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In this paper, we will consider the Laplace decomposition method (LDM) for finding series so-
lutions of nonlinear oscillator differential equations. The equations are Laplace transformed and the
nonlinear terms are represented by He’s polynomials. The solutions are compared with the numer-
ical (fourth-order Runge–Kutta) solution and the solution obtained by the Adomian decomposition
method. The suggested algorithm is more efficient and easier to handle as compared to the numerical
method. The results illustrate that LDM is an appropriate method in solving the highly nonlinear
equations.
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1. Introduction

Nonlinear ordinary differential equations arise in
a wide variety of circumstances: a simple pendulum,
oscillations in electrical circuits, oscillations of me-
chanical structures, molecular vibrations, the motion
of particles in accelerators, planetary motion, and the
effects of strong electromagnetic fields of atoms and
molecules.

The Duffing–Van der Pol’s equation provides an
important mathematical model for dynamical systems
having a single unstable fixed point, along with a sin-
gle stable limit cycle. Examples of such phenom-
ena arise in all of the natural and engineering sci-
ences [1, 2] and in many physical problems [3, 4].
The problem of Van der Pol–Duffing oscillators have
been studied extensively in various aspects, for ex-
ample to the vibration amplitude control, synchro-
nization dynamics, additive resonances, etc. [5 – 9].
The literature on the topic is quite extensive and
hence can not be described here in detail. However,
some most recent works of eminent researchers re-
garding the Van der Pol-Duffing oscillator may be
mentioned in [10 – 15].

Most models of real-life problems, however,
are still very difficult to solve. Therefore, ap-
proximate analytical solutions such as homotopy
perturbation method [16 – 18], homotopy analysis
method [19, 20], variational iteration method [21 – 23],
differential transform method [24], Adomian decom-
position method [25, 26], Laplace decomposition
method [27, 28], and homotopy perturbation transform
method [29] were introduced. In general, the solu-
tions produced by the Laplace decomposition method
(LDM) are as accurate as the solutions given by other
methods like the control theory formalism [30]. It is
well known that the control theory is an important
mathematical theoretical tool, useful in a lot of appli-
cations in milling industry, economic models, robotics,
electrical machine regulation, etc., which allows mon-
itoring the solution of differential, difference, and hy-
brid systems in a prescribed way.

The Laplace transform is an elementary but useful
technique for solving linear ordinary differential equa-
tions that is widely used by scientists and engineers for
tackling linearized models. In fact, the Laplace trans-
form is one of only a few methods that can be applied
to linear systems with periodic or discontinuous driv-
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ing inputs. Despite its great usefulness in solving lin-
ear problems, however, the Laplace transform is totally
incapable of handling nonlinear equations because of
the difficulties that are caused by the nonlinear terms.
This paper considers the effectiveness of the Laplace
decomposition algorithm in solving nonlinear oscilla-
tor differential equations.

2. The Laplace Decomposition Method

To illustrate the basic idea of this method, we
consider the following general form of the second-
order non-homogeneous nonlinear ordinary differen-
tial equation with initial conditions given by

f ′′+b1(x) f ′+b2(x) f = g(y),
f (0) = α, f ′(0) = β .

(1)

According to the Laplace decomposition method
[27, 28], we apply the Laplace transform (denoted
throughout this paper by L) on both sides of (1):

s2L [ f ]− sα−β +L
[
b1(x) f ′

]
+L [b2(x) f ]

= L [g(y)] .
(2)

Using the differentiation property of the Laplace trans-
form, we have

L [ f ] =
α

s
+

β

s2 +
1
s2 L [g(y)]

− 1
s2 L

[
b1(x) f ′+b2(x) f

]
.

(3)

The Laplace decomposition method [27, 28] admits
a solution in the form

f =
∞

∑
n=0

fn, (4)

so that the nonlinear term can be decomposed as

g(y) = N f =
∞

∑
n=0

Hn , (5)

for some He’s polynomials Hn (see [31]) that are given
by

Hn =
1
n!

dn

dpn

[
N

(
∞

∑
i=0

pi( fi)

)]
p=0

,

n = 0,1,2,3, . . .

(6)

Using (5) and (4) in (3), we get

L

[
∞

∑
n=0

fn

]
=

α

s
+

β

s2 +
1
s2 L

[
∞

∑
n=0

Hn

]

− 1
s2 L

[
b1(x)

∞

∑
n=0

f ′n +b2(x)
∞

∑
n=0

fn

]
.

