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Under investigation in this paper are the coupled nonlinear Schrödinger equations (CNLSEs) and
coupled Burgers-type equations (CBEs), which are, respectively, a model for certain birefringent
optical fibers Raman-scattering, Kerr and gain/loss effects, and a generalized model in fluid dynamics.
Special attention should be paid to the existing claim that the solitons for the CNLSEs do not exist.
Through certain dependent-variable transformations, the CNLSEs are reduced to a Manakov system
and the CBEs are linearized. In that way, some new solutions of the CNLSEs and CBEs are obtained
via symbolic computation. Especially the one-dark-soliton-like solutions for the CNLSEs have been
found, against the existing claim.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been
seen in plasma physics, optical fibers, fluid me-
chanics, etc. [1 – 5]. Methods have been explored to
study the NLEEs [6 – 10], e.g., the inverse scattering
method [11], Bäcklund transformation method [12],
and Hirota bilinear method [13 – 15]. However, some-
times, it may be difficult to address the soliton prob-
lems with the methods mentioned above [16]. With
certain transformations, some NLEEs may be trans-
formed into the simpler ones, even the linear ones [17].

In this paper, we will deal with two types of the cou-
pled NLEEs as follows:

(i) Describing the wave propagation in birefrin-
gent optical fibers with Raman-scattering, Kerr and
gain/loss effects, the coupled nonlinear Schrödinger
equations (CNLSEs) appear as [18]

iϕt + χϕxx∓2µ

( |ϕ|2 + |ω|2

|ϕ|2|ω|2
)

ϕ = R1, (1a)

iωt + χωxx∓2µ

( |ϕ|2 + |ω|2

|ϕ|2|ω|2
)

ω = R2, (1b)

where x is the scaled space and t is the scaled time,
while the perturbative terms R1 and R2, and the real
parameters χ and µ are respectively defined as

R1 =
2χϕ2

x

ϕ
, R2 =

2χω2
x

ω
,

χ =
α +δ

α(α−δ )
, µ =

α2−δ 2

α2δ
,

(2)

with α and δ as two real constants. Using the
Zakharov–Shabat (ZS) dressing method [19], author
of [18] has obtained the solutions of (1) as

ϕ(x, t) =−1+ABC
DB

, ω(x, t) =−1+ABC
EB

, (3)

where

A =
αµ(|D|2 + |E|2)

(α2−δ 2)(ρ−σ)2 , B = eρ(δ−α)x−i ρ2

α
(δ 2−α2)t ,
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C = e−σ(δ−α)x+i σ2
α

(δ 2−α2)t , (4)

where D and E are complex constants, and ρ and σ

are imaginary constants with ρ∗=−σ . Based on Solu-

tions (3), ϕ(x, t) and ω(x, t) satisfy ω(x, t) =
D
E

ϕ(x, t).
The Lax pair of (1) has been listed as [18]

L =

 0 α−δ

ϕ

α−δ

ω

± δ−α

ϕ∗ 0 0

± δ−α

ω∗ 0 δ

+

 α 0 0
0 δ 0
0 0 δ

 ∂

∂x
,

(5a)

M = 2


h(1)

x − ϕx
ϕ2 − ωx

ω2

∓ ϕ∗x
ϕ∗2 h(2)

x h(3)
x

∓ ω∗x
ω∗2 h(4)

x h(5)
x

+ i
∂ 2

∂x2 , (5b)

where

h(1)
x =∓α−δ

α

( |ϕ|2 + |ω|2

|ϕ|2|ω|2
)
,

h(2)
x =∓δ −α

δ |ϕ|2
, h(3)

x =∓ δ −α

δ ϕ∗ω
,

h(4)
x =∓ δ −α

δ ϕ ω∗
, h(5)

x =∓ δ −α

δ |ω|2
.

(6)

Especially, author of [18] has claimed that System (1)
has ’no soliton solution’, on which we are going to
present our discussion and disagreement.

