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Hard milling is a very common used machining procedure in the last years. Therefore the predic-
tion of cutting forces is important. The paper deals with this prediction using genetic evolutionary
programming (GEP) approach to set mathematical expression for out cutting forces. In this study,
face milling was performed using DIN1.2842 (90MnCrV8) cold work tool steel, with a hardness of
61 HRC. Experimental parameters were selected using stability measurements and simulations. In
the hard milling experiments, cutting force data in a total of three axes were collected. Feed direction
(Fx) and tangential direction (Fy) cutting forces generated using genetic evolutionary programming
were modelled. Cutting speed and feed rate values were treated as inputs in the models, and average
cutting force values as output. Mathematical expressions were created to predict average Fx and Fy
forces that can be generated in hard material milling.
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1. Introduction

Milling is a very commonly used manufacturing
process in industry due to its versatility to generate
complex shapes in variety of materials at high quality.
Due to the advances in machine tool, computer numer-
ical control (CNC), computer aided design/computer
aided manufacturing (CAD/CAM), cutting tool, and
high speed machining technologies in the last couple
of decades, the volume and importance of milling have
increased in key industries such as aerospace, die and
mold, automotive and component manufacturing [1].
With the advances in cutting tool technologies, hard
milling has been recently employed to machine hard-
ened steels (> 30 HRC) in making dies and molds for
various automotive and electronic components as well
as plastic molding parts [2]. Previous research in hard
milling has focused on tool life [3], surface smooth-
ness [4], white layer effect [5], cutting force mod-
elling [6], machine stability [6], and optimum cutting
parameters [7]. In milling, cutting forces are one of the
basic parameters for selecting cutting parameters, and
in many cases the most important [8]. The measure-

ment of cutting forces is not always possible under ex-
perimental conditions; however, they are usually mod-
elled using intelligent methods.

Modelling cutting forces is usually a difficult pro-
cedure because of the tool–workpiece geometry and
the complexity of the cutting configuration. Analyzing
the cutting force is difficult because many machine pa-
rameters are involved. As cutting forces affect many
parameters (cutting speed, feed rate, depth of cut, tool
holder geometry, tool corrosion, physical and chemi-
cal characteristics of machine parts, etc.), developing
a proper model is very demanding [9].

Previous works on the subject include the study of
Milfelner et al., who came up with the genetic equation
of cutting forces in milling with spherical ended tools.
They worked on a model that can predict the maxi-
mum cutting force using radial depth of cut, feed rate,
and cutting speed values. Their model uses the func-
tions of adding, subtracting, multiplying, and dividing.
They have produced a genetic equation that can predict
cutting forces with a 3.83% margin of error [9].

Kovacic et al. conducted a study on predicting cut-
ting forces in milling using the evolutionary approach.
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They have processed two separate workpieces in an
vertical machining center, and measured Fx, Fy, and
Fz cutting force values with different parameters of
workpiece yield stress and hardness value, tool diame-
ter, depth of cut, spindle speed, feed rate, and process
type. They have generated mathematical equations for
all three cutting force axes using these parameters [8].

This study conducts experiments, using CBN 300
cutting inserts, on a cold work tool steel work-
piece with a hardness of 61 HRC and DIN 1.2842
(90MnCrV8), and the cutting force value generated
in the experiments were modelled using genetic evo-
lutionary programming (GEP). After the modelling,
a mathematical expression for average Fx and Fy forces
that can be generated in hard material milling was pro-
duced.

2. Genetic Evolutionary Programming (GEP)

Genetic evolutionary programming (GEP) is, like
genetic algorithms (GA) and genetic programming
(GP), a genetic algorithm as it uses populations of in-
dividuals, selects them according to fitness, and intro-
duces genetic variation using one or more genetic oper-
ators. The fundamental difference between the three al-
gorithms resides in the nature of the individuals: in GA
the individuals are linear strings of fixed length (chro-
mosomes); in GP the individuals are nonlinear entities
of different sizes and shapes (parse trees); and in GEP
the individuals are encoded as linear strings of fixed
length (the genome or chromosomes) which are after-
wards expressed as nonlinear entities of different sizes
and shapes [10].

The genetic evolutionary programming algorithm is
composed of linear chromosomes stable in number and
length which can be reproduced by the computer pro-
gram. The chromosomes derived can be expressed in
different shapes and dimensions in ‘explanation trees’
(ET) form using the operators of GEP.

The advantages of a system like GEP are clear
from nature, but the most important should be em-
phasized. First, the chromosomes are simple entities:
linear, compact, relatively small, easy to manipulate
genetically (replicate, mutate, recombine, transpose,
etc.). Second, the ET are exclusively the expression
of their respective chromosomes; they are the entities
upon which selection acts and, according to fitness,
they are selected to reproduce with modification. Dur-
ing reproduction it is the chromosomes of the individ-

Fig. 1. Example of a mathematical explanation tree.

uals, not the ET, which are reproduced with modifica-
tion and transmitted to the next generation [10].

