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The nonlinear differential equations describing the nano boundary layer flow is investigated in this
paper utilizing Chebyshev collocation scheme. The results obtained in this research are compared
with those obtained by the other published works.
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1. Introduction

The notion of a boundary layer was first introduced
by Prandtl [1] over a hundred years ago to explain the
discrepancies between the theory of inviscid fluid flow
and experiment. In classical boundary layer theory, the
condition of no-slip near the solid walls is usually ap-
plied. This because the fluid velocity component is as-
sumed to be zero relative to the solid boundary. How-
ever, this is not true for fluid flows at the micro and
nano scale. Investigations show that the condition of
no-slip is no longer valid and instead, a certain de-
gree of tangential slip must be allowed (see [2]). In
recent years, some interest has been given to the study
of the nano boundary layer flow and some useful re-
sults have been introduced by the authors [3 – 9]. In this
paper, we consider the model proposed by Wang [7]
describing the viscous flow due to a stretching sur-
face with both surface slip and suction (or injection).
As in Wang, we consider two geometries situations:
(i) the two-dimensional stretching surface and (ii) the
axisymmetric stretching surface. A similarity trans-
form is applied in [7] to convert the Navier–Stokes
equations into a third-order nonlinear ordinary differ-
ential equation given by

f ′′′(η)−
(

f ′(η)
)2 +m f (η) f ′′(η) = 0, (1)

where m is a parameter describing the type of stretch-
ing. When m = 1, we have two-dimensional stretching,
while m = 2, for axisymmetric stretching [7]. The exis-
tence and uniqueness results for each of the two prob-
lems were presented in Wang [7] along with some nu-
merical results. The flow is subjected to the following

boundary conditions:

f (0) = s, f ′(0)−1 = K f ′′(0), f ′′(∞) = 0, (2)

where K > 0 is a non-dimensional slip parameter and
s < 0 when injection from the surface occurs and s > 0
for suction.

In order to solve the boundary value problem (BVP)
given by (1) and (2), various numerical and analytical
methods have been proposed. Van Gorder et al. [8] ap-
plied the homotopy analysis method to solve the BVP
defined above. Also, they discussed the effects of the
slip parameter K > 0 and the suction parameter s > 0
on the fluid velocity and on the tangential stress. As
expected, they found that for such fluid flows at nano
scales, the shear stress at the wall decreases (in an ab-
solute sense) with an increase in the slip parameter
K > 0.

The method used by Van Gorder et al. [8] for obtain-
ing numerical solutions differs from that of Wang [7] in
that they employed a boundary value problem solver,
while Wang [9] converts the boundary value problem
into an initial value problem first and then obtains a so-
lution via the Runge–Kutta method. The results ob-
tained by Van Gorder et al. [8] agree with those ob-
tained by Wang [7] up to the number of decimal places
provided. For instance, the numerical solutions for the
shear stress at the surface f ′′(0) are given to four dec-
imal places in Wang [7] and to three decimal places in
Wang [9]. In addition, Van Gorder et al. [8] considered
up to 10 decimal places and the first few digits of their
results agree with those of Wang [7, 9].

In this paper, we aim to compare numerically ob-
tained results by using the Chebyshev collocation
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scheme with those obtained by the other published
works.

2. Previous Results

In this section we aim to report some previous
results for (1) and (2). At m = 1 and s = K = 0,
Crane [10] gave the exact solution

f (η) = 1−ρ
−η . (3)

At arbitrary values of s and K, Wang [7] obtained a so-
lution in the form

f (η) = s+(C− s)(1−ρ
−Cη), (4)

where C is the positive root of the cubic equation:

K C3 +(1− s K)C2− s C−1 = 0. (5)

When there is no suction, (4) reduces to that of Anders-
son [11]. Moreover, when there is no slip it reduces
to that of Gupta and Gupta [12]. Finally, Crane’s solu-
tion is recovered when both suction and slip are absent.
In the next section we shall introduce the Chebyshev
pseudospectral method. We then apply it to solve the
BVP given by (1) and (2) in a subsequent section.

3. The Chebyshev Collocation Method

A numerical solution based on Chebyshev colloca-
tion approximations seems to be a very good choice
in many practical problems (as described in the litera-
ture review and for example in Canuto et al. [13] and
Peyret [14]). Accordingly, the Chebyshev collocation
method will be applied for the presented model. The
derivatives of the function f (x) at the Gauss–Lobatto
points, xk = cos

(
kπ

L

)
, which are the linear combination

of the values of the function f (x) [15]

f (n) = D(n) f ,

where

f = [ f (x0), f (x1), . . ., f (xL)]T,

and

f (n) =
[

f (n)(x0), f (n)(x1), . . ., f (n)(xL)
]T

,

with

D(n) =
[
d(n)

k, j

]
or

f (n)(xk) =
L

∑
j=0

d(n)
k, j f (x j),

where

d(n)
k, j =

2γ∗j
L

L

∑
l=n

l−n

∑
m=0

(m+l−n)even

γ
∗
l an

m,l (−1)[
l j
L ]+[ mk

L ]

x
l j−L[ l j

L ]xmk−L[ mk
L ],

with

an
m,l =

2nl
(n−1)!cm

(s−m+n−1)! (s+n−1)!
(s)! (s−m)!