(ii) As a generalized model in fluid dynamics, the
coupled Burgers-type equations (CBEs) [17, 20, 21]
may describe certain phenomena, e.g., the sedimenta-
tion or evolution of scaled volume concentrations of
two kinds of particles in fluid suspensions or colloids
under the effect of gravity. The CBEs can be written
as [20]

uτ =
1
2

uεε +
1
2

vεε +3uuε +5uε v+3uvε +5vvε −4u3

−4u2v+4uv2 +4v3, (7a)

vτ =
1
2

uεε +
1
2

vεε +5uuε +3uε v+5uvε +3vvε +4u3

+4u2v−4uv2−4v3, (7b)

where ε is the scaled space and τ is the scaled time.
Author of [20] has seen (7) to be integrable. In [21], an-
other set of CBEs has been considered. Author of [17]
has gained the multiple kink and singular kink solu-
tions of (7) under the constraint u(ε,τ) = v(ε,τ).

The structure of this paper will be as follows. In Sec-
tion 2, based on the symbolic computation [6, 7, 9, 10],
we will demonstrate that (1) can be reduced into
a Manakov system [22 – 27] and obtain some new an-
alytic solutions. Especially, the one-dark-soliton-like
solution will be given, against [18]’s claim. In Sec-
tion 3, we will reduce (7) to a linear one and give their
more general solutions than those in [17]. Section 4
will be our conclusions.

2. Reduction and New Solutions for (1)

On (1), we can give the following transformations:

ϕ(x, t) =
1
p
, ω(x, t) =

1
q
. (8)

Substituting (8) into (1) yields

− ipt −χ pxx∓2µ

(
|p|2 + |q|2

)
p = 0, (9a)

− iqt −χqxx∓2µ

(
|p|2 + |q|2

)
q = 0. (9b)

System (9) is a Manakov system, which is seen in
the pulse propagation in two-mode optical fibres [22]
and in the theory of soliton wavelength division mul-
tiplexing [23]. Furthermore, the bright and dark vector
soliton solutions [24, 25], periodic solutions [26], and
effects of an initial phase difference and interactions
of two solitons with different amplitudes for System
(9) [27] have also been investigated.

In order to get the solutions of (1), we can firstly
obtain the solutions of (9), and then give the solutions
of (1) through Transformations (8).

Case 1
In the following, we will construct the one-dark-

soliton-like solutions for (1), which is against [18]’s
claim. Assuming that q = c p, where c is a complex
constant, we can reduce (1) to the form of

ipt + χ pxx +2µ(|c|2 +1)|p|2 p = 0, (10)

which is a nonlinear Schrödinger equation [28]. Taking
the transformation p =

g
f

, we can get the following

bilinear form of (10):

(iDt + χD2
x−λ )g · f = 0, (11a)(

D2
x−

λ

χ

)
f · f − 2µ(|c|2 +1)

χ
gg∗ = 0, (11b)
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where λ is a real constant. We assume that

f = 1+ ε f1, g = g0(1+ εg1), (12)

where f1 is a real function, g0 and g1 are complex func-
tions, and ε is a parameter. Substituting (12) into (11),
and collecting the coefficients of ε0, we obtain

ig0t + χgxx−λg0 = 0, (13a)

λ +2µ(|c|2 +1)g0g∗0 = 0. (13b)

Solving (13), we get

g0 = a ekx+i(χk2−λ )t , (14)

where a is an arbitrary complex constant, k = bi and
λ = −2|a|2µ(|c|2 + 1). The coefficients of ε and ε2

lead to the equations as follows:

(iDt + χD2
x−λ )(g0 · f1 +g0g1 ·1) = 0, (15a)(

D2
x−

λ

χ

)
(1 · f1 + f1 ·1)=

2µ

χ
(|c|2 +1)|g0|2(g1 +g∗1),

(15b)

