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This study describes the mixed convection stagnation point flow and heat transfer of a Jeffery fluid
towards a stretching surface. Mathematical formulation is given in the presence of thermal radiation.
The Rosseland approximation is used to describe the radiative heat flux. Similarity transformations
are employed to reduce the partial differential equations into the ordinary differential equations which
are then solved by a homotopy analysis method (HAM). A comparative study is made with the known
numerical solutions in a limiting sense and an excellent agreement is noted. The characteristics of in-
volved parameters on the dimensionless velocity and temperature are also examined. It is noticed that
the velocity increases with an increase in Deborah number. Further, the temperature is a decreasing
function of mixed convection parameter. We further found that for fixed values of other parameters,
the local Nusselt number increases by increasing suction parameter and Deborah number.

Key words: Mixed Convection; Stagnation-Point Flow; Thermal Radiation; Jeffery Fluid; Series
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1. Introduction

Considerable attention has been directed in the past
to the boundary layer flows of non-Newtonian fluids.
Such fluids are quite common in process of manu-
facturing coated sheets, foods, optical fibers, drilling
muds, plastic polymers etc. The relationships between
the shear stress and flow field in these fluids are very
tedious and thus offer interesting challenges to the
researchers. Inspite of all these challenges, the re-
searchers in the field are even making valuable con-
tributions in the investigations of non-Newtonian flu-
ids [1 – 15].

The flow and heat transfer over a stretching surface
is important in the process of extrusion, paper produc-
tion, insulating materials, glass drawing, continuous
casting, fine-fiber matts etc. Several attempts regard-
ing the stretching and stagnation-point flows have been
made under various aspects. Convective heat transfer
further plays a vital role in nuclear power plants, gas
turbines, and various propulsion devices for aircraft,
missiles, satellites, and space vehicles and in several
engineering applications. Thermal radiation on heat

transfer processes are useful in the design of many ad-
vanced energy conservation systems operating at high
temperature. Chiam [16] studied the two-dimensional
stagnation-point flow of a viscous fluid towards a lin-
ear stretching surface. Mahapatra and Gupta [17] dis-
cussed the heat transfer in the stagnation point flow to-
wards a stretching surface. The steady stagnation point
flow of an incompressible micropolar fluid bounded by
a stretching surface is presented by Nazar et al. [10].
Xu et al. [18] performed computation for an unsteady
flow of hydrodynamic power law fluid near a stagna-
tion point flow. Sadeghy et al. [19] numerically stud-
ied the stagnation point flow of an upper convected
Maxwell fluid. Hayat et al. [20] investigated the mag-
netohydrodynamic (MHD) flow of a microploar fluid
near the stagnation point flow of a micropolar fluid
near a stagnation point. Ishak et al. [21, 22] investi-
gated the mixed convection stagnation point flow of an
incompressible viscous fluid towards a vertical perme-
able stretching sheet. The effect of thermal radiation
on mixed convection boundary layer magnetohydrody-
namic stagnation point flow in a porous space has been
investigated by Hayat et al. [23].
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The aim of the current study is two fold. Firstly,
to extend the analysis of [21] from viscous to a Jef-
frey fluid. Secondly, to provide an analytic solution of
the resulting nonlinear system. The series solution of
the mathematical problem is derived by the homotopy
analysis method (HAM). Previously this method has
been successfully applied for other problems [24 – 32].
The present study is arranged as follows. Section 2
consists of the problem formulation. The series solu-
tions of velocity and temperature are derived in Sec-
tion 3. Convergence of the obtained series solutions are
analyzed in Section 4. Section 5 presents the discus-
sion of plots and tables. Section 6 presents the main
conclusions.