,

such that 2s = l + m− n and c0 = 2,ci = 1, i ≥ 1,
where k, j = 0,1,2, . . .,L and γ∗0 = γ∗l = 1

2 , γ∗j = 1 for
j = 1,2,3, . . .,L−1. The round off errors incurred dur-
ing computing differentiation matrices D(n) are inves-
tigated in [15].

4. Descriptions of the Method for the Governing
Equations

In this section the third-order nonlinear ordinary
differential equation (1), with boundary conditions (2)
are approximated by using the Chebyshev collocation
method [15 – 21]. The grid points (xi,x j) in this situ-

ation are given as xi = cos
(

iπ
L1

)
, x j = cos

(
jπ
L2

)
for

i = 1, . . .,L1− 1 and j = 1, . . .,L2− 1. The domain in
the x-direction is [0,xmax] where xmax is the length of
the dimensionless axial coordinate and the domain in
the η-direction is [0,ηmax] where ηmax corresponds to
η∞. The domain [0,xmax]× [0,ηmax] is mapped into
the computational domain [0,xmax]× [−1,1] and (1) is
transformed into the following equation:(

2
ηmax

)3
(

L∗

∑
l=0

d(3)
j,l fl

)
−
(

2
ηmax

)2
(

L∗

∑
l=0

d(1)
j,l fl

)2

+m

(
2

ηmax

)2

f j

(
L∗

∑
l=0

d(2)
j,l fl

)
= 0, (6)

satisfying the boundary conditions{
f (η) = s, f ′(η)−1 = K f ′′(η) at η = 0,
f ′(η) = 0, as η → ∞.

(7)

The solution of the above equation (6) with bound-
ary conditions (7), are obtained using the Newton–
Raphson iteration technique and these are entered in
Table 1 for different values of the governing parame-
ters. The computer program of the numerical method
was executed in Mathematica 5.2TM running on a PC.



N. Y. Abd Elazem and A. Ebaid · Nano Boundary Layer Flow 541

m = 1 m = 2

Chebyshev Chebyshev
Van Gorder Van Gorder

s k collocation collocation
et al. [8] et al. [8]

method method
0 0 −1.0000000000 −1.0002140680 −1.1737207389 −1.1728717518

0.5 −0.594954851 −0.5949583021 −0.6505276588 −0.6506537515

1 −0.4301597092 −0.4301515962 −0.4625096440 −0.4624060902

2 −0.2839796011 −0.2839931755 −0.2990495699 −0.3012992130

5 −0.1448402050 −0.1449886639 −0.1493933439 −0.1493930000

1 0.5 −0.828471247 −0.8284288652 −1.0696156434 −1.0845357098

1 −0.5698402910 −0.5698077225 −0.6884145383 −0.6863163502

2 −0.3558040537 −0.3542856528 −0.4050396378 −0.4050582863

5 −0.1699818524 −0.1699311235 −0.1823320193 −0.1823323052

2 0 −2.4142135624 −2.2524535869 −4.3424865854 −4.3479838530

0.5 −1.0508551217 −1.3868739033 −1.3462628561 −1.3464634794

1 −0.6823278038 −0.8776982062 −0.8028573974 −0.8027553761

2 −0.4035565857 −0.4737760523 −0.4449439750 −0.444961970

5 −0.1821716651 −0.1957145791 −0.1905161474 −0.1905160000

Table 1. Numerical compar-
ison with results of Van
Gorder et al. [8] for the
shear stress at the surface
f ′′(0) for m = 1 and for var-
ious values of k and s.

m = 1, s = k = 0 m = 1, s = 1, k = 2

Chebyshev Chebyshev
Van Gorder Van Gorder

η collocation η collocation
et al. [8] et al. [8]

method method
0 0 0 0 1 1

0.002 0.0023951331 0.0023951308 0.014 1.0041963475 1.0042474975

0.009 0.0095232938 0.0095231741 0.057 1.0159529058 1.0161317847

0.021 0.0212154310 0.0212141451 0.123 1.0330764243 1.0332769553

0.037 0.0371984785 0.0371914883 0.20 1.0527495931 1.0523574005

0.058 0.0571076976 0.0570817918 0.3 1.0723100000 1.0699397830

0.11 0.1068857745 0.1067027092 0.39 1.0897600000 1.0834101443

m = 1, s = 2, k = 2 m = 1, s = 2, k = 5

Chebyshev Chebyshev
Van Gorder Van Gorder

collocation collocation
et al. [8] et al. [8]

method method
0 2 2 0 2 2

0.002 2.00047082134551 2.00012692817733 0.002 2.0002154300 2.0000513361

0.009 2.00182362782631 2.0004790937997 0.009 2.0008346266 2.0001937634

0.02 2.00389104275034 2.00097896275041 0.02 2.0017815010 2.0003959095

0.03 2.0064289244493 2.0015226460990 0.03 2.0029448510 2.0006157477

0.05 2.009157035108226 2.00200993685037 0.05 2.0041966689 2.0008127555

0.06 2.01179836657788 2.0907962878802 0.06 2.0054099604 2.0009592010

Table 2. Numerical compar-
ison with exact sloution of
Van Gorder et al. [8].

5. Conclusion

The third-order nonlinear boundary value problem
describing the nano boundary layer flow has been inves-

tigated numerically by using the Chebyshev collocation
scheme. It is found in this paper that the numerical re-
sults agree better with those obtained by using the ho-
motopy analysis method for m = 1 compared to m = 2.
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