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1. Introduction

The problem of describing interactions between col-
liding particles is of fundamental interest in physics.
One is interested in collisions of two spinless parti-
cles, and it is supposed that the s-wave scattering ma-
trix and the s-wave binding energies are exactly known
from collision experiments. With a radial static poten-
tial V (x) the s-wave Schrödinger equation is written as

y′′(x)+ [E−V (E,x)]y(x) = 0 ,

where V (E,x) = 2
√

EP(x)+Q(x).
In particular, with an additional condition Q(x) =

−P2(x) the above equation reduces to the Klein–
Gordon s-wave equation for a particle of zero mass and
energy

√
E [1].

In this paper, we consider the boundary-value prob-
lems generated by the differential equation

lλ u(x)def= u′′(x)+ [λ 2−2λ p(x)−q(x)]u(x) = 0,

x ∈ (0,π) ,
(1)

where λ is a spectral parameter and the functions
q(x) ∈W 1

2 [0,π] and p(x) ∈W 2
2 [0,π]. Equation (1) is

respectively endowed with boundary conditions

(BC1)
u(0) = 0 ,
u(π) = 0;

(2)

(BC2)
u(0) = 0 ,
u′(π)+Hu(π) = 0;

(3)

and

(BC3)
u′(0)−hu(0) = 0 ,
u(π) = 0 .

(4)

The trace identity of a differential operator deeply
reveals the spectral structure of the differential oper-
ator and has important applications in the numerical
calculation of eigenvalues. Here we refer to the ref-
erences [2 – 11], with which the author became ac-
quainted while doing research on the present paper.
In [12], we obtained regularized trace formula for (1)
with the boundary condition

(BC4)
u′(0)−hu(0) = 0 ,
u′(π)+Hu(π) = 0, h, H ∈ R .

(5)

However, the boundary condition in (5) does not in-
clude boundary conditions (2), (3), and (4). In this
paper, we try to obtain some new regularized traces
for this class of Schrödinger equation with boundary
conditions (2), (3), and (4), respectively.

2. Results

Problem 1. Let λn, n ∈ Z \ {0}, be the eigenvalues
of (1) and (2). Then the sequence {λn : n =±1,±2, . . .}
satisfies the following asymptotic form:

λn = n+ c0 +
b1

nπ
+

β

4n2π
+o

(
1
n2

)
, (6)
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where

c0 =
1
π

∫
π

0
p(x)dx ,

b1 =
1
2

∫
π

0
[p2(x)+q(x)]dx ,

β = p′(0)−p′(π)+2
∫

π

0
[p(x)−c0][p2(x)+q(x)]dx .

(7)

It is seen from (6) that the series

s1
def=

∞

∑
n=1

[
(λn− c0)2 +(λ−n− c0)2−2n2− 4b1

π

]
(8)

is absolutely convergent.

Problem 2. Let ζn, n ∈ Z, be the eigenvalues of (1)
and (3). We can prove that the sequence {ζn : n =
0,±1,±2, . . .} satisfies the following asymptotic ex-
pression:

ζn = n+
1
2

+ c0 +
b1 +H

(n+ 1
2 )π

+
γ

4(n+ 1
2 )2π

+o

(
1
n2

)
,

(9)

where

γ = p′(0)+ p′(π)+2
∫

π

0
[p(x)− c0][p2(x)+q(x)]dx

+H[p(π)− c0] .

It is seen from (9) that the series

s2
def=

∞

∑
n=0

[
(ζn− c0)2−

(
n+

1
2

)2

− 2(b1 +H)
π

]
(10)

+
∞

∑
n=1

[
(ζ−n− c0)2−

(
n− 1

2

)2

− 2(b1 +H)
π

]

is absolutely convergent.

Problem 3. Let µn, n ∈ Z, be the eigenvalues of (1)
and (4). Then the sequence {µn : n = 0,±1,±2, . . .}
satisfies the following asymptotic form:

λn = n+
1
2

+ c0 +
b1 +h

(n+ 1
2 )π

+
θ

4(n+ 1
2 )2π

+o

(
1
n2

)
,

(11)

where

θ = − p′(0)−p′(π)+2
∫

π

0
[p(x)−c0][p2(x)+q(x)]dx

+h[p(0)− c0] .

It is seen from (11) that the series

s3
def=

∞

∑
n=0

[
(µn− c0)2−

(
n+

1
2

)2

− 2(b1 +h)
π

]
(12)

+
∞

∑
n=1

[
(µ−n− c0)2−

(
n− 1

2

)2

− 2(b1 +h)
π

]
is absolutely convergent.

