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We make use of Hirota’s bilinear method with computer symbolic computation to study a variety
of coupled modified Korteweg–de Vries (mKdV) equations. Multiple soliton solutions and multiple
singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each
coupled mKdV equation is proved not to exist.
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1. Introduction

Recently, many nonlinear coupled evolution equa-
tions, such as the coupled Korteweg–de Vries (KdV)
equation, the coupled Boussinesq equation, and the
coupled mKdV equation, appear in scientific appli-
cations [1 – 13]. The coupled evolution equations at-
tracted a considerable research work in the literature.
The aims of these works have been the determination
of soliton solutions and the proof of complete integra-
bility of these coupled equations [14 – 24].

Various methods have been used to investigate the
nonlinear evolution and the coupled nonlinear evolu-
tion equations. Examples of the methods that have
been used are the Hirota bilinear method, the Hietar-
inta approach, the Bäcklund transformation method,
the Darboux transformation, the Pfaffian technique,
the inverse scattering method, the Painlevé analysis,
the generalized symmetry method, and other meth-
ods. The Hirota bilinear method [1 – 7], the Hietar-
inta approach [8, 9], and the Hereman simplified
form [10 – 12] are rather heuristic and significant.
These approaches possess powerful features that make
them practical for the determination of multiple soliton
solutions [13 – 24] for a wide class of nonlinear evolu-
tion equations. The computer symbolic systems such
as Maple and Mathematica allow us to perform com-
plicated and tedious calculations.

It is interesting to point out that the soliton solution
should demonstrate a wave of permanent form. The
soliton solution is localized, which means that the so-

lution either decays exponentially to zero such as the
KdV solitons, or converges to a constant at infinity
such as the sine-Gordon equation. Since we will talk
about the multiple soliton solutions, we point out that
the soliton interacts with other solitons preserving its
character. We also add that the soliton solution u(x, t),
along with its derivatives, tends to zero as | x |→ ∞.
This clearly shows that the soliton reside in Hilbert
space, and it results from initial-boundary value prob-
lems.

Concerning the modified KdV equation, it describes
nonlinear wave propagation in systems with polarity
symmetry. The mKdV equation is used in electrody-
namics, wave propagation in size quantized films, and
in elastic media. It is used to describe acoustic waves
in anharmonic lattices and Alfvén waves in collision-
less plasma. The mKdV equation differs from the KdV
equation only because of its cubic nonlinearity. The
mKdV equation is completely integrable and can be
solved by the inverse scattering method.

In this work, a variety of coupled mKdV equations
will be investigated for complete integrability and for
the determination of multiple soliton solutions. The
coupled mKdV equations that we selected are

ut +6αuvux +uxxx = 0,

vt +6αuvvx + vxxx = 0,
(1)

ut +6αuvvx +6u2ux−6v2ux +uxxx = 0,

vt +24αuvux +6u2vx−6v2vx + vxxx = 0,
(2)
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mailto:wazwaz@sxu.edu


626 A.-M. Wazwaz · Variety of Coupled mKdV Equations

and

ut +α(v2ux−u2ux)+
α

4
uxxx = 0,

vt +α(v2vx−u2vx)+
α

4
vxxx = 0.

(3)

The Hirota bilinear method [1 – 7], the Hietar-
inta approach [8, 9], and Hereman’s simplified
form [10 – 12] will be used in this work. Our goal is to
construct multiple regular soliton solutions and multi-
ple singular soliton solutions for each coupled equa-
tion. Hirota and Ito in [2] examined the phenomena
of two solitons near the resonant state, two solitons at
the resonant state, and two solitons after colliding with
each other. The systems of mKdV equations (1) – (3)
will be tested for resonance effects.

2. The First Coupled mKdV Equation

We first study the coupled mKdV equation given by

ut +6αuvux +uxxx = 0,

vt +6αuvvx + vxxx = 0,
(4)

where α is a constant. For u = v the system (1) be-
comes the mKdV equation. This system was studied
first by Hirota [1], then by others.

