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In this study, flow of a third-grade non-Newtonian fluid in a porous half space has been considered.
This problem is a nonlinear two-point boundary value problem (BVP) on semi-infinite interval. We
find the simple solutions by using collocation points over the almost whole domain [0,∞). Our method
based on radial basis functions (RBFs) which are positive definite functions. We applied this method
through the integration process on the infinity boundary value and simply satisfy this condition by
Gaussian, inverse quadric, and secant hyperbolic RBFs. We compare the results with solution of other
methods.
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1. Introduction

1.1. Introduction of the Problem

The non-Newtonian fluids have been studied exten-
sively for the past few decades because of their rele-
vance to many industrial and natural problems. Many
materials such as polymer solutions or melts, drilling
muds, clastomers, certain oils and greases, and many
other emulsions are classified as non-Newtonian flu-
ids. The fluids of the differential type have received
special attention between the many models which have
been used to describe the non-Newtonian behaviour
exhibited by certain fluids. The fluids of second and
third-grade have been studied successfully in various
types of flow situations which form a subclass of the
fluids of the differential type. The third-grade fluid
models even for steady flow exhibit such characteris-
tics. The present study deals with the problem of non-
Newtonian fluid of third-grade in a porous half space.
The viscoelastic flows in porous space are extremely
current in many engineering fields such as enhanced
oil recovery, paper and textile coating, and composite
manufacturing processes. Also the modelling of poly-
meric flow in porous space has essential focus on the

numerical simulation of viscoelastic flows in a specific
pore geometry model, for example, capillary tubes, un-
dulating tubes, packs of spheres or cylinders [1, 2].

1.2. Introduction of the Radial Basis Functions

Radial basis functions (RBFs) interpolation are tech-
niques for representing a function starting with data on
scattered nodes. This technique first appears in the lit-
erature as a method for scattered data interpolation, and
the method was highly favoured after being reviewed
by Franke [3], who found it to be the most impressive
of the many methods he tested. Later, Kansa [4, 5] in
1990 proposed an approximate solution of linear and
nonlinear differential equations (DEs) using RBFs. For
the last years, the RBFs method was known as a pow-
erful tool for the scattered data interpolation problem.
The main advantage of numerical methods which use
radial basis functions is the meshless characteristic
of these methods. The use of radial basis functions
as a meshless method for the numerical solution of
ordinary differential equations (ODEs) and partial dif-
ferential equations (PDEs) is based on the collocation
method. Kansa’s method has recently received a great
deal of attention from researchers [6 – 11].

c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com
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Recently, Kansa’s method was extended to solve
various ordinary and partial differential equations in-
cluding the nonlinear Klein–Gordon equation [10],
regularized long wave (RLW) equation [12], high-
order ordinary differential equations [13], the case of
heat transfer equations [14], Hirota–Satsuma coupled
Kortheweg–de Vries (KdV) equations [15], second-
order parabolic equation with nonlocal boundary con-
ditions [16], second-order hyperbolic telegraph equa-
tion [17], and so on.

All of the radial basis functions have global sup-
port, and in fact many of them, such as multiquadrics
(MQ), do not even have isolated zeros [10, 12, 18].
The RBFs can be compactly and globally supported,
are infinitely differentiable, and contain a free param-
eter c, called the shape parameter [12, 18, 19]. For
more basic details about compactly and globally sup-
ported RBFs and convergence rate of them, the inter-
ested reader can refer to the recent books and paper by
Buhmann [18, 20] and Wendland [21].

Despite many studies done to find algorithms for
selecting the optimum values of c [22 – 24], the op-
timal choice of shape parameter is an open problem
which is still under intensive investigation. For exam-
ple, Carlson and Foley [23] found that the shape pa-
rameter is problem dependent. They observed that for
rapidly varying functions, a small value of c should be
used, but a large value should be used if the function
has a large curvature [23]. Tarwater [24] found that
by increasing c, the root-mean-square (RMS) of error
dropped to a minimum and then increased sharply af-
terwards. In general, as c increases, the system of equa-
tions to be solved becomes ill-conditioned. Rippa [25]
showed, numerically, that the value of the optimal c
(the value of c that minimizes the interpolation error)
depends on the number and distribution of data points,
on the data vector, and on the precision of the com-
putation. Cheng et al. [22] showed that when c is very
large then the RBFs system error is of exponential con-
vergence. But there is a certain limit for the value c
after which the solution breaks down. In general, as
the value of the shape parameter c increases, the ma-
trix of the system to be solved becomes highly ill-
conditioned and hence the condition number can be
used for determining the critical value of the shape pa-
rameter for an accurate solution [22]. Recently, Roque
and Ferreira [26] proposed a statistical technique to
choose the shape parameter in radial basis functions.
They use a cross-validation technique suggested by

Rippa [25] for interpolation problems to find a cost
function Cost(c) that ideally has the same behaviour
as an error function. For some new work on opti-
mal choice of shape parameter, we refer the interested
reader to the recent work ofRoque and Ferreira [26]
and Fasshauer and Zhang [27].

