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The semi-inverse method is used to establish a variational principle for the Dirichlet boundary
value problem with impulses. All the boundary conditions can be obtained as natural conditions by

making the variational principle stationary.
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1. Introduction

Many dynamical systems have an impulsive dynam-
ical behaviour due to abrupt changes at certain instants
during the evolution process [1—3]; in this paper, we
will consider the following Dirichlet impulsive prob-
lem:

—u"(0) + Au(t) = o(1), 1€[0,T], )
Au/(tj):dj j:172737"'7p7 (2)
u(0) = u(T) =0, )

where 0 <t; <t) <... <ty <tpy1 =T and A/ (z;) is
defined as

Al (t) =1l (t) —u' (1) “)
Nieto and his colleagues established variational prin-
ciples for various impulsive problems [1—3]; in this
paper we suggest an alternative approach to the estab-
lishment of the variational formulation for the above
problem.

2. Semi-Inverse Method
The semi-inverse method [4] is a powerful tool to

establish a variational formulation directly from gov-
erning equations and boundary/initial conditions. The

basic idea of the semi-inverse method is to construct
a trial-functional with an unknown function. For the
present problem, we can construct a trial-functional in
the form

() :/(;T{;u’2+F(u)}dt, )

where F' is an unknown function of u.

There are alternative approaches to construct trial-
functionals, see [5—10].

Making the functional (5) stationary with respect to
u, we have the following stationary condition (Euler—
Lagrange equation):

or
u
Equation (6) should be equivalent to (1); to this end,
we set

"+ Z— =0. ©6)

Z—Z = Au(t) —o(t). (7N

From (7), the unknown function F can be identified as

1
)

We, therefore, obtain the following functional:

- [

F = —Au’ —ou. (8)
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In order to incorporate the impulsive condition (2) and
the boundary condition (3) into the above variational
formulation, we construct a trial-functional in the form
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where B; (j =0,1,2,3,...,p,p+1) is an unknown

continuous function.
Making (10) stationary, we have
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For any arbitrary du, we have (1) as Euler-Lagrange
equation, and the following natural boundary/initial
conditions:

633
att =1y =0:
(o) 4 2B
W (0)+ 57 =0, (12a)
dBy o
B =0; (12b)
atr =t;:
0B;
W () —u (17)+ afb(ff) =0; (13)
att =t, 1 =T:
gy OB _
(T)+ o =0, (14a)
0B, _
e 0. (14b)
In (13), we set
dB;(1;) _
S =d; (15)

so that it turns out to be (2). From (15), we can identify
Bj as follows:

u(t;)
Bj(lj)Z/U djdl. (16)

Equations (12) and (14) should satisfy the boundary
condition (3); to this end, we set

By = u'(0)u(0) (17)
and
Br = —u’(T)u(T). (18)

Please note in above derivation we have used the prop-
erty ) = 2?;’5 foj“, where 7o =0and 7,4 = T.

We, therefore, obtain the following needed varia-
tional principle:

J(u) :/T lu'z—i—lﬂtuz—cu dr
0 2 2

2, )
+ J; /0 djdt +u' (0)u(0) — ' (T )u(T).

19)

It is easy to prove that the stationary conditions of the
above functional satisfy (1)—(3).
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