2.1. Multiple Soliton Solutions

Substituting

u(x, t) = eθi , θi = kix− cit,

v(x, t) = Aeθi ,
(5)

where A is a constant, into the linear terms of (4) gives
the dispersion relation by

ci = k3
i , (6)

and as a result we obtain

θi = kix− k3
i t. (7)

The multi-soliton solutions of the coupled mKdV
equation are given by

u(x, t) = R

(
arctan

(
f (x, t)
g(x, t)

))
x
= R

fxg−gx f
f 2 +g2 ,

v(x, t) = R1

(
arctan

(
f (x, t)
g(x, t)

))
x
= R1

fxg−gx f
f 2 +g2 ,

(8)

where the auxiliary functions f (x, t) and g(x, t) for the
single soliton solution are given by

f (x, t) = eθ1 = ek1x−k3
1t ,

g(x, t) = 1.
(9)

Substituting (8) and (9) into (4) and solving for R and
R1, we find

R = β ,

R1 =
4

αβ 2 ,
(10)

where β is a constant.
Combining (8) – (10) gives the single soliton solu-

tion

u(x, t) =
βk1 ek1

(
x−k2

1t
)

1+ e2k1

(
x−k2

1t
) ,

v(x, t) =
4k1 ek1

(
x−k2

1t
)

αβ

(
1+ e2k1

(
x−k2

1t
)) .

(11)

The last result determines the relation between u(x, t)
and v(x, t) by

u(x, t)
v(x, t)

=
αβ 2

4
. (12)

To determine the two-soliton solutions, we set

f (x, t) = eθ1 + eθ2 = ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)
,

g(x, t) = 1−a12eθ1+θ2 = 1−a12e(k1+k2)x−
(

k3
1+k3

2

)
t .

(13)

Substituting (13) into (8) and using the obtained re-
sult in the coupled mKdV equation (4), one obtains the
phase shift a12 by

a12 =
(k1− k2)2

(k1 + k2)2 , (14)

and this can be generalized to

ai j =
(ki− k j)2

(ki + k j)2 , 1≤ i < j ≤ 3. (15)

The two-soliton solutions are obtained by substituting
(14) and (13) into (8). It is interesting to point out that
(1) does not show any resonant phenomenon [2] be-
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cause the phase shift term a12 in (14) cannot be 0 or ∞

for |k1| 6= |k2|.
To determine the three-soliton solutions, we set

f (x, t) =eθ1 + eθ2 + eθ3 −a12a13a23eθ1+θ2+θ3

=ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)
+ ek3

(
x−k2

3t
)

−a12a13a23e(k1+k2+k3)x−
(

k3
1+k3

2+k3
3

)
t ,

g(x, t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3

=1−a12e(k1+k2)x−
(

k3
1+k3

2

)
t

−a13e(k1+k3)x−
(

k3
1+k3

3

)
t

−a23e(k2+k3)x−
(

k3
2+k3

3

)
t ,

(16)

where the phase shifts ai j are derived above in (15).
The three-soliton solutions for the coupled mKdV
equation (4) are obtained by substituting (16) into (8).
It is obvious that N-soliton solutions can be obtained
for finite N, where N ≥ 1.

2.2. Singular Soliton Solutions

In this section, we will determine multiple singular
soliton solutions for the coupled mKdV equation (4).
Following [13], the singular soliton solution of the cou-
pled mKdV equation (4) is assumed to be of the form

u(x, t) = R

(
ln

(
f (x, t)
g(x, t)

))
x
= R

g fx− f gx

g f
,

v(x, t) = R1

(
ln

(
f (x, t)
g(x, t)

))
x
= R1

g fx− f gx

g f
,

(17)

where R and R1 are constants that will be determined.
The auxiliary functions f (x, t) and g(x, t) have expan-
sions of the form

f (x, t) = 1+
∞

∑
n=1

fn(x, t),

g(x, t) = 1−
∞

∑
n=1

gn(x, t).
(18)

Following the discussion presented in the previous sec-
tion, the dispersion relation is given by

ci = k3
i , (19)

and as a result we obtain

θi = kix− k3
i t. (20)

The obtained results give a new definition to (18) in the
form

f (x, t) = 1+ ek1

(
x−k2

1t
)
,

g(x, t) = 1− ek1

(
x−k2

1t
)
.