2. Problem Formulation

We consider the two-dimensional flow near a stag-
nation point in the half space y > 0. The sheet in the
XOZ plane is stretched in the x-direction such that the
velocity component in x-direction varies linearly along
it. The ambient fluid moves with a velocity ax. The
heat transfer effects are taken into account. The veloc-
ity uw(x) and the concentration Tw(x) of the stretch-
ing sheet is proportional to the distance x from the
stagnation-point, where Tw(x) > T∞. In the absence of
viscous dissipation the equations governing the bound-
ary layer flow can be written as

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= U∞

∂U∞

∂x
+

ν
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·
[

∂ 2u
∂y2 +λ2

(
u

∂ 3u
∂x∂y2 +v

∂ 3u
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∂u
∂x

∂ 2u
∂y2 +

∂u
∂y

∂ 2u
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)]
+gβT(T −T∞), (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 −

∂qr

∂y
. (3)

In the above equations u, v denote the velocity compo-
nents along the x- and y-axes, ρ the fluid density, ν the
kinematic viscosity, T the temperature, α the thermal
diffusivity, cp the specific heat, k the thermal conduc-
tivity of the fluid, g the gravitational acceleration, βT
the thermal expansion coefficient, qr the radiative heat
flux, λ1 the ratio of relaxation and retardation times
and λ2 is the relaxation time.

Through Rosseland approximation [32], we can
write

qr =−4σ∗

3k∗
∂T 4

∂y
, (4)

where σ∗ is the Stefan−Boltzmann constant, k∗ the
mean absorption coefficient, and, by Taylor series,

T 4 u 4T 3
∞T −3T 4

∞ . (5)

Equations (3) – (5) give

ρcp

[
u

∂T
∂x

+v
∂T
∂y

]
=

∂

∂y

[(
16σ∗T 3

∞

3k∗
+α

)
∂T
∂y

]
. (6)

The appropriate boundary conditions can be expressed
as

u = uw(x) = cx, v = vw(x),
(7)

T = Tw(x) = T∞ +bx at y = 0,

u = U∞(x) = ax, T = T∞ as y→ ∞, (8)

vw(x) =−
√

cνS (9)

with f (0) = S (with S > 0 for suction and S < 0 for
injection), c is a stretching rate, and the subscripts w
and ∞ have been used for the wall and the free stream
conditions.

Selecting

η =
√

c
ν

y, u = cx f ′(η), v =−
√

cν f (η),
(10)

θ =
T −T∞

Tw−T∞

,

(1) is satisfied and (2) and (6) reduce to

f ′′′+(1+λ1)( f f ′′− f ′2)+β ( f ′′2− f f ′′′′)
(11)

+(1+λ1)
a2

c2 +(1+λ1)λθ = 0,(
1+

4
3

NR

)
θ
′′+Pr( f θ

′−θ f ′) = 0, (12)

f = S, f ′ = 1, θ = 1 at η = 0
(13)

f ′ =
a
c
, θ = 0 at η → ∞,

where the Deborah number β , the Prandtl number Pr,
the radiation parameter NR, the local Grashof number
Grx, mixed convection parameter λ , the local Reynold
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number Rex, and suction parameter S are

β = λ2c, Pr =
µcp

α
, NR =

4σ∗T 3
∞

k∗k
,λ =

Grx

Re2
x
,

(14)

Grx =
gβT(Tw−T∞)x3

ν2 , Rex =
uwx
ν

.

The local Nusslet number Nux at the wall and qw are

Nux =
xqw

k(Tw−T∞)
, qw =−k

(
∂T
∂y

)
y=0

.

The dimensionless variables lead to the expressions
given below:

Nux/Re1/2
x =−θ

′(0). (15)

3. Series Solutions

In order to proceed for the HAM solutions, we select
the base functions{

η
k exp(−nη), k ≥ 0, n≥ 0

}
and write

f (η) = a0
0,0 +

∞

∑
n=0

∞

∑
k=0

ak
m,nη

k exp(−nη),

(16)

θ(η) =
∞

∑
n=0

∞

∑
k=0

bk
m,nη

k exp(−nη),

where ak
m,n and bk

m,n are the coefficients. The initial
guesses ( f0 and θ0) and auxiliary linear operators (L f ,
Lθ ) are

f0(η) = S +
a
c

η +
(

1− a
c

)
[(1− exp(−η)],

(17)
θ0(η) = exp(−η),

L f ( f ) =
d3 f
dη3 −

d f
dη

,

(18)

Lθ (θ) =
d2

θ

dη2 −θ

with
L f [C1 +C2 exp(η)+C3 exp(−η)] = 0,

Lθ [C4 exp(η)+C5 exp(−η)] = 0,
(19)

and Ci (i = 1 – 5) are the arbitrary constants. The em-
bedding parameter is p ∈ [0,1] and the non-zero aux-
iliary parameters are h f and hθ . The corresponding

problems at zeroth order are given by

(1− p)L f [ f (η ; p)− f0(η)] =

ph f N f [θ̂(η ; p), f̂ (η ; p)],
(20)

