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This paper deals with the three-dimensional analysis of viscous fluid flow in a long circular cylinder
containing an ellipsoidal obstacle. The center of the ellipsoid coincides with that of the cylinder, and
the flow is confined to the space between the ellipsoid and the cylinder when the fluid velocity at the
large distance from the ellipsoid is uniform. The equations of the classical theory of fluid dynamics
are solved in terms of an unknown function which is then shown to be the solution of a boundary
integro-differential equation.

A numerical solution of the integro-differential equation is obtained and the pressure on the surface
of the ellipsoid is presented in graphical forms for various values of the radius of the circular tube.
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1. Introduction

It has been long time since the study on the flow
around a spherical and non-spherical object in a tube
began. The investigations varied from the vortical to
irrotational flow and from the inviscid to viscous flow.
The problem of determining the distribution of a vector
potential in a long circular cylinder containing a spher-
ical or a spheroidal obstacle has been investigated by
Smythe [1, 2]. The problem of flow around a sphere
in a tube has been also investigated by others [3, 4].
However, relatively sparse attention has been paid to
the solution concerning a triaxial ellipsoidal obstacle,
as a special case of which the analysis on spheres or
spheroids can be dealt. Motion of a viscous liquid past
an ellipsoid in an unbounded space was however inves-
tigated by Venkates [5].

In more recent years, numerical studies on the
motion of an ellipsoid in a circular tube have appeared.
Sugihara-Seki [6] studied numerically the motions of
an ellipsoidal particle in a tube flow. She used a finite-
element method to solve the Stokes equations for flow
around a spheroid placed at various positions in the
tube. The instantaneous velocity was used to compute
the particle trajectories. Swaminathan et al. [7] have
used direct numerical simulations to investigate the
motion of an ellipsoid settling in an infinitely long

circular tube, under the influence of gravity, at low and
intermediate Reynolds numbers. They examined the is-
sue of damping of the oscillatory motion for different
cases of particle inertia.

Information on the potential flow around an ellip-
soid will be of value to the circumstances that occur
in a wind tunnel, to a circular cylindrical flow with
bubbles or to an electrical flow in a circular cylindri-
cal conductor with defects that can be approximated
by a triaxial ellipsoid.

Applications of the study on such flow can be made
in a broad range of biological and engineering fields;
examples include flow due to the motion of proteins
in various biomedical applications and transport of en-
capsuled solid matter in pipelines.

In this paper, we derive the solution of the problem
determining the distribution of the potential in a long
circular cylinder containing a triaxial ellipsoid whose
center coincides with that of the cylinder when the flow
is uniform at a large distance from the ellipsoid. We
assume that the fluid is incompressible and viscous. In
more recent years, the present author has considered
the same problem for the spheroid [8].

In Section 2, by the use of the field equations and
employing Fourier transform, the boundary integro-
differential equation is derived in which the un-
known function is subsequently solved by the Galerkin
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method. In Section 3, some numerical examples are
given.

2. Derivation of the Integro-Differential Equation

In this section we consider the Stokes problem when
the fluid is viscous. Consider a circular cylinder of the
radius h having an ellipsoid whose semi-axes are a,b,
and c. We take the center of the ellipsoid and the cylin-
der as the origin of the Cartesian coordinates, and the
x,y- and z-axis along the semi-axes of the ellipsoid,
respectively, then the ellipsoid occupies the region V
which is governed by the equation x2

a2 + y2

b2 + z2

c2 ≤ 1.
The surface of the ellipsoid is denoted by S. We shall
also use cylindrical coordinates (r,θ ,z) which are con-
nected to the Cartesian coordinates by

x = r cosθ , y = r sinθ , z = z.

Let the velocity of the flow at large distances from the
ellipsoid be v0.