(21)

Substituting (21) into (17), and using the outcome in
(4), one obtains

R = β ,

R1 =− 1
αβ 2 ,

(22)

where β is a constant. Combining the previous results,
the singular soliton solutions

u(x, t) =
2βk1ek1

(
x−k2

1t
)

1− ek1

(
x−k2

1t
) ,

v(x, t) =− 2k1ek1

(
x−k2

1t
)

αβ

(
1− ek1

(
x−k2

1t
))

(23)

are readily obtained. It is clear that

u(x, t)
v(x, t)

=−αβ
2. (24)

To determine the singular two-soliton solutions, we set

f (x, t) = 1+ eθ1 + eθ2 +a12eθ1+θ2 ,

g(x, t) = 1− eθ1 − eθ2 +b12eθ1+θ2 .
(25)

Substituting (25) into (18) and using the outcome into
(4), we find that (25) is a solution of this equation if the
phase shifts a12 and b12, and therefore ai j and bi j, are
equal and given by

ai j = bi j =
(ki− k j)2

(ki + k j)2 . (26)

For the two-soliton solutions we use 1 ≤ i < j ≤ 2 to
obtain

f (x, t) =1+ ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t ,

g(x, t) =1− ek1

(
x−k2

1t
)
− ek2

(
x−k2

2t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t .

(27)
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This in turn gives the singular two-soliton solutions if
we substitute (27) into (17).

To determine the singular three-soliton solutions,
we can proceed in a similar manner and set

f (x, t) =1+ eθ1 + eθ2 + eθ3 +a12eθ1+θ2

+a23eθ2+θ3 +a13eθ1+θ3 + f3(x, t),

g(x, t) = 1− eθ1 − eθ2 − eθ3 +a12eθ1+θ2

+a23eθ2+θ3 +a13eθ1+θ3 +g3(x, t).

(28)

Substituting (28) into (17) and using the result into (4)
to find that

f3(x, t) = b123eθ1+θ2+θ3 ,

g3(x, t) =−b123eθ1+θ2+θ3 ,

b123 = a12a13a23.

(29)

For the singular three-soliton solutions we use 1≤ i <
j ≤ 3, we therefore obtain

f (x, t) =1+ ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)
+ ek3

(
x−k2

3t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t

+
(k1− k3)2

(k1 + k3)2 e(k1+k3)x−
(

k3
1+k3

3

)
t

+
(k2− k3)2

(k2 + k3)2 e(k2+k3)x−
(

k3
2+k3

3

)
t

+
(k1− k2)2(k1− k3)2(k2− k3)2

(k1 + k2)2(k1 + k3)2(k2 + k3)2

· e(k1+k2+k3)x−
(

k3
1+k3

2+k3
3

)
t ,

g(x, t) = 1− ek1

(
x−k2

1t
)
− ek2

(
x−k2

2t
)
− ek3

(
x−k2

3t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t

+
(k1− k3)2

(k1 + k3)2 e(k1+k3)x−
(

k3
1+k3

3

)
t

+
(k2− k3)2

(k2 + k3)2 e(k2+k3)x−
(

k3
2+k3

3

)
t

− (k1− k2)2(k1− k3)2(k2− k3)2

(k1 + k2)2(k1 + k3)2(k2 + k3)2

· e(k1+k2+k3)x−
(

k3
1+k3

2+k3
3

)
t .

(30)

The singular three-soliton solutions follow immedi-
ately upon substituting (30) into (17).

3. The Second Coupled mKdV Equation

We next study the coupled mKdV equation given by

ut +6αuvvx +6u2ux−6v2ux +uxxx = 0,

vt +24αuvux +6u2vx−6v2vx + vxxx = 0,
(31)

where α is a constant. The discussion here will be par-
allel to our discussion above.

3.1. Multiple Soliton Solutions

Proceeding as before, the dispersion relation is
given by

ci = k3
i , (32)

and we also obtain

θi = kix− k3
i t. (33)

The multi-soliton solutions of the coupled mKdV
equation (31) are assumed above in (8) where the aux-
iliary functions f (x, t) and g(x, t) are as given above in
(9). Substituting these results into (31) and solving for
R and R1, we find

R =± 2√
4α−3

,

R1 =±2.

(34)

Combining these results gives the single soliton solu-
tion

u(x, t) =± 2k1 ek1

(
x−k2

1t
)

√
4α−3

(
1+ e2k1

(
x−k2

1t
)) , α >

3
4
,

v(x, t) =± 4k1 ek1

(
x−k2

1t
)

√
4α−3

(
1+ e2k1

(
x−k2

1t
)) . (35)

The last result determines the relation between u(x, t)
and v(x, t) by

u(x, t)
v(x, t)

=
1
2
. (36)
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To determine the two-soliton solutions, we set

f (x, t) = eθ1 + eθ2 = ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)
,

g(x, t) = 1−a12eθ1+θ2 = 1−a12e(k1+k2)x−
(

k3
1+k3

2

)
t .