In this work, we shall derive the sums of the series
in (8), (10), and (12) in an explicit form, which are so-
called regularized traces.

Theorem 2.1. We have the trace formulae

s1 =
2b1

π
− p2(π)− p2(0)+ [p(π)+ p(0)]c0

(13)

− c2
0−

q(π)+q(0)
2

,

s2 = p2(π)− p2(0)+ [p(0)− p(π)]c0

+
q(π)−q(0)

2
−H2 ,

(14)

and

s3 = p2(0)− p2(π)+ [p(π)− p(0)]c0

+
q(0)−q(π)

2
−h2 ,

(15)

where b1 and c0 are defined by (7).

Remark 2.2. For a special case p(x) ≡ 0 in (1), the
trace formula (13) implies

∞

∑
n=1

[
λ

2
n −n2− 1

π

∫
π

0
q(x)dx

]
=−q(0)+q(π)

4

+
1

2π

∫
π

0
q(x)dx .

Here λ 2
n are eigenvalues of the well-known Sturm–

Liouville problem with the Dirichlet boundary condi-
tion of (2). This result was previously obtained in [6].

3. Solutions to the Schrödinger Equation

In this section, we recall a refined estimate for a fun-
damental pair of solutions to the equation lλ u(x,λ )
= 0, which will be used in Section 3.
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Lemma 3.1. [13] Let ψ(x,λ ) and ϕ(x,λ ) be the solu-
tions to lλ u(x,λ ) = 0 with the initial conditions

(ψ ′(0,λ ),ψ(0,λ )) = (0,1) = (ϕ(0,λ ),ϕ ′(0,λ )) ,

then the following representations hold:

ϕ(x,λ ) =
sin[λx−α(x)]

λ
−b1(x)

cos[λx−α(x)]
λ 2

+a1(x)
sin[λx−α(x)]

λ 2 +b2(x)
cos[λx−α(x)]

λ 3

+a2(x)
sin[λx−α(x)]

λ 3 +o

(
eτx

λ 3

)
,

ψ(x,λ ) = cos[λx−α(x)]− c1(x)
cos[λx−α(x)]

λ

+b1(x)
sin[λx−α(x)]

λ
+d2(x)

cos[λx−α(x)]
λ 2

+d1(x)
sin[λx−α(x)]

λ 2 +o

(
eτx

λ 2

)
,

where τ = | Imλ |, and

α(x) =
∫ x

0
p(t)dt, b1(x) =

1
2

∫ x

0
[p2(t)+q(t)]dt,

a1(x) =
1
2
[p(x)+ p(0)] ,

b2(x) =
1
4
[p′(x)− p′(0)]− 1

2
b1(x)[p(x)

+p(0)]− 1
2

∫ x

0
p(t)[p2(t)+q(t)]dt ,

a2(x) =
1
8
[5p2(x)+5p2(0)+2p(0)p(x)]

+
q(x)+q(0)

4
− 1

2
b2

1(x) ,

c1(x) =
1
2
[p(0)− p(x)] ,

d2(x) =
1
8
[5p2(x)−2p(0)p(x)−3p2(0)+2q(x)

−2q(0)]− 1
2

b2
1(x) ,

d1(x) =−1
4
[p′(x)+ p′(0)]+

1
2

b1(x)[p(x)− p(0)]

+
1
2

∫ x

0
p(t)[p2(t)+q(t)]dt .

It is easy to obtain asymptotic expressions of the
functions ψ ′(x,λ ) and ϕ ′(x,λ ).

Corollary 3.2. [13] Let ψ(x,λ ) and ϕ(x,λ ) be the so-
lutions to lλ u(x,λ ) = 0 with the initial conditions

(ψ ′(0,λ ),ψ(0,λ )) = (0,1) = (ϕ(0,λ ),ϕ ′(0,λ )) ,

then the solutions have the following representations:

ϕ ′(x,λ ) = cos[λx−α(x)]+ c1(x)
cos[λx−α(x)]

λ

+b1(x)
sin[λx−α(x)]

λ
+ c2(x)

cos[λx−α(x)]
λ 2

+c3(x)
sin[λx−α(x)]

λ 2 +o

(
eτx

λ 2

)
,

ψ ′(x,λ ) =−λ sin[λx−α(x)]

+b1(x)cos[λx−α(x)]+a1(x)sin[λx−α(x)]

+e1(x)
cos[λx−α(x)]