(1− p)Lθ [θ(η ; p)−θ0(η)] =

phθ Nθ [θ̂(η ; p), f̂ (η ; p)],
(21)

f (η ; p)|
η=0 = S,

∂ f (η ; p)
∂η

∣∣∣∣
η=0

= 1,

∂ f (η ; p)
∂η

∣∣∣∣
η=∞

=
a
c
,

(22)

θ(η ; p)|
η=0 = 1, θ(η ; p)|

η=∞
= 0, (23)

N f
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]
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a2
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+Pr

[
f (η ; p)

∂ θ̂(η ; p)
∂η

− θ̂(η ; p)
∂ f (η ; p)

∂η

]
.

(25)

The above zeroth-order deformation equations (20)
and (21) for p = 0 and p = 1 have the following so-
lutions:

f (η ;0) = f0(η), f (η ;1) = f (η), (26)

θ(η ;0) = θ0(η), θ(η ;1) = θ(η). (27)

We noticed that when p increases from 0 to 1 then
f (η , p) varies from the initial guess f0(η) to the exact
solution f (η). Employing Taylor’s theorem and (26)
and (27), we arrive at

f (η ; p) = f0(η)+
∞

∑
m=0

fm(η)pm, (28)

θ(η ; p) = θ0(η)+
∞

∑
m=0

θm(η)pm, (29)

fm(η) =
1

m!
∂ m f (η ; p)

∂ηm

∣∣∣∣
p=0

,

(30)

θm(η) =
1

m!
∂ mθ(η ; p)

∂ηm

∣∣∣∣
p=0

,
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where the convergence of the series (28) and (29) de-
pends upon h f and hθ . The values of h f and hθ are se-
lected such that (28) and (29) are convergent at p = 1.
Hence,

f (η) = f0(η)+
∞

∑
m=0

fm(η), (31)

θ(η) = θ0(η)+
∞

∑
m=0

θm(η). (32)

The deformation problems at the mth order are

L f [ fm(η)−χm fm−1(η)] = h f R f
m(η), (33)

L f [θm(η)−χmθm−1(η)] = hθ Rθ
m(η), (34)

fm(0) = f ′m(0) = f ′m(∞) = 0,

θm(0) = θm(∞) = 0,
(35)

R f
m(η) = f ′′′m−1(η)+(1−χm)

(
(1+λ1)

a2

c2

)
+(1+λ1)λθm−1(η) (36)

+
m−1

∑
k=0

(
(1+λ1)

(
fm−1−k f ′′k − f ′m−1−k f ′k

)
+β
(

f ′′m−1−k f ′′k − fm−1−k f iv
k

) )
,

Rθ
m(η) = (1+NR)θ

′′
m−1(η)

+Pr
m−1

∑
k=0

[
θ
′
m−1−k fk−θk f ′m−1−k

]
,

(37)

χm =
{

0, m≤ 1,
1, m > 1,

(38)

and the general solutions are

fm(η) = f ∗m(η)+C1 +C2 exp(η)+C3 exp(−η), (39)

θm(η) = θ
∗
m(η)+C4 exp(η)+C5 exp(−η), (40)

with f ∗m and θ ∗m as the particular solutions using (35)
one obtains

C2 = C4 = 0, C3 =
∂ f ∗m(η)

∂η

∣∣∣∣
η=0

,

C1 =−C3− f ∗m(0), C5 =−θ
∗
m(0).

(41)

The system of (33) – (35) for m = 1,2,3 . . . can be
solved by using symbolic software Mathematica.

Fig. 1. h̄-curves for 20th order of approximations.

Table 1. Convergence of the series solutions for different
order of approximation when λ1 = 0.2, β = 0.1, a/c = 0.2,
Pr = 0.5 = λ .

