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In this paper, the homotopy analysis method is successfully applied to solve the systems of
differential-difference equations. The Ablowitz–Ladik lattice system are chosen to illustrate the
method. Comparisons between the results of the proposed method and exact solutions reveal that the
homotopy analysis method is very effective and simple in solving systems of differential-difference
equations.
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1. Introduction

It is well known that the investigation of differential-
difference equations (DDEs) which describe many im-
portant phenomena and dynamical processes in many
different fields, such as particle vibrations in lattices,
currents in electrical networks, pulses in biological
chains, and so on, has played an important role in the
study of modern physics. Unlike difference equations
which are fully discretized, DDEs are semi-discretized
with some (or all) of their spacial variables discretized
while time is usually kept continuous and then also
play an important role in numerical simulations of non-
linear partial differential equations, queuing problems,
and discretization in solid state and quantum physics.
There is a vast body of work on DDEs [1 – 12].

For better understanding the meaning of DDEs, it
is crucial to search for exact analytic solutions of
DDEs. Since the work of Wadati in the 1970s [2],
many powerful methods have been generalized to con-
struct solutions of DDEs such as Bäcklund transfor-
mation [13 – 15], Darboux transformation [16], Hirota
method [17], etc.

In 1992, based on the idea of homotopy in topol-
ogy, Liao [18] proposed a general analytic method
for nonlinear problems, namely the homotopy analy-
sis method (HAM). Unlike the traditional methods (for
example, perturbation techniques and so on), the HAM

contains many auxiliary parameters which provide us
with a simple way to adjust and control the conver-
gence region and rate of convergence of the series so-
lution and has been successfully employed to solve ex-
plicit analytic solutions for many types of nonlinear
problems [19 – 24].

Motivated by the publications above, we would like
to extend the applications of the HAM to systems of
differential-difference equations. For illustration, we
apply it to Ablowitz–Ladik lattice system which is the
discretization of the nonlinear Schrödinger equation
and can be solved by the Bäcklund and Darboux trans-
formation [25, 26].

This paper is organized as follows: In Section 2,
a brief outline of the generalized HAM for a system of
DDEs with initial condition is presented. In Section 3,
we apply the proposed method to the Ablowitz–Ladik
lattice system to verify the effectiveness of it and also
give the proof of convergence theorem. In Section 4,
a brief analysis of the obtained results is given. A short
summary and discussion are presented in final.

2. HAM for a System of DDEs

For illustration, we consider the following system of
DDEs:

Ni[ui,n(t),ui,n−1(t),ui,n+1(t), . . .] = 0 , (1)
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where Ni are nonlinear differential operators that rep-
resent the whole system of equations, n ∈ N and t de-
note independent variables, and ui,n(t) are unknown
functions, respectively. By means of HAM, we con-
struct the so-called zero-order deformation equations

(1−q)Li[φi,n(t;q)−ui,n,0(t)] = qhHi,n(t)
·Ni[φi,n(t;q),φi,n−1(t;q),φi,n+1(t;q), . . .] ,

(2)

where q ∈ [0,1] is an embedding parameter, h is
a nonzero auxiliary parameter, Hi,n(t) are nonzero
auxiliary functions, Li are auxiliary linear operators,
ui,n,0(t) are initial guesses of ui,n(t), φi,n(t;q) are un-
known functions on independent variables n, t, and q.
It is important to note that one has great freedom to
choose auxiliary parameters such as h in HAM. Obvi-
ously, when the embedding parameter q increases from
0 to 1, φi,n(t;q) vary (or deforms) continuously from
the initial guesses φi,n(t;0) = ui,n,0(t) to the exact so-
lutions φi,n(t;1) = ui,n(t) of the original system (1).

Define the so-called mth-order deformation deriva-
tives

ui,n,m(t) =
1

m!
∂ mφi,n(t;q)

∂qm | q=0 . (3)

Expanding φi,n(t;q) in Taylor series with respect to the
embedding parameter q, we have

φi,n(t;q) = ui,n,0(t)+
∞

∑
m=1

ui,n,m(t)qm . (4)

Then, correspondingly

φi,n−k(t;q) = ui,n−k,0(t)+
∞

∑
m=1

ui,n−k,m(t)qm , (5)

φi,n+k(t;q) = ui,n+k,0(t)+
∞

∑
m=1

ui,n+k,m(t)qm,

k ∈ N .

