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The three-dimensional unsteady flow induced in a second-grade fluid over a stretching surface has
been investigated. Nonlinear partial differential equations are reduced into a system of ordinary dif-
ferential equations by using the similarity transformations. The homotopy analysis method (HAM)
has been implemented for the series solutions. Graphs are displayed for the effects of different pa-
rameters on the velocity field.
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1. Introduction

The advancements in the flows of non-Newtonian
fluids have been significantly increased in spite of
their numerous applications in various fields of sci-
ence and engineering. Some applications include oil
and gas well drilling, waste fluids, synthetic fibers, ex-
trusion of molten plastic, flows of polymer solutions,
polymer processing, food processing, and many others.
Geophysical applications involve the ice and magma
flows. Many materials such as drilling mud, clay coat-
ings and suspensions, ketchup, toothpaste, certain oils
and greases, polymer melts, clastomer, and many other
emulsions have been treated as non-Newtonian fluids.
The flows of such fluids are frequently encountered in
biomechanics, geothermal engineering, insulation sys-
tems, ceramic processing, chromatography etc. Signif-
icant progress has been made for the flows of differ-
ent viscoelastic fluids. Among these models of non-
Newtonian fluids, there is a simplest subclass of vis-
coelastic fluids, namely the second-grade fluids. Fete-
cau et al. [1] presented the unsteady flow of a second
grade fluid between two side walls perpendicular to
a plate. Exact solutions of starting flows for a second-
grade fluid in a porous medium has been reported by
Khan et al. [2]. Ariel [3] examined the axisymmetric
flow of a second-grade fluid past a stretching sheet.
Exact solutions for steady flows of second-grade flu-

ids have been examined by Zhang et al. [4]. Cortell [5]
discussed the magnetohydrodynamic (MHD) flow and
mass transfer of an electrically conducting fluid of
second-grade in a porous medium over a stretch-
ing sheet with chemically reactive species. Stagnation
point flow of a second-grade fluid with slip is studied
by Labropulu and Li [6]. Flow due to noncoaxial rota-
tion of a porous disk and a second-grade fluid rotating
at infinity has been reported by Erdogan and Imrak [7].
Hayat and Awais [8] discussed the simultaneous effect
of heat and mass transfer along with Soret and Du-
fours effects in time-dependent flow of a second-grade
fluid. Hayat et al. [9] further discussed the effect of
thermal radiation on the flow of a second-grade fluid.
Cortell [10] examined the viscous dissipation and ther-
mal radiation effects on the flow and heat transfer of
a power-law fluid past an infinite porous plate.

Ever since the pioneering work of Sakiadis [11,
12], the steady two-dimensional stretching flows have
been studied extensively in various ways. Such flows
are vital in both viscous and non-Newtonian fluids.
The specific applications of such flows include hot
rolling, polymer extension, crystal growing, continu-
ous stretching of hot films, metal spinning etc. The ex-
tensive available research on stretching flow deals with
the mathematical analysis in two dimensions. How-
ever, very few researchers presented such flows in three
dimensions. Ariel [13, 14] found the exact and homo-

c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com
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topy perturbation solutions of a viscous fluid for the
three-dimensional flow over a stretched surface. The
magnetohydrodynamic three-dimensional viscous flow
over a porous stretching surface has been presented by
Hayat and Javed [15]. Xu et al. [16] analyzed the se-
ries solutions of unsteady free convection flow in the
stagnation-point region of a three-dimensional body.
Hayat and Awais [17] studied the three-dimensional
flow of a Maxwell fluid over a stretching surface.

The aim of this paper is to venture further in
the regime of three-dimensional unsteady flows over
a stretching surface. A simplest second-grade fluid
model has been chosen because it has a rheol-
ogy difference from the Newtonian model. The ar-
ticle has been arranged as follows. The mathemat-
ical formulation for the unsteady three-dimensional
flow in a second-grade fluid has been given in Sec-
tion 2. In Section 3, the homotopy analysis method
(HAM) [18 – 30] has been used to find the series so-
lution. Sections 4 includes the convergence and graph-
ical results. Final discussion of the obtained results has
been presented in Section 5.