λ
+ e2(x)

sin[λx−α(x)]
λ

+o

(
eτx

λ

)
,

where

c2(x) =−1
8
[3p2(x)+2p(0)p(x)−5p2(0)+2q(x)

−2q(0)]− 1
2

b2
1(x) ,

c3(x) =
1
4
[p′(x)+ p′(0)]− 1

2
b1(x)[p(x)− p(0)]

+
1
2

∫ x

0
p(t)[p2(t)+q(t)]dt ,

e1(x) =
1
4
[p′(x)− p′(0)]− 1

2
b1(x)[p(x)+ p(0)]

+
1
2

∫ x

0
p(t)[p2(t)+q(t)]dt ,

e2(x) =
1
8
[3p2(x)−2p(0)p(x)+3p2(0)+2q(x)

+2q(0)]+
1
2

b2
1(x) .

4. Proof of Theorem 2.1

For convenience, we now set

a1 = a1(π), a2 = a2(π), b1 = b1(π), b2 = b2(π) .

We only present the proof of the identity in (13).
The proofs of identities (14) and (15) are similar to the
proof of the identity (13), thus we omit them. First,
we shall prove that (13) is true under the assumption
c0 = 0.
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λ

A

BC

D

O

ΓN0

Fig. 1. Contour ΓN0 in
a λ -complex plane.

From Lemma 3.1 and Corollary 3.2, we see that the
characteristic equation in (1) and (2) can be reduced to
ϕ(λ ) = 0, where

ϕ(λ ) =
sin(λπ)

λ
−b1

cos(λπ)
λ 2 +a1

sin(λπ)
λ 2

+b2
cos(λπ)

λ 3 +a2
sin(λπ)

λ 3 +o

(
eτπ

λ 3

)
.

(16)

Define

ϕ0(λ ) =
sin(λπ)

λ
,

and denote by λ 0
n ,n ∈ Z \ {0}, zeros (simple) of the

function ϕ0(λ ), then

λ
0
n = n .

Let Cn be circles of radii r (r small enough) with the
centers at the points n. For an integer n, let ΓN0 be the
counterclockwise square contours ABCD as in Figure 1
with

A =
(

N0 +
1
2

)
(1− i), B =

(
N0 +

1
2

)
(1+ i) ,

C =
(

N0 +
1
2

)
(−1+ i), D =

(
N0 +

1
2

)
(−1− i) .

For N0 large enough, on the contour ΓN0 , for t ∈
[0,π], there hold uniformly (see [12]: Lemma 3.1)∣∣∣∣ sin(λ t)

sin(λπ)

∣∣∣∣≤ 4 and

∣∣∣∣ cos(λ t)
sin(λπ)

∣∣∣∣≤ 4 . (17)

Combining (16) and arranging the terms on the
right-hand side in decreasing order of powers of λ , we
have

ϕ(λ )
ϕ0(λ )

= 1+
a1−b1 cot(λπ)

λ
+

a2 +b2 cot(λπ)
λ 2

+o

(
1

λ 2

)

on the contour ΓN0 or Cn. Expanding log ϕ(λ )
ϕ0(λ ) by the

Maclaurin formula, we find

log
ϕ(λ )
ϕ0(λ )

=
a1−b1 cot(λπ)

λ

+

(
a2− 1

2 a2
1

)
+(b2 +a1b1)cot(λπ)− b2

1
2 cot2(λπ)

λ 2

+o

(
1

λ 2

)
(18)

on the contour ΓN0 or Cn.
By the residue calculation [14], the following iden-

tities are true:

1
2πi

∮
Cn

cot(λπ)
λ

dλ =
1

nπ
,

1
2πi

∮
Cn

cot(λπ)
λ 2 dλ =

1
n2π

,

1
2πi

∮
Cn

cot2(λπ)
λ 2 dλ =− 2

n3π2 .

Using the residue formula

λn−n =− 1
2πi

∮
Cn

log
ϕ(λ )
ϕ0(λ )

dλ ,

we obtain

λn = n+
b1

nπ
+
−b2−a1b1

4n2π
+o

(
1
n2

)
, (19)

where

b1 =
1
2

∫
π

0
[p2(x)+q(x)]dx ,

b2+a1b1 = p′(π)−p′(0)−2
∫

π

0
p(x)[p2(x)+q(x)]dx .

Thus, we have the asymptotic formula of the eigenval-
ues for (1) and (2) with c0 = 0.