(6)

If the auxiliary linear operator, the initial guesses,
the auxiliary parameter h, and the auxiliary functions
Hi,n(t) are properly chosen, the Series (4) converge at
q = 1, one has

ui,n(t) = ui,n,0(t)+
∞

∑
m=1

ui,n,m(t) , (7a)

ui,n−k(t) = ui,n−k,0(t)+
∞

∑
m=1

ui,n−k,m(t) , (7b)

ui,n+k(t) = ui,n+k,0(t)+
∞

∑
m=1

ui,n+k,m(t) , (7c)

which must be one of the solutions of the original non-
linear equations, as proved by Liao [22]. As hHi,n(t) =
−1, (2) becomes

(1−q)Li[φi,n(t;q)−ui,n,0(t)]
(8)

+qNi[φi,n(t;q),φi,n+1(t;q),φi,n−1(t;q), . . .] = 0 ,

which is mostly used in the homotopy-perturbation
method [27].

For brevity, define the vectors

~ui,n,m(t) = {ui,n,0(t),ui,n,1(t), . . .,ui,n,m(t)} , (9a)

~ui,n−k,m(t)
(9b)

= {ui,n−k,0(t),ui,n−k,1(t), . . .,ui,n−k,m(t)} ,
~ui,n+k,m(t)

(9c)
= {ui,n+k,0(t),ui,n+k,1(t), . . .,ui,n+k,m(t)} .

Differentiating the zero-order deformation (2) m
times with respect to q and then dividing them by m!
and finally setting q = 0, we have the mth-order defor-
mation equations

Li[ui,n,m(t)−χn,mui,n,m−1(t)] = hHi,n(t)
(10)

·Ri,m(~ui,n,m−1(t),~ui,n−1,m−1(t),~ui,n+1,m−1(t), . . .) ,

where

Ri,m(~ui,n,m−1(t),~ui,n−1,m−1(t),~ui,n+1,m−1(t), . . .)
(11)

=
1

(m−1)!
∂ m−1Ni[φi,n(t;q)]

∂qm−1 | q=0

and

χn,m =

{
0, m≤ 1,

1, m > 1 .
(12)

It should be emphasized that ui,n,m(t) (m ≥ 1) is
governed by the linear Equation (10) with the linear
boundary conditions that come from the original prob-
lem. Thus we can obtain ui,n,1(t), ui,n,2(t), . . . by solv-
ing the linear high-order deformation (10) one after the
other in order, based on symbolic computation soft-
wares such as Maple, Mathematica, and so on.

3. Application to the Ablowitz–Ladik Lattice
System

In this section, to verify the validity and the effec-
tiveness of HAM in solving system of DDEs, we apply
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it to the Ablowitz–Ladik lattice system

∂un

∂ t
= (α +unvn)(un+1 +un−1)−2αun , (13a)

∂vn

∂ t
=−(α +unvn)(vn+1 + vn−1)+2αvn , (13b)

subject to the initial conditions

un(0) =
α sinh2(d)

β
(1− tanh(dn+δ )) , (14a)

vn(0) = β (1+ tanh(dn+δ )) , (14b)

whose exact solutions can be written as [28]

un(t) =
α sinh2(d)

β (15a)
· (1− tanh(dn−2α sinh2(d)t +δ )) ,

vn(t) = β (1+ tanh(dn−2α sinh2(d)t +δ )) . (15b)

Here, un(t) and vn(t) are functions of continuous time
variable t and discrete variable n.

To solve System (13) – (14) by means of HAM, we
choose the initial guesses

un,0(t) =
α sinh2(d)

β
(1− tanh(dn+δ )) , (16a)

vn,0(t) = β (1+ tanh(dn+δ )) , (16b)

and the auxiliary linear operator

L[φi,n(t;q)] =
∂φi,n(t;q)

∂ t
, i = 1,2 , (17)

with the property

L[ci] = 0 , (18)

where ci (i = 1,2) are integral constants. Furthermore,
System (13) suggests that we define a system of non-
linear operators as

N1[φi,n(t;q),φi,n−1(t;q),φi,n+1(t;q), . . .]