There are two basic approaches for obtaining basis
functions from RBFs, namely direct approach (DRBF)
based on a differential process [5] and indirect ap-
proach (IRBF) based on an integration process [8, 13,
28]. Both approaches were tested on the solution of
second-order DEs and the indirect approach was found
to be superior to the direct approach [8].

In contrast, the integration process is much less sen-
sitive to noise [13, 29]. Based on this observation, it
is expected that through the integration process, the
approximating functions will be much smoother and
therefore have higher approximation power [13, 29].

To numerically explore the IRBF methods with
shape parameters for which the interpolation matrix is
too poorly conditioned to use standard methods, the
researchers used the contour-Padé (CP) algorithm [30,
31]. This is perhaps the major advantage of the IRBFs
as RBFs methods are typically not employed in appli-
cations using the optimal shape parameters, but using
some value of the parameter safely away from the re-
gion of ill-conditioning [31].

Some of the infinitely smooth RBFs choices are
listed in Table 1. The RBFs can be of various types,
for example: inverse quadrics (IQ), Gaussian forms
(GA), hyperbolic secant (sech) form etc. Regarding
the inverse quadratic, hyperbolic secant (sech), and
Gaussian (GA), the coefficient matrix interpolating the
RBFs is positive definite [32].

In this paper we apply the new method based on
RBFs for solving the steady flow of a third-grade fluid
in a porous half space. For convenience of the solu-
tion and to satisfy the infinity condition ( f (z)→ 0 as
z→ ∞), we use the three positive definite RBFs given
in Table 1: 1 – Gaussian (GA) 2 – Inverse quadric (IQ),
3 – Secant hyperbolic (sech).

This paper is arranged as follows: in Section 2, we
present a brief formulation ofthe problem. In Section 3,

Table 1. Some positive definite RBFs (r = ‖x− xi‖), c > 0.

Name of functions Definition

Gaussian (GA) 2√
π

exp(−cr2)
Inverse quadrics (IQ) 1/(r2 + c2)
Secant hyperbolic sech(cr)
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we describe the properties of the radial basis functions.
In Section 4 we implement the problem with the radial
basis functions method, report our numerical finding,
and demonstrate the accuracy of the proposed method.
The conclusions are discussed in the final Section 5.

2. Problem Statement

In this section we focus on Hayat et al. [1] who have
discussed the flow of a third-grade fluid in a porous half
space. For unidirectional flow, they have generalized
the relation [1]

(∇p)x =−µϕ

k

(
1+

α1

µ

∂

∂ t

)
u, (1)

for a second-grade fluid to the following modified
Darcy’s Law for a third-grade fluid:

(∇p)x =−ϕ

k

[
µu+α1

∂u
∂ t

+2β3

(
∂u
∂y

)2

u

]
, (2)

where u denote the fluid velocity, µ is the dynamic vis-
cosity, and p is the pressure, k and ϕ , respectively rep-
resent the permeability and porosity of the porous half
space which occupies the region y > 0, and α1,β3 are
material constants. Defining the nondimensional fluid
velocity f and the coordinate z:

z =
V0

ν
y, f (z) =

u
V0

,

V0 = u(0), ν =
µ

ρ
,

(3)

where ν and V0 represent the kinematic viscosities.
Then the boundary value problem modelling the steady
state flow of a third-grade fluid in a porous half space
becomes [1]

d2 f
dz2 +b1

(
d f
dz

)2 d2 f
dz2 −b2 f

(
d f
dz

)2

−b3 f = 0, (4)

f (0) = 1, f (z)→ 0 as z→ ∞. (5)

Where b1, b2, and b3 are defined as

b1 =
6β3V0

4

µν2 ,

b2 =
2β3ϕV0

2

kµ
, (6)

b3 =
ϕν2

kV0
2 .