(37)

Substituting (37) into (8) and using the obtained result
in the coupled mKdV equation (31), one obtains the
phase shift a12 by

a12 =
(k1− k2)2

(k1 + k2)2 , (38)

and this can be generalized to

ai j =
(ki− k j)2

(ki + k j)2 , 1≤ i < j ≤ 3. (39)

The two-soliton solutions are obtained by substituting
(38) and (37) into (8). It is interesting to point out that
(38) does not show any resonant phenomenon [2] be-
cause the phase shift term a12 in (38) cannot be 0 or ∞

for |k1| 6= |k2|.
To determine the three-soliton solutions, we use the

assumption set in (16). The three-soliton solutions for
the coupled mKdV equation (31) are obtained in a like
manner to the analysis presented earlier. It is obvious
that N-soliton solutions can be obtained for finite N,
where N ≥ 1.

3.2. Singular Soliton Solutions

In this section, we will determine multiple singular
soliton solutions for the coupled mKdV equation (31).
Following [13], and proceeding as in the previous sec-
tion, we obtain the following results:
i) The auxiliary functions become

f (x, t) = 1+ ek1

(
x−k2

1t
)
,

g(x, t) = 1− ek1

(
x−k2

1t
)
.

(40)

Proceeding as before, one obtains

R =
1√

5−4α
, α <

5
4
,

R1 =±2.

(41)

Combining the previous results, the singular soliton so-
lutions

u(x, t) =± 2k1ek1

(
x−k2

1t
)

1− ek1

(
x−k2

1t
) ,

v(x, t) =± 4k1ek1

(
x−k2

1t
)

√
5−4α

(
1− ek1

(
x−k2

1t
))

(42)

are readily obtained. It is clear that

u(x, t)
v(x, t)

=±1
2
. (43)

ii) To determine the singular two-soliton solutions, we
proceed as before to find that the phase shifts a12 and
b12, and therefore ai j and bi j, are equal and given by

ai j = bi j =
(ki− k j)2

(ki + k j)2 . (44)

For the two-soliton solutions, we use 1 ≤ i < j ≤ 2 to
obtain

f (x, t) =1+ ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t ,

g(x, t) =1− ek1

(
x−k2

1t
)
− ek2

(
x−k2

2t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t .

(45)

This in turn gives the singular two-soliton solutions if
we substitute (45) into (17).

To determine the singular three-soliton solutions,
we can proceed in a similar manner and set

f (x, t) =1+ eθ1 + eθ2 + eθ3 +a12eθ1+θ2

+a23eθ2+θ3 +a13eθ1+θ3 + f3(x, t),

g(x, t) = 1− eθ1 − eθ2 − eθ3 +a12eθ1+θ2

+a23eθ2+θ3 +a13eθ1+θ3 +g3(x, t).

(46)

Substituting (46) into (17) and using the result into (31)
to find that

f3(x, t) = b123eθ1+θ2+θ3 ,

g3(x, t) =−b123eθ1+θ2+θ3 ,

b123 = a12a13a23.

(47)
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For the singular three-soliton solutions, we use 1≤ i <
j ≤ 3; we therefore obtain

f (x, t) =1+ ek1

(
x−k2

1t
)
+ ek2

(
x−k2

2t
)
+ ek3

(
x−k2

3t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t

+
(k1− k3)2

(k1 + k3)2 e(k1+k3)x−
(

k3
1+k3

3

)
t

+
(k2− k3)2

(k2 + k3)2 e(k2+k3)x−
(

k3
2+k3

3

)
t

+
(k1− k2)2(k1− k3)2(k2− k3)2

(k1 + k2)2(k1 + k3)2(k2 + k3)2

· e(k1+k2+k3)x−
(

k3
1+k3

2+k3
3

)
t ,

g(x, t) = 1− ek1

(
x−k2

1t
)
− ek2

(
x−k2

2t
)
− ek3

(
x−k2

3t
)

+
(k1− k2)2

(k1 + k2)2 e(k1+k2)x−
(

k3
1+k3

2

)
t

+
(k1− k3)2

(k1 + k3)2 e(k1+k3)x−
(

k3
1+k3

3

)
t

+
(k2− k3)2

(k2 + k3)2 e(k2+k3)x−
(

k3
2+k3

3

)
t

− (k1− k2)2(k1− k3)2(k2− k3)2

(k1 + k2)2(k1 + k3)2(k2 + k3)2

· e(k1+k2+k3)x−
(

k3
1+k3

2+k3
3

)
t .