=
∂φ1,n(t;q)

∂ t
− (α +φ1,n(t;q)φ2,n(t;q)) (19a)

· (φ1,n+1(t;q)+φ1,n−1(t;q))+2αφ1,n(t;q) ,

N2[φi,n(t;q),φi,n−1(t;q),φi,n+1(t;q), . . .]

=
∂φ2,n(t;q)

∂ t
+(α +φ1,n(t;q)φ2,n(t;q)) (19b)

· (φ2,n+1(t;q)+φ2,n−1(t;q))−2αφ2,n(t;q) .

Using above definitions, we construct the zeroth-order
deformation equations

(1−q)L[φ1,n(t;q)−un,0(t)] = qhH1,n(t)
(20a)

·N1[φi,n(t;q),φi,n−1(t;q),φi,n+1(t;q), . . .] ,
(1−q)L[φ2,n(t;q)− vn,0(t)] = qhH2,n(t)

(20b)
·N2[φi,n(t;q),φi,n−1(t;q),φi,n+1(t;q), . . .] ,

with the initial conditions

φ1,n(0;q) = un,0(0), φ2,n(0;q) = vn,0(0) , (21)

where q ∈ [0,1] denotes an embedding parameter,
h 6= 0 is an auxiliary parameter and Hi,n(t) are auxil-
iary functions. Obviously, when q = 0 and q = 1

φ1,n(t;0) = un,0(t), φ1,n(t;1) = un(t) , (22a)

φ2,n(t;0) = vn,0(t), φ2,n(t;1) = vn(t) . (22b)

Therefore, as the embedding parameter q increases
continuously from 0 to 1, φi,n(t;q) vary from the initial
guesses un,0(t) and vn,0(t) to the solutions un(t) and
vn(t). Expanding φi,n(t,q) in Taylor series with respect
to q one has

φ1,n(t;q) = un,0(t)+
∞

∑
m=1

un,m(t)qm , (23a)

φ2,n(t;q) = vn,0(t)+
∞

∑
m=1

vn,m(t)qm , (23b)

where

un,m(t) =
1

m!
∂ mφ1,n(t;q)

∂qm | q=0 ,

vn,m(t) =
1

m!
∂ mφ2,n(t;q)

∂qm | q=0 .

(24)

If the auxiliary parameters h and Hi,n(t) are properly
chosen, above Series (23) are convergent at q = 1. Then
one has

un(t) =
∞

∑
m=0

un,m(t), vn(t) =
∞

∑
m=0

vn,m(t) , (25)

and we will prove at the end of this section that they
must be solutions of the original system.

Now, we define the vectors

~un,m(t) = {un,0(t),un,1(t), . . .,un,m(t)} ,
~vn,m(t) = {vn,0(t),vn,1(t), . . .,vn,m(t)} .

(26)
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So the mth-order deformation equations are

L[un,m(t)−χn,mun,m−1(t)] = hH1,n(t)
·R1,m[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t), (27a)

~vn−1,m−1(t),~un+1,m−1(t),~vn+1,m−1(t), . . .] ,
L[vn,m(t)−χn,mvn,m−1(t)] = hH2,n(t)
·R2,m[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t), (27b)

~vn−1,m−1(t),~un+1,m−1(t),~vn+1,m−1(t), . . .] ,

with the initial conditions

un,m(0) = 0, vn,m(0) = 0, m≥ 1 , (28)

where

R1,m[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t),~vn−1,m−1(t),

~un+1,m−1(t),~vn+1,m−1(t), . . .] =
∂un,m−1

∂ t (29a)

−
m−1

∑
j=0

( j

∑
i=0

un,ivn, j−i

)
(un+1,m−1− j +un−1,m−1− j)

−α(un+1,m−1−2un,m−1 +un−1,m−1) ,

R2,m[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t),~vn−1,m−1(t),

~un+1,m−1(t),~vn+1,m−1(t), . . .] =
∂vn,m−1

∂ t (29b)

+
m−1

∑
j=0

( j

∑
i=0

un,ivn, j−i

)
(vn+1,m−1− j + vn−1,m−1− j)

+α(vn+1,m−1−2vn,m−1 + vn−1,m−1) ,

and χn,m satisfy (12).
In order to obey both the rule of solution expres-

sion and the rule of the coefficient ergodicity [22], the
corresponding auxiliary functions can be determined
uniquely Hi,n(t) = 1.