The fluid velocity v and the pressure p satisfy the
Stokes equation and the continuity equation:

∇p = µ∇
2v, (1)

∇ ·v = 0, (2)

where µ is the coefficient of viscosity. Let v =
(ux,uy,uz) be the velocity components in Cartesian co-
ordinates. If we choose the velocity components as

ux = 2Bx−
∂Φ

∂x
+

∂Ω

∂y
, uy = 2By−

∂Φ

∂y
− ∂Ω

∂x
,

uz = 2Bz−
∂Φ

∂ z
,

(3)

where Φ is defined by

Φ = B0 + xBx + yBy + zBz

with B0,Bx,By,Bz, and Ω being the harmonic func-
tions, we see that (1) and (2) are satisfied by

p = 2µ

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂ z

)
. (4)

The suitable functions for the problem are

Bx =
∞

∑
m=0

∫
∞

−∞

Am(ξ )Im+1(ξ r)e−iξ zdξ cos(m+1)θ ,

(5)

By =
∞

∑
m=0

∫
∞

−∞

Am(ξ )Im+1(ξ r)e−iξ zdξ sin(m+1)θ ,

(6)

Bz =
{

1− 1
2

(
x

∂

∂x
+ y

∂

∂y
+ z

∂

∂ z

)}∫
V

a(u)dv
R(x−u)

, (7)

B0 =
∂

∂ z

∫
V

b(u)dv
R(x−u)

(8)

+
∞

∑
m=0

∫
∞

−∞

Bm(ξ )hIm(ξ r)e−iξ zdξ cosmθ − v0z
2

,

Ω =
∞

∑
m=1

∫
∞

−∞

Cm(ξ )hIm(ξ r)e−iξ zdξ sinmθ

+
1
h

∫
V

c(u)dv
R(x−u)

(1−δm,0),
(9)

where

R(x−u) =
√

(x−u)2 +(y− v)2 +(z−w)2

and Im(x) is the modified Bessel function of the first
kind, u = (u,v,w), dv is used for dudvdw, and δm,0 is
a Kronecker delta.

Let (ur,uθ ,uz) be the velocity components in cylin-
drical coordinates. The velocity at the tube wall is zero:

ur = 0, (10a)

uθ = 0, (10b)

uz = 0. (10c)

Boundary condition (10a) can be written in an alterna-
tive form as

F [ur(h,θ ,z);z→ ξ ] = 0,

where F means the Fourier transform.
We make use of the known integral in Erdélyi

et al. [9]∫
∞

0

cos(ξ z)dz√
(x−u)2 +(y− v)2 + z2

= K0

(
ξ

√
(x−u)2 +(y− v)2

) (11)

and

K0

(
ξ

√
(x−u)2 +(y− v)2

)
= K0

(
ξ{r2 + r′2−2rr′ cos(θ −θ

′)}
1
2
)

= I0(ξ r<)K0(ξ r>)

+2
∞

∑
m=1

cos{m(θ −θ
′)}Im(ξ r<)Km(ξ r>),

(12)
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where r< = min(r,r′),r> = max(r,r′), K0,Km are the
modified Bessel functions of the second kind, and we
have set

u = r′ cosθ
′, v = r′ sinθ

′. (13)

We obtain following relation for solving unknown
Am(ξ ), Bm(ξ ), and Cm(ξ ):

{Im+1(ξ h)−ξ hI′m+1(ξ h)}Am(ξ )

−ξ hI′m(ξ h)Bm(ξ )+mIm(ξ h)Cm(ξ )

=
1

πiζ

∫
V

a(u)eiwξ

[
Km(|ζ |)
Im(ζ )

{
F(ξ ,r′,w)[ζ Im+1(ζ )

+mIm(ζ )]+ f (ξ ,r′,w)[−(m+2)ζ Im+1(ζ )

+(ζ 2−2m)Im(ζ )]
}

(14)

− F(ξ ,r′,w)− (2+m) f (ξ ,r′,w)
Im(|ζ |)

]
cosmθ

′dvεm

+
1
πi

ξ

∫
V

b(u)eiwξ |ξ |K′m(|ζ |)Im(|ξ |r′)cosmθ
′dvεm

− m
πh2

∫
V

c(u)eiwξ Km(|ζ |)Im(|ξ |r′)sinmθ
′dvεm,

where ζ = ξ h and

F(ξ ,r′,w) =
1
2

[
{2(3+m)(1+m)

+ξ
2(r′2−w2)}Im(|ξ |r′)+(5+m)|ξ |r′Im+1(|ξ |r′)

+ iwξ{3(2+m)Im(|ξ |r′)+2Im+1(|ξ |r′)|ξ |r′}
]

f (ξ ,r′,w) =
1
2
{3Im(|ξ |r′)+ |ξ |r′I′m(|ξ |r′)

+ iwξ Im(|ξ |r′)},

εm =

{
1, if m = 0

2, otherwise.