In the GEP algorithm, all the problems, from
the simplest to the most complicated, are expressed
as ET. The ETs are composed of operators, func-
tions, constants, and variables. For example in
a chromosome list EP variables such as {+,−,∗,/,
sqrt,1,a,b,c,d,sin,cos} are possible. Here, when
a chromosome as sqrt.∗ .+ .∗ .a.∗ .sqrt.a.b.c./.1.− .c.d
is formed, in this chromosome full stop ‘.’ represents
‘sqrt’ square root operation for dividing each gene and
easy reading; ‘1’ represents a constant; ‘+,−,∗’ repre-
sent algebraical statements and ‘a,b,c,d’ represent the
names given to the variables.

The relationship between the variables is stated as
Karva notations by Candida Ferreire who developed
the GEP algorithm. Karva notations are expressed with
‘explanation tree’ (ET). The explanation tree formed
with Karva notation belonging to the evolutionary pro-
gramming gene is demonstrated in Figure 1 [10].

The mathematical expression of the explanation tree
in Figure 1 is as follows:√

(a+b)× (c−d). (1)

3. Experimental Studies

Face milling experiments on cold work tool steel
with a hardness level of 61 HRC were conducted
in a Hardford VMC 1020 vertical machining center.
Depth of cut, feed rate, and cutting speed values were
selected using analytical stability curves generated by
measuring machine-tool stability (Fig. 2) [11]. Axial
depth of cut was kept constant at 0.6 mm. A total of
32 experiment parameters were generated by select-
ing eight separate spindle speeds (2650, 2280, 1760,
1405, 1170, 1005, 875, 780 r/min) and four separate
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Fig. 2. Analytical stability lobes diagram of hard milling test [11].

feed rates (0.05, 0.075, 0.1, 0.15 mm/tooth). A surface
cutter with a diameter of 63 mm was used in the exper-
iments. CBN inserts were used as cutting tool in the
experiments (Table 1) [12].

Workpiece material, steel 90MnCrV8 (AISI – O2,
EU – 90MnCrV8) is a cold work tool steel, with high
dimensional stability at heat treatment, very high resis-
tance to cracking, high machinability, medium tough-
ness and resistance to wear. Hardness after anneal-
ing is max 229 HB. After quenching, the possible to

Table 1. Cutting tool specifications [12].

Tool specifications CBN300
ISO Code SNEN0903ENE-M06
Composition Approximate CBN content . . . . . . 90%

Average particle size (µm) . . . . . . . . . 22
Binder. . . . . . . . . . . . . . . . . . . . . Al ceramic
Format . . . . . . . . . . . . . . . . . . . . . . . . Solid 

Physical Characteristics Knoops hardness GPa . . . . . . . . . 30.4
Thermal conductivity [Wm−1 K−1]
(20 ◦C) . . . . . . . . . . . . . . . . . . . . . . . . 130

Tool geometry Size
L. . . . . . . . . . . . . . . . . . . . . . . . . . . 9.525 mm
s . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 mm
B. . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9 mm
re. . . . . . . . . . . . . . . . . . . . . . . . . . .0.8 mm
Rake angle . . . . . . . . . . . . . . . . .0◦

 

 
 

achieve hardness is 63 – 65 HRC. Field of application
of 90MnCrV8 is in compress measuring tools, machine
knives for the wood, paper, and metal industry, cold
cutting shear blades, and thread cutting tools [13]. The
chemical properties of workpiece material is as fol-
lows: 0.88% carbon, 0.29% silicon, 2.07% manganese,
0.26% chromium, 0.024% phosphorus, 0.009% sulfur,
and 0.08% vanadium [14].

Cutting forces were measured for Fx, Fy, and Fz di-
rections in each experiment using a Kistler dynamome-
ter type 9257B. Based on the connection of the dy-
namometer to the vertical machining center table, the
Fx force was in the feed direction. In cutting force mea-
surements, the chip volume was fixed at 5896.8 mm3.
Cutting signals were measured until the volume of cut-
ting reached that point. Then, the arithmetic mean of
the cutting force signals was calculated to generate av-
erage cutting force values. Figure 3 displays the change
in average Fx and Fy forces by cutting speed and feed
rate.

As we can see in Figure 3, when cutting speed is
kept constant, both Fx and Fy cutting forces increase as
feed rate increases. The smallest and the largest cut-
ting force values were measured in the Fx direction.
The smallest cutting force was measured as 397.95 N
in the experiment, with a cutting speed of 451.3 m/min
and a feed rate of 0.05 mm/tooth; the largest cutting
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Fig. 3. Change in average cutting force by cutting speed and feed rate; (a) average Fx cutting force, (b) average Fy cutting
force.

force was measured as 2396.26 N in the experiment,
with a cutting speed of 524.5 m/min and a feed rate of
0.15 mm/tooth.

