε . If the production of

Fig. 6. Temperature profile θ(η) for var-
ious values of Pr when ε =−1.45.

heat (heat transfer and diffusion) is greater than the
convection term, then there will be an accumulation
of heat and thus the increase of temperature. For the
stretching case, there is no temperature overshoot, as
shown in Figures 7 and 8. Both figures show that in-
creasing Pr or ε decreases the thermal boundary layer
thickness, and in consequence increases the local Nus-
selt number −θ ′(0). Thus, the heat transfer rate at the
surface increases as Pr or ε increases.

The velocity profiles for selected values of ε (≥ 0)
are presented in Figure 9. This figure shows that the
velocity gradient at the surface is zero when ε = 1,
positive when ε < 1, and negative when ε > 1. This
observation is in agreement with the results presented
in Figure 2. We also note that the velocity boundary
layer thickness decreases as ε increases. Finally, the
velocity and temperature profiles for selected values of
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Fig. 7. Temperature profile θ(η) for vari-
ous values of Pr when ε = 0.5.

Fig. 8. Temperature profile θ(η) for vari-
ous values of ε when Pr = 1.

Fig. 9. Velocity profile f ′(η) for various
values of ε .

parameters presented in Figures 4 – 9 show that the far
field boundary conditions (8) are satisfied asymptoti-
cally, thus support the validity of the numerical results
obtained, besides supporting the dual nature of the so-
lutions to the boundary value problem (6) – (8).

5. Conclusions

The problem of stagnation-point flow over an ex-
ponentially shrinking/stretching sheet immersed in an
incompressible viscous fluid was investigated numer-
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ically. Similarity solutions were obtained, and the ef-
fects of the governing parameters, namely the shrink-
ing/stretching parameter ε and the Prandtl number Pr
on the fluid flow and heat transfer characteristics were
discussed. It was found that dual solutions exist for the
shrinking case, while for the stretching case, the solu-
tion is unique. Moreover, it was found that increasing
the Prandtl number is to increase the heat transfer rate
at the surface.

Acknowledgements

The authors are in debted to the anonymous re-
viewers for their comments and suggestions which led
to the improvement of this paper. The financial sup-
port received in the form of a research grant (Project
Code: UKM-ST-07-FRGS0029-2009) from the Min-
istry of Higher Education Malaysia is gratefully ac-
knowledged.

[1] M. V. Karwe and Y. Jaluria, ASME J. Heat Mass Trans-
fer 110, 655 (1988).

[2] M. V. Karwe and Y. Jaluria, ASME J. Heat Transfer
113, 612 (1991).

[3] L. J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).
[4] H. I. Andersson, K. H. Back, and B. S. Dandapat, Int. J.

Nonlin. Mech. 29, 929 (1992).
[5] P. S. Gupta and A. S. Gupta, Can. J. Chem. Eng. 55,

744 (1977).
[6] R. Nazar, N. Amin, D. Filip, and I. Pop, Int. J. Eng. Sci.

42, 1241 (2004).
[7] M. A. Hossain and H. S. Takhar, Heat Mass Transfer

31, 243 (1996).
[8] A. Ishak, R. Nazar, and I. Pop, Arab. J. Sci. Eng. 31,

165 (2006).
[9] E. Magyari and B. Keller, J. Phys. D: Appl. Phys. 32,

577 (1999).
[10] B. Bidin and R. Nazar, Euro. J. Sci. Res. 33, 710

(2009).
[11] M. Sajid and T. Hayat, Int. Commun. Heat Mass Trans-

fer 35, 347 (2008).
[12] S. Nadeem, T. Hayat, M. Y. Malik, and S. A. Rajput, Z.

Naturforsch. 65a, 495 (2010).
[13] S. Nadeem, S. Zaheer, and T. Fang, Numer. Algo. 57,

187 (2011).
[14] D. Pal, Appl. Math. Comput. 217, 2356 (2010).
[15] A. Ishak, Sains Malaysiana 40, 391 (2011).
[16] E. Sanjayanand and S. K. Khan, Int. J. Thermal Sci. 45,

819 (2006).
[17] M. A. El-Aziz, Can. J. Phys. 87, 359 (2009).
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