The condition (10b) can be alternatively written as

F [uθ (h,θ ,z);z→ ξ ] = 0

from which we obtain another relation to solve the un-
knowns Am(ξ ), Bm(ξ ), and Cm(ξ ):

Am(ξ )Im(ζ )(m+2)+mBm(ξ )Im(ζ )−ζ I′m(ζ )Cm(ξ )

=− m
πiζ

∫
V

a(u)eiwξ

[
Km(|ζ |)F(ξ ,r′,w)

+ f (ξ ,r′,w)Km(|ζ |)
(

ζ Im+1(ζ )
Im(ζ )

−2

)
(15)

− f (ξ ,r′,w)
Im(|ζ |)

]
cosmθ

′dvεm

− m
πih

∫
V

b(u)eiwξ
ξ Km(|ζ |)Im(|ξ |r′)cosmθ

′dvεm

+
1

πh

∫
V

c(u)eiwξ |ξ |K′m(|ζ |)Im(|ξ |r′)sinmθ
′dvεm.

The condition (10c) can be alternatively written as

F [uz(h,θ ,z);z→ ξ ] = 0

from which we obtain another relation to solve un-
known Am(ξ ) and Bm(ξ ):

ζ Im+1(ζ )Am(ξ )+ζ Im(ζ )Bm(ξ )

=− 1
πi

∫
V

a(u)eiwξ

[
Km(|ζ |)F(ξ ,r′,w)

+ f (ξ ,r′,w)
(

Im+1(ζ )
Im(ζ )

ζ Km(|ζ |)− 1
Im(|ζ |)

)]
· cosmθ

′dvεm−
1
πi

ξ
2
∫

V
b(u)eiwξ Km(|ζ |)Im(|ξ |r′)

· cosmθ
′dvεm + i

v0

2
δ (ξ ), (16)

where δ (ξ ) is the Dirac delta function, and we have
used the known relation

1
π

∫
∞

0
cosξ zdz = δ (ξ ).

Therefore if we solve (14), (15), and (16) simultane-
ously for Am(ξ ), Bm(ξ ), and Cm(ξ ), we obtain follow-
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ing equations:

Am(ξ ) =− 1
πi

[∫
V

a(u)
{

F(ξ ,r′,w)
∆m(ζ )Im(|ζ |)

ζ Im(ζ )I′m(ζ )

+ f (ξ ,r′,w)

·
(

Gm(ζ )− 2(m+1)ζ Im(ζ )I′m(ζ )
∆m(ζ )Im(|ζ |)

)}
eiξ w cosmθ

′dv

+
ξ 2ζ I′m(ζ )

∆m(ζ )

∫
V

b(u)Im(ξ r′)eiξ w cosmθ
′dv
]

εm

− mζ Im(ζ )
π∆m(ζ )h2

∫
V

c(u)Im(ξ r′)eiξ w sinmθ
′dvεm

− δ (ξ )ζ 2I2
1 (ζ )v0

2i∆0(ζ )
δm,0, (17)

where

∆m(ζ ) = 2mζ I2
m(ζ )Im+1(ζ )+ζ

2I′m(ζ )

· {Im(ζ )Im+1(ζ )2(m+1)−ζ (I2
m(ζ )− I2

m+1(ζ ))},

Gm(ζ ) =
Km(|ζ |)
Im(ζ )

− ζ Im+1(ζ )
∆mIm(|ζ |)

{ζ Im+1(ζ )+mIm(ζ )},

and

Bm(ξ ) =− 1
πi

[∫
V

a(u)
{

1
ζ

Gm(ζ )F(ξ ,r′,w)

− f (ξ ,r′,w)
∆m(ζ )Im(|ζ |)

[2mIm+1(ζ )

−ζ
2I′m(ζ )]Im(ζ )

}
eiξ w cosmθ

′dvεm

+Gm(ζ )
ξ

h

∫
V

b(u)Im(|ξ |r′)eiξ w cosmθ
′dvεm

]
+

ζ m
πh2 Im+1(ζ )