4. Modelling Cutting Forces Using Genetic
Evolutionary Programming

In this study, three types of modelling techniques
were used, but it was seen that neural networks and
fuzzy logic are not successful at prediction of cutting
forces. The most successful model of the modelling
was obtained by GEP.

Fig. 4. Genetic evolutionary programming model set up for CBN 300 Fx force prediction; (a) average Fx, (b) average Fy.

Two separate models and mathematical expressions
were developed for cutting force predictions, using the
average Fx and Fy values measured in the experiments
conducted with CBN 300 cutting inserts.

As the axial depth of cut was kept constant in the ex-
periments conducted, cutting speed and feed rate val-
ues were used as inputs, and average cutting force val-
ues were used as outputs. In both models, 75% of the
32 experiment parameters were used for training and
25% for testing. Training and test values were shifted
among themselves, and the data group with the highest
modelling success was taken as the model.
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Fig. 5. Comparison of experimental values and values generated by evolutionary programming for cutting forces; (a) Fx
cutting forces, (b) Fy cutting forces.

For the model that uses average Fx and Fy values, ex-
perimental data were trained in different chromosome
and mutation values. As a result of training the number
of chromosomes 50 and the number of mutations 0.04
were determined. For average Fx cutting forces, the
truth value of R2 = 0.80 was reached after 735 632 it-
erations, and for average Fy cutting forces, the truth
value of R2 = 0.91 was reached after 433 423 iterations
(Fig. 4).

Success rates of the models set up for average Fx and
Fy forces are values acquired from the models with the
best fit, selected by varying training and test values,
and trying various functions.

Functions used for average Fx forces were addition
(+), subtraction (−), multiplication (∗), division (/),
square root (Q), exponential function (E), natural log-
arithmic function (L), 10ˆx (∼), logarithmic function
(K), cosine (C), and 1/x (Y ). The visual basic code of
the model with the 80% success rate is generated. The
mathematical expression of the visual basic code gen-
erated by the program for the prediction of average Fx

force value is as follows:

Fx =10exp
√

exp(V ) +
1

cos(V · fz)
+

log
(
10log(V ))

exp( fz)
fz
· 1

V

+ cos((exp( fz) · ( fz +V )) ·V.

(2)

Expressions in the equation are defined as follows:
Fx = average Fx cutting force for CBN 300 cutting

inserts, V = cutting speed (m/min), and fz = feed rate
(mm/tooth).

Functions used for average Fy forces were addition
(+), subtraction (−), multiplication (∗), division (/),
Power (ˆ) square root (Q), exponential function (E),
natural logarithmic function (L), logarithmic function
(K), tangent (T ), floor (F), and 1/x (Y ). The visual
basic code of the model with the 91% success rate is
generated. The mathematical expression of the visual
basic code generated by the program for the prediction
of average Fy force value is as follows:

Fy =((tan(log(V )))+ fz) ·
1

fz− int(V )

+(V − (tan(V fz)))
√

fz − log(V )+
V

tan
(

1
fz

)
− tan(log(V ))+V.

(3)

In above equation, int(V ) means integer(V ). This ex-
pression is used to convert a decimal number to an in-
teger.

Figure 5 displays the scatter diagram of the average
Fx and Fy cutting force values measured in the exper-
iments, and the average cutting force values predicted
by the genetic evolutionary programming method.
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As we can see in Figure 5a, the relationship be-
tween experimental values and values calculated by
evolutionary programming, according to the mean
square error, is 0.82. In Figure 5b, the relationship
between experimental values and values calculated
by evolutionary programming, according to the mean
square error, was found to be 0.92. These rates are an
indicator of success for the models set up.

5. Results

Cutting force and modelling results acquired from
the face milling of 90MnCrV8 cold work tool steel us-
ing CBN cutting inserts are as follows:

• When we examined cutting force signals, we ob-
served that when the cutting speed is kept constant
and the feed rate is increased, both Fx and Fy cutting
force values have increased as well.

• A nonlinear relationship was found between GEP
on the one hand and cutting speed and feed rate on
the other hand, and this relationship was expressed
using mathematical equations.

• Observed Fx and Fy cutting force values were com-
pared with values generated by the mathematical
equations created based upon the GEP model. Suc-
cess rates of the equations were found to be 82% for
Fx force values, and 92% for Fy values, both rather
high prediction figures.

• The genetic programming model can be integrated
into intelligent production systems, and provide ad-
vantages in the machining sector by offering time
and cost flexibility in process modelling and produc-
tion.

• The genetic programming model can be extended
by including other parameters (like tool geometry,
machine-tool dynamics, axial and radial depth of
cuts, etc.), and more sensitive cutting force models
can be developed.
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