Order of approximation − f ′′(0) −θ ′(0)
1 0.78560 0.82850
5 0.75611 0.78263

10 0.75581 0.78319
15 0.75577 0.78315
20 0.75577 0.78315
25 0.75577 0.78315
30 0.75577 0.78315

4. Convergence of Series Solutions

The auxiliary parameters h̄ f and h̄θ in the series so-
lutions (31) and (32) are very useful in adjusting and
controlling the convergence. In order to find the al-
lowed values of h̄ f and h̄θ , the h̄ f , and h̄θ -curves
are shown for 20th order of approximations. Figure 1
shows that the range for the admissible values of h̄ f

and h̄θ are −1.0≤ h̄ f ≤−0.2 and −1.2≤ h̄θ ≤−0.3.
Further, the series (31) and (32) converge in the whole
region of η when h̄ f = −0.5 and h̄θ = −1. Table 1
provides the convergence of the homotopy solutions
for different order of approximations when λ1 = 0.2,
β = 0.3, a/c = 0.1, Pr = 0.5, λ = 0.5.

5. Results and Discussion

This section emphasizes the effects of mixed con-
vection parameter λ , stretching ratio a/c, suction pa-
rameter S, Prandtl number Pr, radiation parameter NR,
Deborah number β , and the parameter λ1 on the ve-
locity and temperature fields. Such effects have been
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Fig. 2. Influence of λ on f ′ and θ .

Fig. 3. Influence of a/c on f ′ and θ .

Fig. 4. Influence of S on f ′ and θ .

displayed in Figures 2 – 8. Figure 2 describes the in-
fluence of mixed convection parameter λ on the ve-
locity and temperature profiles, respectively. It is ob-
served that f ′ is an increasing function of λ . This is

due to the fact that increasing values of λ make the
buoyancy force stronger and thus increases the veloc-
ity. However, an opposite trend is found for the tem-
perature profile θ . The effect of ratio a/c on the ve-
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Fig. 5. Influence of Pr on f ′ and θ .

Fig. 6. Influence of NR on f ′ and θ .

Fig. 7. Influence of β on f ′ and θ .

locity f ′ and temperature θ are displayed in Figure 3.
The larger values of a/c enhance the free stream veloc-
ity. The stronger free stream velocity makes the ther-
mal boundary layer thinner. The influence of suction

parameter S is shown in Figure 4. These figures show
that velocity and boundary layer thickness are decreas-
ing functions of S. The thermal boundary layer thick-
ness also decreases with S. This is quite in accordance
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Fig. 8. Influence of λ1 on f ′ and θ .

Fig. 9. Variations of the local Nusselt number −θ ′(0) with λ for different values of Pr and NR.

Fig. 10. Variations of the local Nusselt number −θ ′(0) with NR for different values of Pr and λ .

with the fact that suction causes reduction in the mo-
mentum boundary layer thickness. Figure 5 describes
the effects of Pr on f ′ and θ , respectively. Increase in
Pr decrease the velocity profile. Infact, an increase in
the Prandtl number leads to an increase in fluid vis-

cosity which causes a decrease in the flow velocity.
As expected, it is found that θ decreases when Pr in-
creases. A higher Prandtl number fluid has a thinner
thermal boundary layer and this increases the gradi-
ent of the temperature. Figure 6 clearly indicates that
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Table 2. Comparison of values of f ′′ (0) for various values of
a/c when Pr = 1, λ = 0, and S = 0.

a/c [22] [HAM]
0.01 −0.9980 −0.99823
0.10 −0.9694 −0.96954
0.20 −0.9181 −0.91813
0.50 −0.6673 −0.66735
2.00 2.0175 2.01767
3.00 4.7294 4.72964

10.00 36.2603 36.24021

Table 3. Comparison of values of −θ ′(0) when a/c = 0 and
λ = 0.

S Pr = 0.72 Pr = 1.0 Pr = 10.0
[22] [HAM] [22] [HAM] [22] [HAM]

−1.0 0.5455 0.54547 0.6181 0.61805 0.9418 0.94167
−0.6 0.6345 0.63462 0.7441 0.74423 1.4709 1.47088
−0.4 0.6866 0.68657 0.8198 0.81944 1.9681 1.96832
−0.2 0.7446 0.74459 0.9050 0.90534 2.7096 2.70945

0.0 0.8088 0.80873 1.0000 1.00000 3.7208 3.72068
0.2 0.8798 0.87975 1.1050 1.10524 4.9765 4.97643
0.4 0.9575 0.95748 1.2198 1.21974 6.4260 6.42598
0.6 1.0420 1.04293 1.3440 1.34434 8.0178 8.01778
1.0 1.2297 1.22965 1.6180 1.61823 11.4762 11.4347