∫
V

c(u)Im(ξ r′)eiξ w sinmθ
′dvεm

+
δ (ξ )ζ 2I1(ζ )I2(ζ )v0

2i∆0(ζ )
δm,0,

(18)

and

Cm(ξ ) =− 2
πiζ

∫
V

a(u)
{

F(ξ ,r′,w)
∆m(ζ )Im(|ζ |)

·ζ Im+1(ζ )Im(ζ )+ f (ξ ,r′,w)

·
(

Gm(ζ )− (m+2)ζ Im+1(ζ )Im(ζ )
∆m(ζ )Im(|ζ |)

)}
eiξ wcosmθ

′dvεm

− 2ξ 2Im+1(ζ )
∆m(ζ )πi

∫
V

b(u)Im(ξ r′)eiξ w cosmθ
′dvεm

−
(

Gm(ζ )− ζ{(m+2)Im+1(ζ )−ζ Im(ζ )}Im(ζ )
∆m(ζ )Im(|ζ |)

)
1

πh2

·
∫

V
c(u)Im(|ξ |r′)eiξ w sinmθ

′dvεm. (19)

The velocity components (ux,uy,uz) are zero on the
surface of the ellipsoid. Thus if we substitute the value
of Am(ξ ), Bm(ξ ), and Cm(ξ ) given by (17), (18), and
(19) into Bx,By, and B0 in (5), (6), (8), and (9), we ob-
tain following three conditions:

ux = 2
∞

∑
m=0
Bm cos(m+1)θ − ∂Φ

∂x
+

∂Ω

∂y
= 0,

(x,y,z) ∈ S,

(20)

uy = 2
∞

∑
m=0
Bm sin(m+1)θ − ∂Φ

∂y
− ∂Ω

∂x
= 0,

(x,y,z) ∈ S,

(21)

uz = 2L
∫

V

a(u)dv
R(x−u)

− ∂Φ

∂ z
+ v0

(
1− r2

h2

)
= 0,

(x,y,z) ∈ S,

(22)

where

Bm =− 2
π

εm

[∫
V

a(u)cosmθ
′
∫

∞

0

{
F1(ξ ,r′,w,z)

· ζ Im+1(ζ )+mIm(ζ )
∆m(ζ )

+F2(ξ ,r′,w,z)

·
(

Gm(ζ )− 2(m+1)ζ I′m(ζ )
∆m(ζ )

)}
Im+1(ξ r)dξ dv

+
∫

V
b(u)cosmθ

′
∫

∞

0

ζ Im+1(ζ )+mIm(ζ )
∆m(ζ )

· Im(ξ r′)Im+1(ξ r)ξ 2 sinξ (w− z)dξ dv

+
m
h2

∫
V

c(u)sinmθ
′
∫

∞

0

ζ Im(ζ )
∆m(ζ )

· Im(ξ r′)Im+1(ξ r)cosξ (w− z)dξ dv
]

(23)

with

F1(ξ ,r′,w,z) =ℜF(ξ ,r′,w)sinξ (w− z)

+IF(ξ ,r′,w)cosξ (w− z),

F2(ξ ,r′,w,z) =ℜ f (ξ ,r′,w)sinξ (w− z)

+I f (ξ ,r′,w)cosξ (w− z),

L= 1− 1
2

(
x

∂

∂x
+ y

∂

∂y
+ z

∂

∂ z

)
,
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and

Φ =− 2
π

∞

∑
m=0

cosmθεm

[∫
V

a(u)cosmθ
′

·
∫

∞

0

1
ξ

(
F1(ξ ,r′,w,z)

{
Gm(ζ )Im(ξ r)+

ξ rIm+1(ξ r)
∆m(ζ )

· (ζ Im+1(ζ )+mIm(ζ ))
}

+F2(ξ ,r′,w,z)

·
{(

Gm(ζ )− 2(m+1)ζ I′m(ζ )
∆m(ζ )

)
ξ rIm+1(ξ r)− ζ

∆m(ζ )

· [(2m−ζ
2)Im+1(ζ )−mζ Im(ζ )]Im(ξ r)

})
dξ dv

+
∫

V
b(u)cosmθ

′
∫

∞

0

{
Gm(ζ )Im(ξ r)

+
ξ rIm+1(ξ r)

∆m(ζ )
ζ I′m(ζ )

}
Im(ξ r′)ξ sinξ (w− z)dξ dv

+
m
h

∫
V

c(u)sinmθ
′
∫

∞

0
{Im(ζ )ξ rIm+1(ξ r)