2. Problem Description

The unsteady three-dimensional flow of an incom-
pressible second-grade fluid over a stretching surface
is considered. The sheet coincides with the plane at
z = 0, and the flow occupies the region z > 0. A non-
conducting stretching surface generates the flow in
the second-grade fluid. The Cauchy stress tensor T in
an incompressible homogenous fluid of second-grade
is related to the fluid motion in the following man-
ner [1 – 9]:

T =−pI+ µA1 +α1A2 +α2A2
1 , (1)

where p, I, µ , αi (i = 1,2) are the pressure, identity
tensor, dynamic viscosity, and material constants, re-
spectively. The Rivlin–Ericksen tensors (A1 and A2)
can be computed by the following relations:

A1 = ∇V+(∇V)t , (2)

An =
dAn−1

dt
+An−1L+LtAn−1,

L = ∇V, n > 1.
(3)

Here ∇ is the gradient operator, V is the velocity field,
and for thermodynamic second-grade fluid, we have

µ ≥ 0, α1 ≥ 0, α1 +α2 = 0. (4)

The basic equations governing the flow under consid-
eration are

∇ ·V = 0, (5)

ρ
dV
dt

= ∇ ·T. (6)

The velocity field for three-dimensional flow is chosen
as

V = [u(x,y,z), v(x,y,z), w(x,y,z)], (7)

The scalar forms of (5) are

ρ
du
dt

=
∂ (Txx)

∂x
+

∂ (Txy)
∂y

+
∂ (Txz)

∂ z
, (8)

ρ
dv
dt

=
∂ (Tyx)

∂x
+

∂ (Tyy)
∂y

+
∂ (Tyz)

∂ z
, (9)

ρ
dw
dt

=
∂ (Tzx)

∂x
+

∂ (Tzy)
∂y

+
∂ (Tzz)

∂ z
, (10)

where Txx, Tyy, and Tzz are the normal stresses and Txy,
Txz, Tyx, Tyz, Tzx, and Tzy are the shear stresses. We com-
puted the values of these stress components through
(1) – (3). Using these values of stress components and
the boundary layer assumptions, we get

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (11)

ρ

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

)
(12)

= µ
∂ 2u
∂ z2 +α1



u
∂ 3u

∂x∂ z2 + v
∂ 3u

∂y∂ z2 +w
∂ 3u
∂ z3

−∂u
∂ z

∂ 2w
∂ z2 +

∂u
∂x

∂ 2u
∂ z2 +

∂ 2v
∂ z∂x

∂v
∂ z

+
∂v
∂x

∂ 2v
∂ z2 −

∂u
∂ z

∂ 2v
∂y∂ z

+
∂ 3u

∂ t∂ z2


,

ρ

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

)
(13)

= µ
∂ 2v
∂ z2 +α1



u
∂ 3v

∂x∂ z2 + v
∂ 3v

∂y∂ z2 +w
∂ 3v
∂ z3

−∂v
∂ z

∂ 2w
∂ z2 +

∂u
∂y

∂ 2u
∂ z2 +

∂ 2v
∂ z2

∂v
∂y

+
∂u
∂ z

∂ 2u
∂y∂ z

− ∂v
∂ z

∂ 2u
∂x∂ z

+
∂ 3v

∂ t∂ z2


.
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The subjected boundary conditions are given by

u =
ax

1− ct
, v =

bx
1− ct

, w = 0 at z = 0,

u→ 0, v→ 0,
∂u
∂ z
→ 0,

∂v
∂ z
→ 0 as z→ ∞,

(14)

where u, v, and w are the velocities parallel to the x,
y, and z-directions, respectively, ρ indicates the fluid
density, µ the dynamic viscosity, α1 the second-grade
parameter, and a > 0, b > 0, and ct < 1 are the con-
stants. We now define

η =
√

a
ν(1− ct)

z, u =
ax

1− ct
f ′(η),

v =
ay

1− ct
g′(η), w =−

√
av

1− ct
{ f (η)+g(η)} .