(iDt + χD2
x−λ )(g0g1 · f1) = 0, (15c)(

D2
x−

λ

χ

)
( f1 · f1) =

2µ

χ
(|c|2 +1)|g0|2|g1|2, (15d)

which can be solved to give

f1 = d e

√
2λ
χ

x−2b
√

2λ χ
, (16a)

g1 =−d e

√
2λ
χ

x−2b
√

2λ χ
, (16b)

where d is a real constant. Without loss of generality,
taking ε = 1, through the transformation p =

g
f

, we

have a solution of p as

p =
a ekx+i(χk2−λ )t

(
1−d e

√
2λ
χ

x−2b
√

2λ χ
)

1+d e

√
2λ
χ

x−2b
√

2λ χ

. (17)

Based on Expressions (8), we can get

ϕ(x, t) =
1+d e

√
2λ
χ

x−2b
√

2λ χ

a ekx+i(χk2−λ )t
(

1−d e

√
2λ
χ

x−2b
√

2λ χ
) ,

(18a)

ω(x, t) =
1+d e

√
2λ
χ

x−2b
√

2λ χ

ca ekx+i(χk2−λ )t
(

1−d e

√
2λ
χ

x−2b
√

2λ χ
) ,

(18b)

which are the one-dark-soliton-like solutions for (7), to
be plotted in Figure 1.

As seen in Figure 1, the amplitude of the wave keeps
invariant in the propagation, so they are the one-dark-
soliton-like solutions for (1), against [18]’s claim that
System (1) has ’no soliton solution’.

In the following, we will derive some other types of
solutions for (1).

Case 2
As the procedure of deriving the solution of (9)

in [25], we take

p =
aχ eθ

χ(k + k∗)2 + µ(|a|2 + |b|2)e(θ+θ∗) , (19a)

q =
bχ eθ

χ(k + k∗)2 + µ(|a|2 + |b|2)eθ+θ∗) , (19b)

where θ = k x+i χk2t and k is a complex constant.
Through Transformations (8), we can give solutions of
(1) as

ϕ(x, t) =
1
a

[
(k + k∗)2 e−θ + µ(|a|2 + |b|2)eθ∗

]
, (20a)

ω(x, t) =
1
b

[
(k + k∗)2 e−θ + µ(|a|2 + |b|2)eθ∗

]
.

(20b)

If we assume that

k = ρ(δ −α), |D|2 + |E|2 = χ(|a|2 + |b|2), (21)

Solutions (20) are equivalent to Solutions (3) in [18].

Case 3
As the procedure of deriving the two-soliton solu-

tions of (9) in [25], we take

p =
a1 eθ1 +a2 eθ2 + eθ1+θ2+θ∗1 +γ1 + eθ1+θ2+θ∗2 +γ2

1+ eθ1+θ∗1 +η1 + eθ1+θ∗2 +η0 + eθ∗1 +θ2+η∗0 + eθ2+θ∗2 +η2 +β eθ 1
1 +θ∗1 +θ 2

2 +θ∗2
, (22a)
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q =
b1 eθ1 +b2 eθ2 + eθ1+θ2+θ∗1 +γ3 + eθ1+θ2+θ∗2 +γ4

1+ eθ1+θ∗1 +η1 + eθ1+θ∗2 +η0 + eθ∗1 +θ2+η∗0 + eθ2+θ∗2 +η2 +β eθ 1
1 +θ∗1 +θ 2

2 +θ∗2
, (22b)
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(d1) (d2) Fig. 1 (colour online). One-
dark-soliton-like solutions via
(18). Parameters in (ai)
(i = 1,2) are χ = 0.1,
µ =−0.1, c = 1.2, b =−0.03,
a = 0.1 + 0.1i, d = −0.1.
Parameters in (bi), (ci) and
(di) are the same as those in
(ai) except for χ = 1, µ = −1
in (bi), b = −0.3 in (ci) and
µ = −1 and b = −0.3 in (di)
(i = 1,2).
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where

θ1 = k1x+ iχk2
1, θ2 = k2x+ iχk2

2,

eη1 =
µ(|a1|2 + |b1|2)

χ(k1 + k∗1)2 , eη2 =
µ(|a2|2 + |b2|2)