(7)

Matching both sides of (7), we have the following re-
lation:

L [ f0] =
α

s
+

β

s2 , (8)

L[ f1] =
1
s2 L [H0]−

1
s2 L

[
b1(x) f ′0 +b2(x) f0

]
,

L[ f2] =
1
s2 L [H1]−

1
s2 L

[
b1(x) f ′1 +b2(x) f1

]
,

... (9)

In general the recursive relation for (9) is given by

L [ fn+1] =
1
s2 L [Hn]−

1
s2 L

[
b1(x) f ′n +b2(x) fn

]
,

n≥ 0. (10)

Taking the inverse Laplace transform from both sides
of (8) – (10), one obtains

f0 = G(x) (11)

and

fn+1(x) = L−1
[

1
s2 L [Hn]−

1
s2 L

[
b1(x) f ′n +b2(x) fn

]]
,

n≥ 0, (12)

where G(x) represents the term arising from the source
term and the prescribed initial condition.

3. Van der Pol’s Oscillator Problem

Example 3.1 Consider the following Van der Pol’s
oscillator problem [12]:

d2u
dt2 +

du
dt

+u+u2 du
dt

= 2 cos t − cos3 t (13)

with the initial conditions

u(0) = 0, u′ (0) = 1. (14)
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The exact solution of the above problem is given by

u(t) = sin t. (15)

We apply the Laplace transform to get

s2u(s)− su(0)−u′(0)+ su(s)−u(0)

= L

[
2cos t− cos3 t−u−u2 du

dt

]
.

(16)

The initial condition now implies that

s2u(s)−1+ su(s)

= L

[
2cos t− cos3 t−u−u2 du

dt

]
(17)

and

u(s) =
1

s2 + s
+

1
s2 + s

L

·
[

2cos t− cos3 t−u−u2 du
dt

] (18)

so that by applying the inverse Laplace transform, we
have

u(t) =1− e−t +L−1
[

1
s2 + s

L

·
[

2cos t− cos3 t−u−u2 du
dt

]]
.

(19)

Since a series solution of the form

u(t) =
∞

∑
n=0

un(t) (20)

is assumed in the Laplace decomposition method, (20)
is substituted into (19) to get

∞

∑
n=0

un(t) = 1− e−t +L−1

[
1

s2 + s
L

[
2cos t

−cos3 t−
∞

∑
n=0

un(t)−
∞

∑
n=0

H1n(u)

]]
,

(21)

where H1n(u) are He’s polynomials [31] that represent
the nonlinear terms and satisfy

∞

∑
n=0

H1n(u) = u2ut . (22)

The first few components of He’s polynomials, for ex-
ample, are given by

H10(u) = u2
0u0t ,

H11(u) = 2u0u1u0t +u2
0u1t ,

H12(u) = u2
1u0t +2u0u2u0t +2u0u1u1t +u2

0u2t ,

... (23)

H1n(u) =
n

∑
i=0

i

∑
r=0

un−iturui−r.

It is clear from (21) that the recursive relation is

u0(t) = 1− e−t , (24)

un+1(t) = L−1
[

1
s2 + s

L
[
2cos t− cos3 t−un−H1n

]]
,

n≥ 0, (25)

so that for n = 0, we have

u1(t) =L−1
[

1
s2 + s

L
[
2cos t− cos3 t−u0−H10

]]
,

u1(t) =
1

120

(
200−4e−3t(5−30et +57e2t) (26)

−120t−75cos t +3cos3t +75sin t− sin3t) ;

therefore the solution u(t) is given by

u(t) =
1

120

(
320−4e−3t(5−30et +87e2t)

−120t−75cos t +3cos3t +75sin t− sin3t
)
+ . . .

(27)

Table 1 exhibits the errors obtained by applying
the numerical fourth-order Runge–Kutta method, the
Laplace decomposition method, and the Adomian de-
composition method.

