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In this work, the long porous slider problem where the fluid is injected through the porous bot-
tom is studied. The similarity transformations reduce the equation of motion to a set of nonlinear
ordinary differential equations which are solved using the Adomian decomposition method (ADM).
The influence of the Reynolds number on the dimensionless velocity field has been discussed graphi-
cally. Finally, the validity of results is verified by comparing with the numerical method and existing
numerical results. A very good agreement was found between approximate and numerical solution,
which proves that ADM is very efficient and accurate.
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1. Introduction

Porous materials are widely used in chromatog-
raphy, chemical reactions, heat transfer, and analyti-
cal chemistry filtering analyte due to their large sur-
face area and small pore sizes. In addition, fluid flow
through porous channels can cause less dispersion
to an analyte than fluid flow through an open chan-
nel of the same dimensions. Much work has been
done in order to understand the effects of fluid re-
moval or injection through channel walls on the flow
of Newtonian and non-Newtonian fluids. In view of
these applications, Berman [1] made an initial effort
in this direction. His investigations provided a tech-
nique for solving the classical viscous flow equations.
The flow problem between porous plates has been
studied extensively in various aspects, for example
non-Newtonian fluids, magnetohydrodynamic (MHD)
flows, heat transfer and mass transfer analysis. The lit-
erature on the topic is quite extensive and hence can
not be described here in detail. However, some most
recent works of eminent researchers regarding the flow
between porous plates may be mentioned in the stud-
ies [2 – 14]. To gain insight into the real situation an at-

tempt is made for the analysis of the three-dimensional
problem involving Reynolds number [15 – 20]. Shalak
and Wang [3] carried out a numerical analysis of the
problem for moderately large Reynolds numbers. The
Reynolds number can be defined for a number of dif-
ferent situations where a fluid is in relative motion to
a surface (the definition of the Reynolds number is to
be confused with the Reynolds equations or lubrication
equation).

In order to overcome the restrictions of pertur-
bation techniques, some non-perturbation methods
were developed such as the Laplace decomposition
method [21 – 23], the bookkeeping artificial parame-
ter method [24], the energy balance method [25], the
parameter-expansion method [26], the variational iter-
ation method [27, 28] and so on. One of those non-
perturbation methods is the Adomian decomposition
method (ADM) proposed by Adomian [29]. A reli-
able modification of the Adomian decomposition al-
gorithm has been done by Wazwaz [30]. The current
paper considers a three-dimensional problem using
the Adomian decomposition method. The Adomian
decomposition method [31, 32] is quantitative rather
than qualitative analytic, requiring neither lineariza-
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tion nor perturbation and continuous with no resort
to discretization. The method has been used to derive
analytical solutions for nonlinear ordinary differential
equations [33 – 35] as well as partial differential equa-
tions [36 – 44]. A modified version of the method was
used to derive the analytic solutions for partial and or-
dinary differential equations [45, 46]. To the best of
our knowledge no attempt has been made to exploit
this method to solve the long porous slider problem.
Also our aim in this article is to compare the results
with solutions to the existing ones [3].

2. Formulation of the Problem

Consider a long porous slider with dimensions L1
and L2 (Fig. 1 a and b). A fluid is injected through the
porous bottom of the slider with velocity W ∗ such that
a small gap of width d is created. The slider moves lat-
erally with velocity −U and longitudinally with veloc-
ity−V in the x and y-directions, respectively (Fig. 1 a).
We shall assume L2 ≥ L1 ≥ d such that end effects can
be neglected. In a reference frame travelling with the
slider let u, v, and w be the velocity components of the
fluid in the x, y, and z-direction, respectively. The basic
governing equations of the problem given by Shalak
and Wang [3] are:

∇ ·q = 0, (1)

(q ·∇)q =−∇p
ρ

+ γ∇
2q, (2)

where q = (u,v,w), p is the pressure, ρ is the density
of fluid, and γ is the kinematic viscosity. The boundary

Fig. 1. (a) Moving long porous slider; (b) coordinate system.

conditions for (1) and (2) are [3]:

u = U, v = V, w = 0 at z = 0,

w =−W ∗, u = v = 0 at z = d, (3)

where U , V are the velocities of the slider in lateral and
longitudinal directions, and W ∗ is the velocity of the
fluid injected through the porous bottom of the slider.
Using the similarity transformation [3]

u = U f (η)+
W ∗x

d
h′(η), v = V g(η),

w =−W ∗h(η),
(4)

with η = z/d, the Navier–Stokes equations reduce
to [3]

h′h′′−hh′′′ =
h′′′′

R
, (5)

f h′−h f ′ =
f ′′

R
, (6)