Above parameters are depended:

b2 =
b1b3

3
. (7)

In [1], (4) is solved by a well-known analytical method,
the homotopy analysis method (HAM). Recently, Ah-
mad [33] used an alternative approach to find an ana-
lytical solution of the problem. He gave the asymptotic
form of the solution and utilized this information to de-
velop a series solution.

3. Properties of Radial Basis Functions

3.1. Definition of the RBFs

Let R+ = {x ∈ R,x ≥ 0} be the non-negative half-
line and let φ : R+→ R be a continuous function with
φ(0) ≥ 0. A radial basis functions on Rd is a function
of the form

φ(‖X−Xi‖),

where X , Xi ∈ Rd , and ‖.‖ denotes the Euclidean dis-
tance between X and Xi. If one chooses N points
{Xi}N

i=1 in Rd then by custom

s(X) =
N

∑
i=1

λiφ(‖X−Xi‖), λi ∈ R,

is called a radial basis functions as well [34].
The standard radial basis functions are categorized

into two major classes [15]:
Class 1. Infinitely smooth RBFs [15, 35]:
These basis functions are infinitely differentiable and
heavily depend on the shape parameter c, e.g. Hardy
multiquadric (MQ), Gaussian (GA), inverse multi-
quadric (IMQ), and inverse quadric (IQ) (see Tab. 1).
Class 2. Infinitely smooth (except at centers)
RBFs [15, 35]:
The basis functions of this category are not infinitely
differentiable. These basis functions are shape param-
eter free and have comparatively less accuracy than the
basis functions discussed in Class 1. For example, thin
plate spline, etc. [15].

3.2. RBFs Interpolation

The one dimensional function y(x) to be interpo-
lated or approximated can be represented by RBFs
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as

y(x)≈ yN(x) =
N

∑
i=1

λiφi(x) = ΦΦΦ
T(x)ΛΛΛ , (8)

where

φi(x) = ϕ(‖x− xi‖),

ΦΦΦ
T(x) = [φ1(x),φ2(x), . . .,φN(x)], (9)

ΛΛΛ = [λ1,λ2, . . .,λN ]T,

x is the input and {λi}N
i=1 are the set of coefficients

to be determined. By choosing N interpolate nodes
{xi}N

i=1, we can approximate the function y(x)

y j =
N

∑
i=1

λiφi(x j), j = 1,2, . . .,N.

To summarize discussion on coefficient matrix, we de-
fine

AAAΛΛΛ =YYY ,

where

YYY =[y1,y2, . . .,yN ]T,

AAA =[ΦΦΦT(x1),ΦΦΦT(x2), . . .,ΦΦΦT(xN)]T,

=


φ1(x1) φ2(x1) · · · φN(x1)
φ1(x2) φ2(x2) · · · φN(x2)

...
...

. . .
...

φ1(xN) φ2(xN) · · · φN(xN)

 . (10)

Note that φi(x j) = ϕ(‖xi− x j‖) therefore we have
φi(x j) = φ j(xi) and consequently AAA = AAAT.

All the infinitely smooth RBFs choices listed in
Table 1 will give the coefficient matrices AAA in (10)
which are symmetric and nonsingular [32], i.e. there
is a unique interpolant of the form (8), no mat-
ter how the distinct data points are scattered in any
number of space dimensions. In the cases of inverse
quadratic, inverse multiquadric (IMQ), hyperbolic se-
cant (sech), and Gaussian (GA) the matrix AAA is positive
definite and, for multiquadric (MQ), it has one posi-
tive eigenvalue and the remaining ones are all nega-
tive [32].

We have the following theorem about the conver-
gence of RBFs interpolation:

Theorem: Assume xi,(i = 1,2, . . .,N), are N nodes in
convex Ω , let

h = max
x∈Ω

min
1≤i≤N

‖x− xi‖2,

when φ̂(η) < c(1 + |η |)−(2l+d) for any u(x) satisfies∫
(û(η))2/φ̂(η)dη < ∞, we have

‖uN(α)−u(α)‖∞ ≤ chl−α ,

where φ(x) is an RBF and the constant c depends on
the RBFs, d is the space dimension, l and α are non-
negative integer. It can be seen that not only the RBF
itself but also its any order derivative has a good con-
vergence.

Proof. A complete proof is given by Wu [36, 37].

4. Solving the Model

In this problem, we use gaussian, inverse quadric,
and secant hyperbolic RBFs (Table 1) which are pos-
itive definite functions and can get high accurate so-
lutions [32]. Also these functions satisfy the infinity
condition in (5).