(15)

All the quantities appearing in (11) – (13) have been
computed by using the chain rule through (15). It is
noticed that (11) is identically satisfied and (12) and
(13) become

f ′′′− f ′2 +( f +g) f ′′−A
(

f ′+
η

2
f ′′
)

+α

 f ′′2 +2 f ′ f ′′′− ( f +g) f iv

+A
(

2 f ′′′+
η

2
f iv
) = 0, (16)

g′′′−g′2 +( f +g)g′′−A
(

g′+
η

2
g′′
)

+α

 g′′2 +2g′g′′′− ( f +g)giv

+A
(

2g′′′+
η

2
giv
) = 0. (17)

Now the boundary conditions through (14) and (15)
give

f (0) = 0, f ′(0) = 1, f ′(∞) = 0,

g(0) = 0, g′(0) = p, g′(∞) = 0,
(18)

where A is the time-dependent parameter, α is the
dimensionless second-grade parameter, and p is the
stretching ratio defined as

A = c/a, α =
α1a

µ(1− ct)
, p = b/a. (19)

3. Series Solutions

3.1. Zeroth-Order Deformation Problems

The velocity distributions f (η) and g(η) in the set
of base functions{

η
k exp(−nη) | k ≥ 0,n≥ 0

}
(20)

are given by

f (η) = a0
0,0 +

∞

∑
n=0

∞

∑
k=0

ak
m,nη

k exp(−nη), (21)

g(η) = A0
0,0 +

∞

∑
n=0

∞

∑
k=0

Ak
m,nη

k exp(−nη), (22)

where the initial guesses are

f0(η) = 1− exp(−η), (23)

g0(η) = p(1− exp(−η)). (24)

The linear operators and their associated properties are

L f =
d3 f
dη3 −

d f
dη

, (25)

Lg =
d3g
dη3 −

dg
dη

, (26)

L f [C1 +C2 exp(η)+C3 exp(−η)] = 0, (27)

Lg [C4 +C5 exp(η)+C6 exp(−η)] = 0, (28)

where C1−C6 are constants and ak
m,n and Ak

m,n are co-
efficients.

The problems corresponding to the zeroth-order de-
formation can be written as

(1− p)L
[

f̄ (η , p)− f0(η)
]

= ph fN f [ f̄ (η , p), ḡ(η , p)],
(29)

(1− p)L [ḡ(η , p)−g0(η)]
= phgNg[ f̄ (η , p), ḡ(η , p)],

(30)

f̄ (0, p) = 0, f̄ ′(0, p) = 1, ḡ(0, p) = 0,

ḡ′(0, p) = p, f̄ ′(∞, p) = 0, ḡ′(∞, p) = 0,
(31)
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N f [ f̄ (η , p), ḡ(η , p)] =
∂ 3 f̄
∂η3 −

(
∂ f̄
∂η

)2

+{ f̄ (η , p)+ ḡ(η , p)} ∂ 2 f̄
∂η2

−A
{

f̄ ′(η , p)+
η

2
f̄ ′′(η , p)

}

+α

 f̄
′′2(η , p)+2 f̄ ′(η , p) f̄ ′′′(η , p)
−
{

f̄ (η , p)+ ḡ(η , p)
}

f̄ iv(η , p)
+A
{

2 f̄ ′′′(η , p)+ η

2 f̄ iv(η , p)
}
 ,

(32)

Ng[ f̄ (η , p), ḡ(η , p)] =
∂ 3ḡ
∂η3 −

(
∂ ḡ
∂η

)2

+{ f̄ (η , p)+ ḡ(η , p)} ∂ 2ḡ
∂η2

−A
{

ḡ′(η , p)+
η

2
ḡ′′(η , p)

}

+α

 ḡ
′′2(η , p)+2ḡ′(η , p)ḡ′′′(η , p)
−
{

f̄ (η , p)+ ḡ(η , p)
}

ḡiv(η , p)
+A
{

2ḡ′′′(η , p)+ η

2 ḡiv(η , p)
}
 .