Example 3.2 Consider the nonlinear oscillator dif-
ferential equation [12]

d2u
dt2 −u+u2 +

(
du
dt

)2

−1 = 0

with the initial conditions

u(0) = 2, u′ (0) = 0. (28)

The exact solution of the above problem is given by

u(t) = 1+ cos t. (29)
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Table 1. Comparison between numerical fourth-order Runge–Kutta method, Laplace decomposition method, and Adomian
decomposition method for Example 3.1.

t Numerical LDM ADM Exact Error = Error = Error =
solution solution solution solution exact sol. − exact sol. − exact sol. −

numer. sol. LDM sol. ADM sol.
0 0 0 0 0 0 0 0
0.1 0.0998 0.0998382 0.0998291 0.0998334 0.0000334 −0.0000048 0.00000043
0.2 0.1987 0.198754 0.198598 0.198669 −0.0000310 −0.0000850 0.00007100
0.3 0.2956 0.295971 0.295144 0.29552 −0.000080 −0.0004510 0.00037600
0.4 0.3896 0.390884 0.388161 0.389418 −0.0001820 −0.0014660 0.00125700
0.5 0.4796 0.483027 0.476167 0.479426 −0.0001740 −0.0036010 0.00325900
0.6 0.5648 0.572029 0.557442 0.564642 −0.0001580 −0.0073870 0.0072000
0.7 0.6444 0.657552 0.629971 0.644218 −0.0001820 −0.0133340 0.0142470
0.8 0.7174 0.739232 0.691389 0.717356 −0.0000440 −0.0218760 0.02596700
0.9 0.7832 0.816622 0.738922 0.783327 0.0001270 −0.0332950 0.04440500
1 0.841 0.889158 0.769345 0.841471 0.00047100 −0.0476870 0.07212600

Table 2. Comparison between numerical fourth-order Runge–Kutta method, Laplace decomposition method, and Adomian
decomposition method for Example 3.2.

t Numerical LDM ADM Exact Error = Error = Error =
solution solution solution solution exact sol. − exact sol. − exact sol. −

numer. sol. LDM sol. ADM sol.
0 2 2 2 2 0 0 0
0.1 1.995004 1.99498 1.99498 1.995 −0.00000400 0.0000250069 0.0000250069
0.2 1.980067 1.97967 1.97967 1.98007 −0.00000300 0.000400445 0.000400445
0.3 1.955336 1.95331 1.95331 1.95534 0.00000400 0.00203006 0.00203006
0.4 1.921061 1.91463 1.91463 1.92106 −0.00000100 0.00642846 0.00642846
0.5 1.877583 1.86185 1.86185 1.87758 −0.00000300 0.0157336 0.0157336
0.6 1.825336 1.79261 1.79261 1.82534 −0.00000820 0.0327244 0.0327244
0.7 1.764842 1.704 1.704 1.76484 −0.00000200 0.0608434 0.0608434
0.8 1.696707 1.59248 1.59248 1.69671 0.00000300 0.104225 0.104225
0.9 1.62161 1.45388 1.45388 1.62161 0.00000000 0.167726 0.167726
1 1.540302 1.28333 1.28333 1.5403 −0.00000200 0.256969 0.256969

In a similar way we have

u(s) =
2
s

+
1
s3 +

1
s2 L

[
u−u2−

(
du
dt

)2
]

. (30)

The inverse of Laplace transform implies that

u(t) = 2+
t2

2
+L−1

[
1
s2 L

[
u−u2−

(
du
dt

)2
]]

. (31)

Proceeding as before, we obtain

un+1(t) = 2+
t2

2
+L−1

[
1
s2 L [un−H2n−H3n]

]
,

n≥ 0. (32)

H2n(u) and H3n(u) are He’s polynomials [31] that rep-
resent the nonlinear terms. Matching both sides of (32),

the components of u can be obtained as follows:

u0(t) = 2+
t2

2
, (33)

u1(t) = L−1
[

1
s2 L [u0−H20−H30]

]
,

u1(t) =−t2− 5t4

24
− t6

120
.

(34)

Therefore a series solution is obtained which reads

u(t) = 2− t2

2
− 5t4

24
− t6

120
− . . . (35)

Table 2 exhibits the errors obtained by applying
the numerical fourth-order Runge–Kutta method, the
Laplace decomposition method, and the Adomian de-
composition method.
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4. Conclusion

This paper uses He’s polynomials to decompose the
nonlinear terms in equations. A series solution for the
nonlinear oscillator differential equations is derived by
using the Laplace decomposition method (LDM). Such
an analysis does not exist in the literature and the re-
sults obtained are new. These results are in good agree-
ment with those given in [12] as well as those ob-

tained by the numerical and the Adomian decomposi-
tion methods. This analysis therefore provides further
support for the validity of LDM.
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