It should be emphasized that un,m(t) and vn,m(t)
(m≥ 1) are governed by the linear Equation (27) with
the linear initial Conditions (28). Thus we can get all
un,m(t) and vn,m(t) (m ≥ 1) easily and according to
(25), we can get the solutions of Systems (13) and (14).

Then, HAM for the system of DDEs provides us
with a family of solution expression in the auxiliary
parameter h. The convergence region of solution series
depend upon the value of h. Next, we will illustrate the
convergence theorem and prove it.

Theorem 3.1 Convergence Theorem
The Series (25) are exact solutions of (13) and (14)

as long as they are convergent.

Proof. Since un(t) = ∑
∞
m=0 un,m(t) and vn(t) =

∑
∞
m=0 vn,m(t) is convergent, we must have

lim
m→∞

un,m(t) = 0, lim
m→∞

vn,m(t) = 0 . (30)

Due to Definitions (11) of χn,m, and the mth-order de-
formation Equation (27), it holds

hH1,n(t)
∞

∑
m=1
R1[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t),

~vn−1,m−1(t),~un+1,m−1(t),~vn+1,m−1(t), . . .] (31)

= lim
m→∞
L[un,m(t)] = L

[
lim

m→∞
un,m(t)

]
= 0 ,

hH2,n(t)
∞

∑
m=1
R2[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t),

~vn−1,m−1(t),~un+1,m−1(t),~vn+1,m−1(t), . . .] (32)

= lim
m→∞
L[vn,m(t)] = L

[
lim

m→∞
vn,m(t)

]
= 0 ,

which give

∞

∑
m=1
R1,m[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t),

(33)
~vn−1,m−1(t),~un+1,m−1(t),~vn+1,m−1(t), . . .] = 0 ,

∞

∑
m=1
R2,m[~un,m−1(t),~vn,m−1(t),~un−1,m−1(t),

(34)
~vn−1,m−1(t),~un+1,m−1(t),~vn+1,m−1(t), . . .] = 0 ,

because both of the auxiliary parameter h and the aux-
iliary functions Hi,n(t) are nonzero. Substituting Defi-
nitions (29) of Ri into above expressions, we have

∞

∑
m=1

(
∂un,m−1

∂ t
−α(un+1,m−1−2un,m−1 +un−1,m−1)

)
−

∞

∑
m=1

m−1

∑
j=0

( j

∑
i=0

un,ivn, j−i

)
(un+1,m−1− j +un−1,m−1− j)

=
∂

∂ t

∞

∑
m=1

un,m−1−α

∞

∑
m=1

(un+1,m−1−2un,m−1+un−1,m−1)

−
∞

∑
m=1

m−1

∑
j=0

( j

∑
i=0

un,ivn, j−i

)
(un+1,m−1− j +un−1,m−1− j)

(35)

=
∂

∂ t

∞

∑
m=0

un,m−α

∞

∑
m=0

(un+1,m−2un,m +un−1,m)

−
∞

∑
m=0

m

∑
j=0

( j

∑
i=0

un,ivn, j−i

)
(un+1,m− j +un−1,m− j)
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=
∂

∂ t

∞

∑
m=0

un,m−α

∞

∑
m=0

(un+1,m−2un,m +un−1,m)

−
∞

∑
m=0

un,m

∞

∑
m=0

vn,m

(
∞

∑
m=0

un+1,m +
∞

∑
m=0

un−1,m

)
and also

∞

∑
m=1

(
∂vn,m−1

∂ t
+α(vn+1,m−1−2vn,m−1 + vn−1,m−1)

)
+

∞

∑
m=1

m−1

∑
j=0

( j

∑
i=0

un,ivn, j−i

)
(vn+1,m−1− j + vn−1,m−1− j)

(36)

=
∂

∂ t

∞

∑
m=0

vn,m +α

∞

∑
m=0

(vn+1,m−2vn,m + vn−1,m)