Table 4. Comparison of values of f ′′(0) for various values of
a/c when Pr = 1, λ = 0, and S = 0.

a/c λ =−0.1 λ = 1.0
[22] [HAM] [22] [HAM]

0 −1.0513 −1.0513 −0.5608 −0.56076
0.01 −1.0490 −1.0490 −0.5596 −0.55923
0.05 −1.0372 −1.0372 −0.5528 −0.55345
0.10 −1.0176 −1.0176 −0.5398 −0.53982
0.20 −0.9638 −0.9638 −0.5002 −0.50023
0.50 −0.7075 −0.7075 −0.2846 −0.28446
1.0 −0.0343 −0.0343 0.3350 0.33501
2.0 1.9899 1.9899 2.2913 2.29156

Table 5. Comparison of values of −θ ′(0) for various values
of a/c when Pr = 1, λ = 0, and S = 0.

a/c λ =−0.1 λ = 1.0
[22] [HAM] [22] [HAM]

0 0.9856 0.98545 1.0873 1.08756
0.01 0.9880 0.98834 1.0881 1.08782
0.05 0.9977 0.99725 1.0921 1.09543
0.10 1.0079 1.00737 1.0982 1.09567
0.20 1.0362 1.03623 1.1133 1.15642
0.50 1.1186 1.11898 1.1714 1.17647
1.0 1.2502 1.25127 1.2827 1.28565
2.0 1.4855 1.48523 1.5020 1.51136

Table 6. Values of the surface heat transfer−θ ′(0) when Pr =
0.7 and NR = 0.3.

a/c β λ λ1 −θ ′(0)
0.0 0.1 0.5 0.2 0.74751

0.05 0.76332

0.12 0.78316

0.3 0.80466

0.2 0.0 0.77807

0.2 0.78767

0.3 0.79176

0.4 0.79547

0.2 0.1 0.0 0.73727

0.3 0.76692

0.7 0.79745

1.0 0.81651

0.2 0.1 0.5 0.0 0.79145

0.1 0.78704

0.3 0.77956

0.5 0.77328

an increase in the radiation parameter NR leads to an
increase of the temperature profiles and of boundary
layer thickness with NR. It can be seen from Figure 7
that the velocity field and boundary layer thickness are
increasing functions of β . The temperature decreases
for larger values of β (Fig. 7). It is observed from
Figure 8 that the effect of λ1 is opposite to the ef-
fect of the Deborah number β . The influence of λ1
is to increase the thermal boundary layer thickness
(Fig. 8). Figure 9 shows the variations of the local Nus-
selt number −θ ′(0) with λ for different values of
Pr and NR, respectively. It is evident from Figure 10
that both the Prandtl number Pr and the mixed con-
vection parameter λ show similar effects on the local
Nusselt number, i.e increasing Pr and λ decreases the
values of −θ ′(0).

Table 1 is displayed to examine the convergence
of series solution which indicates that convergence is
achieved at 15th order of approximations. Tables 2 – 5
show the comparison of the values of HAM solution
with the numerical solution in the limiting cases. Ta-
ble 2 presents the comparison of the values of f ′′(0)
for the various values of a/c. An excellent agreement is
noticed between the two solutions in the viscous fluid
case. The magnitude of the local Nusselt number in-
creases by increasing suction parameter S (Table 3).
The comparison of values of f ′′(0) for different values
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of a/c are computed in Table 4. Table 6 shows that the
local Nusselt number −θ ′(0) increases by increasing
both λ and β .

6. Closing Remarks

Mixed convection stagnation point flow of a Jeffrey
fluid towards a stretching sheet is analyzed. Series so-
lution is computed by means of homotopy analysis
method. The main observations are listed below.

• The effects of λ and a/c on the velocity profile f ′

are similar in a qualitative sense.

• The velocity f ′ increases when β increases.
• The influence of λ is to increase the boundary layer

thickness.
• Both f ′ and θ are decreasing functions of S.
• The temperature θ yields decrease when Pr in-

creases.
• Local Nusselt number is an increasing function of S,

λ , a/c, and Pr.
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