−hg′ =
g′′

R
, (7)

h(0) = h′(0) = 0, g(0) = f (0) = 1,

h(1) = 1, h′(1) = g(1) = f (1) = 0,
(8)

where R = W ∗d/γ is the Reynolds number. These
equations differ completely from the circular case [2].
Following the standard procedure of the Adomian
decomposition method defined in [29, 47], we can
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write (5) to (7) as follows:

hn+1(η) =
η∫

0

η∫
0

η∫
0

η∫
0

R

(
∞

∑
n=0

An−
∞

∑
n=0

Bn

)
dηdηdηdη ,

(9)

fn+1(η) =
η∫

0

η∫
0

R

(
∞

∑
n=0

Cn−
∞

∑
n=0

Dn

)
dηdη , (10)

gn+1(η) =−
η∫

0

η∫
0

R

(
∞

∑
n=0

En

)
dηdη . (11)

A corresponding initial guess is given below by using
the boundary conditions defined in (8):

h0 = 3η
2−2η

3, f0 = g0 = 1−η
2. (12)

3. Results and Discussion

In order to solve (9)–(11) subject to the initial guess
(12) analytically, we use the Adomian decomposition
method as described in the books by G. Adomian [29]
and A. M. Wazwaz [47]. The method has the following
main steps:
1. Splitting the given equation into linear and nonlinear

parts.
2. Inverting the highest-order derivative operator con-

tained in the linear operator on both sides.
3. Identifying the initial and/or boundary conditions

and the terms involving the independent variables
alone as initial approximation.

4. Decomposing the unknown function into a series
whose components are to be determined.

5. Decomposing the nonlinear function in terms of
special polynomials called Adomian’s polynomials,
and finding the successive terms of the series solu-
tion by recurrent relation using these Adomian poly-
nomials.

The graphical behaviour of h, f , and g for different
values of the Reynolds number are presented graphi-
cally for a 10th-order approximation calculated by us-
ing Mathematica. For the validation of the numerical
solution used in this study, the results are compared
with those of Shalak and Wang [3]. Using the inverse
method, Wang [3] obtained results for the porous flat
slider. The comparison is found to be very good.

The effects of the Reynolds number R on the veloc-
ity components are shown in Figures 2–4. It is seen

Fig. 2. Effects of R on h.

Fig. 3. Effects of R on f .

Fig. 4. Effects of R on g.
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Table 1. Comparison between the ADM solution and the numerical solution for different values of the Reynolds number R.

R ADM Numerical ADM Numerical ADM Numerical ADM Numerical
h′′(0) finite h′′′(0) finite f ′(0) finite g′(0) finite

difference difference difference difference
h′′(0) h′′′(0) f ′(0) g′(0)

0.2 6.09133 6.091327 −12.465 −12.4649925 −1.0880 −1.067376 −1.0301 −1.030147
1 6.45426 6.454247 −14.365 −14.365764 −1.4059 −1.340171 −1.1531 −1.153103
5 8.17386 8.173776 −24.586 −24.583043 −2.4417 −2.652627 −1.7666 −1.766410

13.8 11.26234 11.261533 −48.9043 −48.479130 −4.0229 −4.741560 −2.8074 −2.806604
51.6 19.449 19.4483819 −149.67 −149.666504 −7.553 −7.6789 −5.301 −5.30102

that h increases with the increasing values of R (Fig. 2).
The variation of R on f is illustrated in Figure 3. This
figure shows that with increasing values of R, f is de-
creasing. The effect of R on velocity field g is shown
in Figure 4. Here, the velocity profile shows the same
behaviour as compared to f .

Table 1 clearly reveals that the present solution
method, namely ADM, shows excellent agreement
with the existing solutions in literature [3] and numer-
ical method solutions. This analysis shows that ADM
suits for the long porous slider problem.

4. Conclusion

The case of three-dimensional lubrication of a long
porous slider is discussed. The nonlinear system is
solved analytically using the Adomian decomposition
method (ADM). The effects of the Reynolds number

is discussed through graphs. The case of lubrication of
long porous slider via Adomian decomposition method
has never been reported and the following observations
have been made:

• h is an increasing function of the Reynolds number,
• f and g are decreasing functions of the Reynolds

number,
• the effect of the Reynolds number is more promi-

nent on h and g as on f .
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