(33)

Here h f and hg show the auxiliary non-zero parameters
and p ∈ [0,1] indicates an embedding parameter. We
have for p = 0 and p = 1

f̄ (η ,0) = f0(η), f̄ (η ,1) = f (η),

ḡ(η ,0) = g0(η), ḡ(η ,1) = g(η),
(34)

and the initial guesses f0(η) and g0(η) approach to
the final solutions f (η) and g(η) when p varies from

0 to 1. In view of Taylor’s expression

f̄ (η , p) = f0(η)+
∞

∑
m=1

fm(η)pm, (35)

ḡ(η , p) = g0(η)+
∞

∑
m=1

gm(η)pm, (36)

fm(η) =
1

m!
∂ m f̄ (η , p)

∂ pm

∣∣∣∣
p=0

,

gm(η) =
1

m!
∂ mḡ(η , p)

∂ pm

∣∣∣∣
p=0

,

(37)

the convergence of series (35) and (36) depends upon
h f and hg. h f and hg are chosen in such a way
that the series (35) and (36) converge for p = 1.
Hence,

f (η) = f0(η)+
∞

∑
m=1

fm(η), (38)

g(η) = g0(η)+
∞

∑
m=1

gm(η). (39)

3.2. mth-Order Deformation Problems

The problems corresponding to the mth-order defor-
mations are

L f [ fm(η)−χm fm−1(η)] = h fR f ,m(η), (40)

Lg [gm(η)−χmgm−1(η)] = hgRg,m(η), (41)

fm(0) = f ′m(0) = f ′m(∞) = gm(0)

= g′m(0) = g′m(∞) = 0,
(42)

R f
m(η) = f ′′′m−1 +

m−1

∑
k=0

[
( fm−1−k +gm−1−k) f ′′k − f ′m−1−k f ′k

]
−A
(

f ′m−1 +
η

2
f ′′m−1

)

+α


m−1

∑
k=o

{
f ′′m−1−k f ′′k +2 f ′m−1−k f ′′′k − ( fm−1−k +gm−1−k) f iv

k

}
+A
(

2 f ′′′m−1 +
η

2
f iv
m−1

)
 ,

(43)

Rg
m(η) =g′′′m−1 +

m−1

∑
k=0

[
( fm−1−k +gm−1−k)g′′k −g′m−1−kg′k

]
−A
(

g′m−1 +
η

2
g′′m−1

)

+α


m−1

∑
k=o

{
g′′m−1−kg′′k +2g′m−1−kg′′′k − ( fm−1−k +gm−1−k)giv

k

}
+A
(

2g′′′m−1 +
η

2
giv

m−1

)
 ,

(44)
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χm=
{

0, m≤ 1
1, m > 1

. (45)

Upon using Mathematica, the resulting problems for
m = 1,2,3, . . . have been solved successfully.

It is worth mentioning to point out that the present
problem for A = 0 = α reduces to the problem of a vis-
cous fluid. Exact numerical solution for this viscous
fluid problem is computed by Ariel [13]. He employed
the Ackroyd method for solving the arising mathemat-
ical problem. For details of this Ackroyd method one
may consult [13]. The present attempt extends the anal-
ysis of Ariel [13] from viscous to second-grade fluid.
The considered fluid model is prefered in the sense that
it can easily describe the normal stress effects. This
consideration hikes the order of the differential sys-
tem. Further, the governing equations are more com-
plicated and nonlinear. Such complexities appear due
to viscoelastic properties of the second-grade fluid.
Another difference occurs in the boundary conditions.
Ariel [13] considered the steady case of stretching sur-
face whereas unsteady stretched flow is taken into ac-
count in the present analysis. A recent and quite pop-
ular technique, namely the homotopy analysis method,
is used for the solution of the highly nonlinear prob-
lem.