(48)

The singular three-soliton solutions follow immedi-
ately upon substituting (48) into (17).

4. The Third Coupled mKdV Equation

We consider now a third coupled mKdV equation
given by

ut +α(v2ux−u2ux)+
α

4
uxxx = 0,

vt +α(v2vx−u2vx)+
α

4
vxxx = 0.

(49)

where α is a constant. Our approach will run parallel
to the approach used before, hence we skip details.

4.1. Multiple Soliton Solutions

The multi-soliton solutions of the coupled mKdV
equation (49) are given by

u(x, t) = R

(
arctan

(
f (x, t)
g(x, t)

))
x
= R

fxg−gx f
f 2 +g2 ,

v(x, t) = R1

(
arctan

(
f (x, t)
g(x, t)

))
x
= R1

fxg−gx f
f 2 +g2 ,

(50)

where the auxiliary functions f (x, t) and g(x, t) are
given earlier.

Proceeding as before and solving for R and R1, we
find

R =

√
6

γ2−1
,

R1 = γ,

(51)

where γ is a constant.
Combining (50) – (51) gives the single soliton solu-

tion

u(x, t) =

√
6

γ2−1
k1 ek1

(
x− α

4 k2
1t
)

1+ e2k1

(
x− α

4 k2
1t
) ,

v(x, t) =
γ

√
6

γ2−1
k1 ek1

(
x− α

4 k2
1t
)

αβ

(
1+ e2k1

(
x− α

4 k2
1t
)) .

(52)

To determine the two-soliton solutions follow the dis-
cussion presented before to find that the phase shift a12
is given by

a12 =
(k1− k2)2

(k1 + k2)2 , (53)

and this can be generalized to

ai j =
(ki− k j)2

(ki + k j)2 , 1≤ i < j ≤ 3. (54)

The two-soliton solutions are obtained by proceeding
as before. It is interesting to point out that (53) does
not show any resonant phenomenon [2] because the
phase shift term a12 in (53) cannot be 0 or ∞ for
|k1| 6= |k2|.
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To determine the three-soliton solutions, we set

f (x, t) = eθ1 + eθ2 + eθ3 −a12a13a23eθ1+θ2+θ3

= ek1

(
x− α

4 k2
1t
)
+ ek2

(
x− α

4 k2
2t
)
+ ek3

(
x− α

4 k2
3t
)

−a12a13a23e(k1+k2+k3)x− α
4

(
k3

1+k3
2+k3

3

)
t ,

(55)
g(x, t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3

=1−a12e(k1+k2)x− α
4

(
k3

1+k3
2

)
t

−a13e(k1+k3)x− α
4

(
k3

1+k3
3

)
t

−a23e(k2+k3)x− α
4

(
k3

2+k3
3

)
t ,

where the phase shifts ai j are derived above in (54).
The three-soliton solutions for the coupled mKdV
equation (49) are obtained by substituting (55) into
(50). It is clear that N-soliton solutions can be obtained
for finite N, where N ≥ 1.

4.2. Singular Soliton Solutions

The singular soliton solutions, single, two-soliton,
and three-soliton solutions can be obtained in a like
manner to the analysis presented above, hence we skip
details.

5. Discussion

An analytic study was conducted on three coupled
mKdV equations. The study confirmed the integrabil-
ity of each coupled mKdV equation. Multiple-soliton
solutions and multiple singular soliton solutions are
formally derived. The analysis confirms the fact that
certain equations which have N-soliton solutions, have
simultaneously N-singular soliton solutions. The only
change in the obtained results is the change in the coef-
ficients of the dependent variable transformation. The
phase shifts are the same for all coupled mKdV equa-
tions. The resonance phenomenon does not exist for
any of these coupled mKdV equations.
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