−
∞

∑
m=0

un,m

∞

∑
m=0

vn,m

(
∞

∑
m=0

vn+1,m +
∞

∑
m=0

vn−1,m

)
,

which means ∑
∞
m=0 un,m and ∑

∞
m=0 uv,m admit the Sys-

tem (13). Besides, using the initial Conditions (28) and
the Definitions (14) of the initial guesses, we have

∞

∑
m=0

un,m(0) = un,0(0) = un(0) =

α sinh2(d)
β

(1− tanh(dn+δ )) , (37)

–0.005

–0.004

–0.003

–0.002

–0.001

0

Un

–4 –3 –2 –1 0 1 2       3

h

2

2.1

2.2

2.3

2.4

2.5

Vn

–5 –4 –3 –2 –1 0 1 2       3

h

(a) (b)

Fig. 1. h-curve for 6th-order HAM approximations of (25): (a) h-curve for 6th-order HAM approximation un(t) and
(b) h-curve for 6th-order HAM approximation vn(t), when α = β = δ = 1, d = 0.1, n = 10, and t = 0.1.

∞

∑
m=0

vn,m(0) = vn,0(0) = vn(0) = β (1+ tanh(dn+δ )) .

Thus, due to (35) – (37), the series ∑
∞
m=0 un,m(t) and

∑
∞
m=0 vn,m(t) must be exact solutions of Systems (13)

and (14). This ends the proof.

4. Results Analysis

It has been proved that, as long as a series solution
given by HAM converges, it must be one of the exact
solutions [22]. So the validity of HAM is based on such
an assumption that the Series (4) converge at q = 1
which can be ensured by the properly chosen auxil-
iary parameter h. In general, by means of the so-called
h-curve [22], it is straightforward to choose a proper
value of h.

In Figure 1, we plot the h-curve for 6th-order HAM
approximations of (25) at α = β = δ = 1, d = 0.1,
n = 10, and t = 0.1. By HAM, it is easy to discover the
valid region of h, which corresponds to the line seg-
ments nearly parallel to the horizontal axis. From this
figure, we could find that if h is about in area [−2,0.6]
the result is convergent.

To increase the accuracy and convergence of the
solution, Liao [20] has developed a new technique,
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Fig. 2. Comparisons of the exact solutions with the HP approximations: (a) between the exact solution un(t) and [3,3] HP
approximations; (b) between the exact solution vn(t) and [3,3] HP approximations, when h =−1.2, α =−4, β = 3, d =−1,
and δ = n = 1. Dotted line: [3,3] HP approximations; solid line: exact solutions.
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Fig. 3. Comparisons between absolute errors of [2,2] HP and 4th-order HAM approximations: (a) for solution un(t); (b) for
solution vn(t), when h =−1.2, α =−4, β = 3, d =−1, and δ = n = 1. Dotted line: absolute error of [2,2] HP approximations;
solid line: absolute error of 4th-order HAM approximations.

namely the homotopy-Padé (HP) method. Here com-
parisons are made between the [3,3] HP approxima-
tions and exact solutions, when h = −1.2, α = −4,
β = 3, d = −1, and δ = n = 1, as shown in Figure 2.
From this figure, the approximations obtained by the

HP method agree well with the exact solutions when t
tends to t = 0.

In Figure 3, to verify the effectiveness of the HP
method, comparisons are made between absolute er-
rors of the [2,2] HP and 4th-order HAM approxima-
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tions. It can easily draw a conclusion that HP method
is an effective method to accelerate the convergence of
the result and enlarge the convergence field.

5. Conclusion

In this paper, we successfully generalize the HAM
to solve a system of DDEs. For illustration, the pro-
posed method is applied to solve the Ablowitz–Ladik
lattice system. Numerical results show that the HAM
provides a very effective method and a promising tool
for solving a system of DDEs. The advantage of HAM
is high flexibility in choosing the auxiliary parame-
ter which provides a convenient way for controlling

the convergence region of the series solutions. The
power series has often finite radius of convergence.
So, one must apply the HP technique to enlarge the
convergence-region. Actually it would be much bet-
ter to use exponential functions as base functions. And
we will try other auxiliary linear operators in following
works.
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