Now we approximate f ′(z) and f ′′(z) as

f ′(z)' f ′N(z) =
N

∑
i=0

λiφi(z), (11)

f ′′(z)' f ′′N(z) =
N

∑
i=0

λiφ
′
i (z). (12)

By using integral operation f (z) is obtained as

∫
∞

z
f ′N(t)dt =

N

∑
i=0

λi

∫
∞

z
φi(t) dt,

fN(∞)− fN(z) =
N

∑
i=0

λi

∫
∞

z
φi(t) dt, (13)

f (z)' fN(z) =
N

∑
i=0

λi

∫ z

∞

φi(t) dt.

Equation (13) in the case of gaussian RBF gives

fN(z) =
1
c

N

∑
i=0

λi(erf(c(z− zi))−1).
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Also, fN(z) for cases of IQ-RBF and sech-RBF is ob-
tained of the form

fN(z) =
1
c

N

∑
i=0

λi

(
π

2
− arctan

( z− zi

c

))
, IQ-RBF,

fN(z) =
1
c

N

∑
i=0

λi

(
π

2
+ arctan

(
sinh(cz− czi)

))
,

sech-RBF.

By substituting (11), (12), and (13) in (4), we define
residual function

Res(z) =
d2 fN

dz2 +b1

( d fN

dz

)2 d2 fN

dz2

−b2 fN

( d fN

dz

)2
−b3 fN .

(14)

Now, by using N interpolate nodes {z j}N−1
j=0 plus a con-

dition (5) we can solve the set of equations and conse-
quently, the coefficients {λi}N

i=0 will be obtained:{
Res(z j) = 0, j = 0,1, . . .,N−1,

fN(0) = 1.
(15)

Collocation points are chosen on an uniform grid
[0,z∞]. Here, we choose z∞ = 30 which satisfies
f (z∞) < ε with ε as a small positive value.

It is worth to mention that it is in general difficult
to solve the nonlinear system (15) even by Newton’s
method. The main difficulty with such a system is how
to choose the initial guess to handle Newton’s method,
in other words: How many solutions admit the system
of nonlinear equations? We think the best way to dis-
cover a proper initial guess (or initial guesses) is to
solve the system analytically for very small N (by us-
ing symbolic softwares program such as Mathematica
or Maple) and then work out proper initial guesses and
particularly multiplicity of solutions of such system.
This action has been done by starting from proper ini-
tial guesses with a number of maximum iterations of
ten.

5. Concluding Remarks

The non-Newtonian fluids have been studied exten-
sively for the past few decades because of their rele-
vance to many industrial and natural problems. In this

paper we have shown the approximate solutions of flow
of a third-grade fluid in a porous half space by three
positive definite RBFs for some typical values of pa-
rameters, b1 = 0.6, b2 = 0.1, and b3 = 0.5. Here the nu-
merical solution of f ′(0) is important. Ahmad [33] ob-
tained this value by the shooting method and founded,
correct to six decimal positions, f ′(0) =−0.678301.

We compared the present method by using GA, IQ,
and sech RBFs with the numerical solution and the Ah-
mad solution [33] in Tables 2, 3, and 4. The solutions
are presented graphically in Figure 1.

The radial basis functions listed in Table 1 contain
a shape parameter c that must be specified by the user.
But here, by the meaning of residual function, we try
to minimize ‖Res(z)‖2 by choosing a good shape pa-
rameter c [38]. We define ‖Res(z)‖2 as

‖Res(z)‖2 =
∫ b

0
Res2(z)dz'

m

∑
j=0

ω jRes2
(b

2
s j +

b
2

)
,

where

ω j =
b

(1− s j
2)
( d

ds
Pm+1(s)|s=s j

)2 , j = 0,1, . . .,m,

Pm+1(s j) = 0, j = 0,1, . . .,m,

Table 2. Comparison between gaussian RBF solution and
Ahmad solution [33] for b1 = 0.6, b2 = 0.1, and b3 = 0.5
with N = 20 and c = 0.1582.