The asymptotic formula (19) implies that, for all
sufficiently large N0, the numbers λn which are the
zeros of the function ϕ(λ ), with |n| ≤ N0, are inside
ΓN0 and the number λn, with |n|> N0, are outside ΓN0 .
Obviously, λ 0

n , which are the zeros of the function
ϕ0(λ ), don’t lie on the contour ΓN0 .
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By residue theorem, we obtain that

∑
ΓN0

(λ 2
n −n2)

=
N0

∑
n=1

(
λ

2
n +λ

2
−n−2n2)

=
1

2πi

∮
ΓN0

λ
2
[

ϕ ′(λ )
ϕ(λ )

−
ϕ ′0(λ )
ϕ0(λ )

]
dλ

=
1

2πi

∮
ΓN0

λ
2dlog

ϕ(λ )
ϕ0(λ )

=− 1
2πi

∮
ΓN0

2λ log
ϕ(λ )
ϕ0(λ )

dλ .

(20)

Using the well-known formulae

cotz =
1
z
+2z

∞

∑
n=1

1
z2−n2π2 , csc2 z =

∞

∑
n=−∞

1
(z+nπ)2 ,

we get

1
2πi

∮
ΓN0

cot(λπ)dλ =
2N0 +1

π
,

1
2πi

∮
ΓN0

cot(λπ)
λ

dλ = 0 ,

1
2πi

∮
ΓN0

cot2(λπ)
λ

dλ =−1+O

(
1

N0

)
.

From (18), by calculating residues, we have

− 1
2πi

∮
ΓN0

2λ log
ϕ(λ )
ϕ0(λ )

dλ

=− 1
2πi

∮
ΓN0

[
2(a1−b1 cot(λπ))

+
(2a2−a2

1)+2(b2 +a1b1)cot(λπ)−b2
1 cot2(λπ)

λ

]
dλ

+o(1)

= 2b1
1

2πi

∮
ΓN0

cot(λπ)dλ +a2
1−2a2−2(b2 +a1b1)

· 1
2πi

∮
ΓN0

cot(λπ)
λ

dλ

+b2
1

1
2πi

∮
ΓN0

cot2(λπ)
λ

dλ +o(1)

= 2b1
2N0 +1

π
+a2

1−2a2−b2
1 +o(1) .

From (20), we get

N0

∑
n=1

(
λ

2
n +λ

2
−n−2n2)= 2b1

2N0 +1
π

+a2
1−2a2−b2

1 +o(1) .

(21)

Passing to the limit as N0→ ∞ in (21), we find that

∞

∑
n=1

(
λ

2
n +λ

2
−n−2n2− 4b1

π

)
=

2b1

π

+a2
1−2a2−b2

1 .

(22)

From Lemma 3.1 and Corollary 3.2, a direct computa-
tion yields

a2
1−2a2−b2

1 =−p2(π)− p2(0)

− q(0)+q(π)
2

.
(23)

Substituting (23) into (22), we see that the regularized
trace s1 with c0 = 0 has the following form:

∞

∑
n=1

(
λ

2
n +λ

2
−n−2n2− 4b1

π

)
=

2b1

π

− p2(π)− p2(0)− q(0)+q(π)
2

.

(24)

Now we consider the case c0 6= 0. By a direct calcu-
lation, we note that the equation

−u′′(x)+ [q(x)+2λ p(x)]u(x) = λ
2u(x)

is equivalent to

−u′′(x)+ [q(x)+2pc0− c2
0 +2(λ − c0)(p(x)− c0)]

·u(x) = (λ − c0)
2 u(x) .

Let

λ̂n = λn− c0, q̂(x) = q(x)+2pc0− c2
0

and

p̂(x) = p(x)− c0 = p(x)− 1
π

∫
π

0
p(x)dx ,

then in this case we have
∫

π

0 p̂(x)dx = 0 and

b̂1 =
1
2

∫
π

0
[q̂(x)+ p̂2(x)]dx = b1 .

Substituting the expressions for q̂(x), p̂(x), and λ̂n

into (19), we find that the eigenvalues λn satisfy the
following asymptotic formula as |n| → ∞:
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λn = n+ c0 +
b1

nπ
+

β

4n2π
+o

(
1
n2

)
,

where

c0 =
1
π

∫
π

0
p(x)dx ,

b1 =
1
2

∫
π

0
[p2(x)+q(x)]dx ,

β = p′(0)−p′(π)+2
∫

π

0
[p(x)−c0][p2(x)+q(x)]dx .

Substituting the expressions for q̂(x), p̂(x), and λ̂n

into (24), we prove that (13) holds. The proof of theo-
rem is finished.
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