−ζ Im+1(ζ )Im(ξ r)} 1
∆m(ζ )

Im(ξ r′)cosξ (w− z)dξ dv
]

+ zL
∫

V

a(u)dv
R(x−u)

+
∂

∂ z

∫
V

b(u)dv
R(x−u)

, (24)

and

Ω =− 2
π

∞

∑
m=1

εm sinmθ

[∫
V

a(u)cosmθ
′

·
∫

∞

0

2
ξ

{
F1(ξ ,r′,w,z)

ζ Im+1(ζ )
∆m(ζ )

+F2(ξ ,r′,w,z)

·
(

Gm(ζ )− (m+2)Im+1(ζ )
∆m(ζ )

)}
Im(ξ r)dξ dv

+
∫

V
b(u)cosmθ

′
∫

∞

0

2ζ Im+1(ζ )
∆m(ζ )

· Im(ξ r′)Im(ξ r)ξ sinξ (w− z)dξ dv+
1
h

∫
V

c(u)sinmθ
′

·
∫

∞

0

(
Gm(ζ )− ζ{(m+2)Im+1(ζ )−ζ Im(ζ )}

∆m(ζ )

)
· Im(ξ r′)Im(ξ r)cosξ (w− z)dξ dv

]
+

1
h

∫
V

c(u)dv
R(x−u)

(1−δm,0). (25)

Of interest is the case when the radius of the cylinder
tends to infinity. All terms involving h vanish, and per-
tinent functions for the solution are constants. So

a(u) = a1, b(u) = b1 (say).

The following formula is useful:∫
V

dv
R(x−u)

(26)

= πabc
∫

∞

λ

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds

∆(s)
,

where ∆(s) =
√

(a2 + s)(b2 + s)(c2 + s) and λ is the
greatest root of

1− x2

a2 +λ
− y2

b2 +λ
− z2

c2 +λ
= 0.

Then from (26) we find that

Φ = πza1χ−2πzb1γ,

where

χ = abc
∫

∞

λ

ds
∆(s)

, γ = abc
∫

∞

λ

ds
(c2 + s)∆(s)

. (27)

Then conditions (20) and (21) require[
−a1

dχ

dλ
+2b1

dγ

dλ

]
λ=0

= 0, or −a1 +2
b1

c2 = 0.

With the help of this relation, the condition uz = 0 re-
duces to

v0 +(a1χ0 +2b1γ0)π = 0, (28)

where the suffix denotes that the lower limit in the in-
tegrals (27) is to be replaced by zero. Hence,

b1 =
1
2

a1c2, a1 =− v0

π(χ0 + γ0c2)
.

This is in agreement with Lamb [10].
Equations (20)–(22) are solved by the Galerkin

method. For this, following formulae [11] along with
(26) are useful:∫

V

vwdv
R(x−u)

= b2c2
πabcyz

·
∫

∞

λ

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
· ds√

(a2 + s)(b2 + s)3(c2 + s)3
,

∫
V

w2dv
R(x−u)

= πabc

·
∫

∞

λ

{
c2s

4(c2 + s)
ω

2(s)− c4z2

(c2 + s)2 ω(s)
}

ds
∆(s)

,

(29)
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where

ω(s) =
x2

a2 + s
+

y2

b2 + s
+

z2

c2 + s
−1.

We also need to evaluate following integral:

I`,m,n =
∫

∞

0

1
(a2 + s)`(b2 + s)m(c2 + s)n

ds
∆(s)

. (30)

To evaluate (30), we let

s = (a2− c2)sn−2u

and use the following identities for the Jacobian elliptic
functions:

k2sn2u+dn2u = 1, sn2u+ cn2u = 1,

and

k =

√
a2−b2

a2− c2 , k′2 = 1− k2.

So∫
∞

0

1
(a2 + s)`(b2 + s)m(c2 + s)n

ds
∆(s)

=
2

(a2− c2)`+m+n+ 1
2

∫ F

0

sn2`+2m+2nudu

dn2mu cn2nu
,

(31)

where

F =
∫

θ

0
(1− k2 sin2 u)−

1
2 du,

θ = sin−1
(√

a2− c2

a

)
.