z GA-RBF Ahmad method [33] Numerical [33]
0.0 1.00000000 1.00000 1.00000
0.2 0.87265264 0.87220 0.87260
0.4 0.76074843 0.76010 0.76060
0.6 0.66261488 0.66190 0.66240
0.8 0.57671495 0.57600 0.57650
1.0 0.50164542 0.50100 0.50140
1.2 0.43613322 0.43560 0.43590
1.6 0.32930679 0.32890 0.32920
2.0 0.24842702 0.24820 0.24840
2.5 0.17456033 0.17440 0.17450
2.7 0.15156849 0.15140 0.15160
3.0 0.12262652 0.12250 0.12260
3.4 0.09243890 0.09234 0.09242
3.6 0.08025570 0.08016 0.08024
4.0 0.06049038 0.06042 0.06047
4.2 0.05251411 0.05245 0.05250
4.4 0.04558868 0.04553 0.04558
4.6 0.03957597 0.03953 0.03957
4.8 0.03435598 0.03432 0.03435
5.0 0.02982446 0.02979 0.02982

f ′(0) −0.678301314 −0.681835 −0.678301

‖Res‖2 1.8554 ·10−6 − −
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Table 3. Comparison between inverse quadric RBF solution
and Ahmad solution [33] for b1 = 0.6, b2 = 0.1, and b3 = 0.5
with N = 20 and c = 17.04.

z IQ-RBF Ahmad method [33] Numerical [33]
0.0 1.00000000 1.00000 1.00000
0.2 0.87266001 0.87220 0.87260
0.4 0.76076870 0.76010 0.76060
0.6 0.66264542 0.66190 0.66240
0.8 0.57675020 0.57600 0.57650
1.0 0.50167989 0.50100 0.50140
1.2 0.43616288 0.43560 0.43590
1.6 0.32932216 0.32890 0.32920
2.0 0.24843091 0.24820 0.24840
2.5 0.17455938 0.17440 0.17450
2.7 0.15156786 0.15140 0.15160
3.0 0.12262741 0.12250 0.12260
3.4 0.09244181 0.09234 0.09242
3.6 0.08025912 0.08016 0.08024
4.0 0.06049365 0.06042 0.06047
4.2 0.05251686 0.05245 0.05250
4.4 0.04559078 0.04553 0.04558
4.6 0.03957740 0.03953 0.03957
4.8 0.03435682 0.03432 0.03435
5.0 0.02982483 0.02979 0.02982

f ′(0) −0.678301390 −0.681835 −0.678301

‖Res‖2 2.5364 ·10−6 − −

Pm+1(s) is the (m + 1)th-order Legendre polynomial
and b is the biggest collocation node. Tables 2, 3,
and 4 show the minimum of ‖Res(z)‖2 which is ob-

Fig. 1. Graphs of numeri-
cal approximate fN(z) by
using GA-RBF (?), IQ-
RBF (◦) and Sech-RBF
(–).

Table 4. Comparison between secant hyperbolic RBF solu-
tion and Ahmad solution [33] for b1 = 0.6, b2 = 0.1, and
b3 = 0.5 with N = 20 and c = 0.0905.

z sech-RBF Ahmad method [33] Numerical [33]
0.0 1.00000000 1.00000 1.00000
0.2 0.87266081 0.87220 0.87260
0.4 0.76077103 0.76010 0.76060
0.6 0.66264901 0.66190 0.66240
0.8 0.57675439 0.57600 0.57650
1.0 0.50168395 0.50100 0.50140
1.2 0.43616626 0.43560 0.43590
1.6 0.32932345 0.32890 0.32920
2.0 0.24843050 0.24820 0.24840
2.5 0.17455844 0.17440 0.17450
2.7 0.15156713 0.15140 0.15160
3.0 0.12262720 0.12250 0.12260
3.4 0.09244225 0.09234 0.09242
3.6 0.08025974 0.08016 0.08024
4.0 0.06049429 0.06042 0.06047
4.2 0.05251737 0.05245 0.05250
4.4 0.04559109 0.04553 0.04558
4.6 0.03957750 0.03953 0.03957
4.8 0.03435674 0.03432 0.03435
5.0 0.02982462 0.02979 0.02982

f ′(0) −0.678301748 −0.681835 −0.678301

‖Res‖2 2.6279 ·10−6 − −

tained with shape parameter c for cases of GA-RBF,
IQ-RBF, and sech-RBF. The logarithmic graphs of
the ‖Res(z)‖2 for GA, IQ, and sech RBFs at b1 =
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Fig. 2. Graphs of ‖Res‖2.

0.6, b2 = 0.1, and b3 = 0.5 are shown in Figure 2.
These graphs illustrate the convergence rate of the
method. We find the simple solutions by using col-
location points over almost the whole domain [0,∞).
We applied this method through the integration pro-
cess on the infinity boundary value and satisfy this con-
dition.
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