χ(k2 + k∗2)2 ,

eη0 =
µ(a1a∗2 +b1b∗2)

χ(k1 + k∗2)2 , eη∗0 =
µ(a∗1a2 +b∗1b2)

χ(k∗1 + k2)2 ,

eγ1 = λ1a2 eη1 +λ2a1 eη∗0 , eγ2 = λ3a2 eη0 +λ4a1 eη2 ,

eγ3 = λ1b2 eη1 +λ2b1 eη∗0 , eγ4 = λ3b2 eη0 +λ4b1 eη2 ,

λ1 =
(k2− k1)(k1 + k∗1)
(k1 + k∗1)(k2 + k∗1)

, λ1 =
(k1− k2)(k2 + k∗1)
(k1 + k∗1)(k2 + k∗1)

,

λ3 =
(k2− k1)(k1 + k∗2)
(k1 + k∗2)(k2 + k∗2)

, λ4 =
(k1− k2)(k2 + k∗2)
(k1 + k∗2)(k2 + k∗2)

,

β =
eγ1+γ∗1 + eγ3+γ∗3

eη1(k2 + k∗2)2 , (23)

while k1, k2, a1, a2, b1, and b2 are complex constants.
Through Transformations (8), we can obtain new solu-
tions of (1) as

ϕ(x, t) =
1+ eθ1+θ∗1 +η1 + eθ1+θ∗2 +η0 + eθ∗1 +θ2+η∗0 + eθ2+θ∗2 +η2 +β eθ 1

1 +θ∗1 +θ 2
2 +θ∗2

a1 eθ1 +a2 eθ2 + eθ1+θ2+θ∗1 +γ1 + eθ1+θ2+θ∗2 +γ2
, (24a)

ω(x, t) =
1+ eθ1+θ∗1 +η1 + eθ1+θ∗2 +η0 + eθ∗1 +θ2+η∗0 + eθ2+θ∗2 +η2 +β eθ 1

1 +θ∗1 +θ 2
2 +θ∗2

b1 eθ1 +b2 eθ2 + eθ1+θ2+θ∗1 +γ3 + eθ1+θ2+θ∗2 +γ4
. (24b)

3. Reduction and New Solutions of (7)

The addition of (7a) and (7b) leads to

(u+ v)τ = (u+ v)εε +8(u+ v)(u+ v)ε . (25)

On the other hand, the substraction of (7a) and (7b)
gives

(u− v)τ =−2(u+ v)ε(u− v)−8(u+ v)2(u− v). (26)

We assume that

u+ v = f , u− v = g. (27)

Then, (25) and (26) can be rewritten as

fτ = fεε +8 f fε , (28a)

gτ =−2 fε g−8 f 2g. (28b)

Solving (28b), we have

g = e
∫
(−2 fε−8 f 2)dτ . (29)

To this stage, if we can get a solution of f from (28a),
the solution of g can be calculated through (28b).
Equation (28a) is a Burgers equation [17], which can
be linearized as

pτ − pεε = 0 (30)

through the following Cole–Hopf transformation [17]:

f =
1
4

pε

p
. (31)

Based on (29), we can get

g =
1
√

p
. (32)

With the known solutions for (30) [17], the solutions
for f can be given from (31), and then those for g from
(29). Finally, the solutions for u(ε,τ) and v(ε,τ) can
be respectively expressed as

u(ε,τ) =
f +g

2
, v(ε,τ) =

f −g
2

. (33)

Solving (30), we get

p = 1+
n

∑
i=1

ci ekiε+k2
i τ , (34)

where ci and ki (i = 1,2, · · · ,n) are constants. There-
fore, we can derive f and g as

f =
ki

n
∑

i=1
ci ekiε+k2

i τ

4

(
1+

n
∑

i=1
ci ekiε+k2

i τ

) , (35a)

g =
1√

1+
n
∑

i=1
ci ekiε+k2

i τ

. (35b)
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Thus, u(ε,τ) and v(ε,τ) can be shown as

u(ε,τ) = (36a)

1
2

 ki

n
∑

i=1
ci ekiε+k2

i τ

4

(
1+

n
∑

i=1
ci ekiε+k2

i τ

) +
1√

1+
n
∑

i=1
ci ekiε+k2

i τ

 ,

v(ε,τ) = (36b)

1
2

 ki

n
∑

i=1
ci ekiε+k2

i τ

4

(
1+

n
∑

i=1
ci ekiε+k2

i τ

) − 1√
1+

n
∑

i=1
ci ekiε+k2

i τ

 .