(32)

The integral on the right-hand side of (31) is

L`,m,n =
∫ F

0

sn2`+2m+2nudu

dn2mu cn2nu

=
1

k′2`+2m+2n

`+m+n

∑
j=0

(−1) j
(

`+n+m
j

)
·
∫ F

0
dn2`+2n−2 ju nc2n−2 judu,

(33)

where we used

sn2u =
dn2u− cn2u

k′2
, ncu =

1
cnu

.

Further,

L`,m,n =
1

k′2`+2m+2n

[`+n

∑
j=0

(−1) j
(

`+n+m
j

)
·
∫ F

0
(k′2 + k2cn2u)`+n− jnc2n−2 judu

+
`+m+n

∑
j=`+n+1

(−1) j
(

`+n+m
j

)
·
∫ F

0
nd2 j−2`−2nu

(
dn2u − k′2

k2

) j−n

du

]
,

(34)

where we used

dn2u = k′2 + k2cn2u, ndu =
1

dnu
.

Expanding the powered terms by using the binomial
expansion, we find

L`,m,n =
1

k′2`+2m+2n

[
`+n

∑
j=0

`+n− j

∑
i=0

(−1) j
(

`+n+m
j

)

·
(

`+n− j
i

)
k′2ik2`+2n−2 j−2iC2`−2i

+
`+m+n

∑
j=`+n+1

j−n

∑
i=0

(−1) j+i
(

`+n+m
j

)(
j−n

i

)

· k′2ik2n−2kG2`−2i

]
, (35)

where

C2n =
∫ F

0
cn2nu du, G2n =

∫ F

0
dn2nu du.

We find the following reduction formula for C2n in
Byrd and Friedman [12, p. 194]:

C2n+2 = (36)

2n(2k2−1)C2n +(2n−1)k′2C2n−2 + snFdnFcn2n−1F
(2n+1)k2 .

If `− i < 0, we find C−2n = D2n, where

D2n+2 = (37)

(2n−1)k2D2n−2 +2n(1−2k2)D2n + tnFdnFnc2nF
(2n+1)k′2

.
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Also we have following reduction formula for G2n:

G2n+2 = (38)

k2dn2n−1FsnFcnF+(1−2n)k′2G2n−2+2n(2− k2)G2n

(2n+1)
.

If `− i < 0, we find G−2n = I2n, where

I2n+2 = (39)

2n(2− k2)I2n +(1−2n)I2n−2− k2snFcnFnd2n+1F

(2n+1)k′2
.
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Fig. 1. Variation of the pressure on the sur-
face of the spheroid; a = b = 5 cm, c =
3 cm.
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Fig. 2. Variation of the pressure on the sur-
face of the ellipsoid; a = 5 cm, b = 4 cm,
c = 3 cm.

Thus, finally we see that one needs the following
starting values for evaluating the general terms of
C2n,D2n,G2n, and I2n:

C0 = D0 = F, C2 =
1
k2 [E− k′2F ],

D2 =
1

k′2
[k′2F−E +dnF tnF ],

where E is the elliptic integral of the second kind of
modulus k and argument θ given in (32) and

G0 = I0 = F, G2 = E, I2 =
1

k′2
[E− k2snFcdF ]
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variation of pressure w.r.t. h
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Fig. 3. Variation of the pressure on the sur-
face of the ellipsoid at z =−3 cm with re-
spect to h; a = 5 cm, b = 4 cm, c = 3 cm.

and

snF =

√
a2− c2

a
, cnF =

c
a
, dnF =

b
a
.

3. Numerical Examples

In this section, we present some numerical exam-
ples. In Figure 1 we present the variation of p/2µ with
respect to z on the surface of the spheroid when x = 0
with a = b = 5 cm and c = 3 cm, and on Figure 2 the
pressure on the surface of a triaxial ellipsoid when a =

5 cm, b = 4 cm, and c = 3 cm is computed. We choose
v0 = 1 cm/s. On Figure 3 we present the variation of
p/2µ on the surface of the ellipsoid with respect to h.

4. Conclusion

We have presented the solution of a viscous fluid
flow around a triaxial ellipsoid in a circular tube. This
solution agrees with the published accounts when the
radius of the cylinder approaches to infinity. Judging
from the results for the infinite medium, the solution
appears to be correct.
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