4. Convergence of the Series Solutions

It is noted that the convergence of the solution de-
pends on h f and hg. Figure 1 helps for the allowed val-
ues of h f and hg for the convergent solutions. This fig-
ure shows that admissible values are −1 ≤ (h f ,hg) ≤
−0.25. Table 1 is presented to find the necessary or-
der of approximation for a convergent solution. It is

Table 2. Illustrating the variation of − f ′′(0) and −g′′(0) with p when A = 0 = α , using HAM, HPM (Ariel [13, 14]), and the
exact solution (Ariel [13, 14]).

p − f ′′(0) −g′′(0)
HAM HPM [13, 14] Exact [13, 14] HAM HPM [13, 14] Exact [13, 14]

0.0 1 1 1 0 0 0
0.1 1.020259 1.017027 1.020259 0.066847 0.073099 0.066847
0.2 1.039495 1.034587 1.039495 0.148736 0.158231 0.148736
0.3 1.057954 1.052470 1.057954 0.243359 0.254347 0.243359
0.4 1.075788 1.070529 1.075788 0.349208 0.360599 0.349208
0.5 1.093095 1.088662 1.093095 0.465204 0.476290 0.465204
0.6 1.109946 1.106797 1.109946 0.590528 0.600833 0.590528
0.7 1.126397 1.124882 1.126397 0.724531 0.733730 0.724531
0.8 1.142488 1.142879 1.142488 0.866682 0.874551 0.866682
0.9 1.158253 1.160762 1.158253 1.016538 1.022922 1.016538
1.0 1.173720 1.178511 1.173720 1.173720 1.178511 1.173720

noticed that 20th-order approximations are sufficient.
Table 2 is displayed in order to provide a comparative
study for a limiting case. The conclusions show that
present results are in a very good agreement with the
previous limiting results found by Ariel [13, 14]

Fig. 1. h-curves of f and g for the 15th order of approxima-
tion.

Table 1. Convergence of the HAM solutions for different or-
der of approximations when p = 0.5, α = 0.2, A = 0.5.

order of approximation − f ′′(0) −g′′(0)
1 0.953333 0.453333
2 0.965036 0.455542
5 0.455542 0.455301

10 0.455301 0.455231
15 0.962639 0.455227
20 0.962639 0.455226
25 0.962639 0.455226
30 0.962639 0.455226
40 0.962639 0.455226
50 0.962639 0.455226
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5. Results and Discussion

In this section the behaviour of certain parameters
of interest on the velocity field has been analyzed. Fig-
ures 2 – 9 are plotted for this interest. The variations

Fig. 2. Influence of A on f ′ for two-dimensional flow.

Fig. 3. Influence of A on f ′ for three-dimensional flow.

Fig. 4. Influence of A on g′ for three-dimensional flow.

of A on f ′ and g′ are shown in Figures 2 – 5. The ef-
fects of the time-dependent parameter A on f ′ for two-
dimensional flow are presented in Figure 2. It shows
that f ′ and the associated boundary layer is an in-
creasing function of A. Figures 3 and 4 also show the

Fig. 5. Influence of A on f ′ for axisymmetric flow.

Fig. 6. Influence of α on f ′ for two-dimensional flow.

Fig. 7. Influence of α on f ′ for three-dimensional flow.
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Fig. 8. Influence of α on g′ for three-dimensional flow.

Fig. 9. Influence of α on f ′ for axisymmetric flow.

increasing behaviour of A on f ′ and g′ for the three-
dimensional flow. From Figure 5 it is observed that
similar result is obtained for axisymmetric flow.

The effects of the second-grade parameter α on f ′

and g′ are displayed in Figures 6 – 9. Figure 6 eluci-
dates that f ′ and the associate boundary layer isan in-
creasing function of α. Similar results are obtained
from Figures 7 and 8 for the three-dimensional flow.
Figure 9 represents increasing effects of α on f ′ for
the axisymmetric flow. Figure 10 illustrates the vari-
ation of p on f ′. This figure indicates that the veloc-

Fig. 10. Influence of p on f ′.

Fig. 11. Influence of p on g′.

ity field f ′ and the boundary layer thickness decreases
with an increase in p. Figure 11 analyzes the effects of
p on g′. This figure shows that the velocity component
g′ increases with an increase in p.
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