With Transformations (27), we have converted (7)
into (28a) and (29) without any extra restrictions. Com-
pared with [17], in which there is a restriction u(ε,τ) =
v(ε,τ) (g = 0 assumed), the solutions obtained here
are more general. Actually, corresponding to Solutions
(72) and (78) in [17], which are called the general kink
and singular kink solutions, we only need to adopt
ci = 1 and ci = −1 (i = 1,2, · · · ,n), respectively. Our
results are more general. Relevant issues can bee seen
in [29, 30].

4. Conclusions

The CNLSEs [i.e., (1)] and CBEs [i.e., (7)] are,
respectively, a model for certain birefringent optical
fibers with Raman-scattering, Kerr and gain/loss ef-
fects, and a generalized model in fluid dynamics. In

this paper, with dependent-variable transformations (8)
and (27), we have converted (1) to the Manakov sys-
tem [i.e., (9)], and (7) to a linear equation [i.e., (30)]
together with Expression (29). Moreover, we have de-
rived some new solutions for (1) and (7) based on
Transformations (27) and (8), seen as Solutions (18),
(24), and (36), respectively. Especially, we have illus-
trated one-dark-soliton-like Solutions (18) for (1) in
Figure 1, against [18]’s claim that the solution of (1)
has ’no soliton solution’. Through our work, (1) and
(7) are reduced to simpler ones, seen as Expressions
(9), (28a), and (29), respectively.

Acknowledgement

This work has been supported by the National
Natural Science Foundation of China under Grant
No. 60772023, by the Fundamental Research Funds
for the Central Universities of China under Grant
No. 2011BUPTYB02, by the Supported Project (No.
SKLSDE-2010ZX-07) and Open Fund (No. SKLSDE-
2011KF-03) of the State Key Laboratory of Soft-
ware Development Environment, Beijing University
of Aeronautics and Astronautics, by the National
High Technology Research and Development Pro-
gram of China (863 Program) under Grant No.
2009AA043303, and by the Specialized Research
Fund for the Doctoral Program of Higher Education
(No. 200800130006), Chinese Ministry of Education.

[1] Z. Y. Sun, Y. T. Gao, X. Yu, W. J. Liu, and Y. Liu, Phys.
Rev. E 80, 066608 (2009).

[2] Z. Y. Sun, Y. T. Gao, X. Yu, and Y. Liu, Colloid Surface
A 366, 1 (2010).

[3] L. Wang, Y. T. Gao, X. L. Gai, and Z. Y. Sun, Phys. Scr.
80, 065017 (2009).

[4] L. Wang, Y. T. Gao, and X. L. Gai, Z. Naturforsch. 65a,
818 (2010).

[5] W. P. Hong, Phys. Lett. A 361, 520 (2007).
[6] B. Tian and Y. T. Gao, Phys. Lett. A 340, 243 (2005).
[7] B. Tian and Y. T. Gao, Eur. Phys. J. D 33, 59 (2005).
[8] Z. Y. Yan and H. Q. Zhang, J. Phys. A 34, 1785

(2001).
[9] Y. T. Gao and B. Tian, Phys. Lett. A 361, 523 (2007).

[10] Y. T. Gao and B. Tian, Europhys. Lett. 77, 15001
(2007).

[11] J. B. Mcleod and P. J. Olver, J. Math. Anal. 14, 488
(1983).

[12] B. Kupershmidt, Phys. Lett. A 372, 2634 (2008).
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