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The low-dimensional Gross–Neveu models are studied. For the systems, related to the Lie algebras
so(4), so(5), sp(4), sl(3), we prove that they have Birkhoff-Gustavson normal forms which are inte-
grable and non-degenerate in Kolmogorov–Arnold–Moser (KAM) theory sense. Unfortunately, this
is not the case for systems with three degrees of freedom, related to the Lie algebras so(6) ∼ sl(4),
so(7), sp(6); their Birkhoff–Gustavson normal forms are proven to be non-integrable in the Liouville
sense. The last result can easily be extended to higher dimensions.
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1. Introduction and Motivation

The Gross–Neveu models are Hamiltonian systems
related to the root systems of simple Lie algebras:

H =
1
2
(y,y)+∑

α

exp[(α,x)], (1)

where x = (x1, . . . ,xn) and y = (y1, . . . ,yn) are the
canonical coordinates in R2n, ( , ) denotes the standard
inner product, and α is a root of a simple Lie algebra g.
The sum is extended over the entire root system of g or
over its appropriate subspace, depending on the model.

Such models are considered by Shankar [1] in his
research on the Gross–Neveu model [2] in the two-
dimensional field theory. As a matter of fact, the phys-
ical Gross–Neveu model describing a set of fermionic
fields with the local quartic interaction is related to
the Lie algebra o(2n) for small n, but Shankar raised
the question about integrability for all simple Lie al-
gebras. So, the Hamiltonian systems (1) are known as
Gross–Neveu models. To mention only such kind of
systems with exponential interactions, defined by sim-
ple Lie algebras, appeared in investigations in two-
dimensional classical and quantum field theories and
statistical physics.

The Hamiltonian functions (1), related to the root
systems of the classical simple Lie algebras so(2n),
so(2n+1), sl(n+1), sp(2n) are of kind

Hg =
1
2

N

∑
i=1

y2
i +Vg(x),

where N = n + 1 for sl(n + 1) and N = n for the re-
maining algebras, and the potential Vg has the form

Vso(2n) =
N

∑
i, j=1, i> j

(
exi+x j + e−(xi+x j)

)
+

N

∑
i, j=1,i 6= j

exi−x j ,

Vso(2n+1) =
N

∑
i=1

(exi + e−xi)

+
N

∑
i, j=1, i> j

(
exi+x j + e−(xi+x j)

)
+

N

∑
i, j=1, i 6= j

exi−x j ,

Vsl(n+1) =
N

∑
i, j=1, i 6= j

exi−x j ,

Vsp(2n) =
N

∑
i=1

(e2xi + e−2xi)

+
N

∑
i, j=1, i> j

(
exi+x j + e−(xi+x j)

)
+

N

∑
i, j=1, i 6= j

exi−x j .

Except the Hamiltonian H, we have an obvious first
integral only for the case of sl(n + 1), namely ∑yi =
const. Hence, the Gross–Neveu model for sl(2) is in-
tegrable. It turns out that the model for so(4) is also
integrable. The Hamiltonian systems for the remain-
ing cases are non-integrable, more precisely the Hamil-
tonian systems with two and three degrees of free-
dom were proven to be non-integrable by Horozov [3]
with a modification of Ziglin’s method [4] while the
rest were proven to be non-integrable by Maciejewski
et al. [5] with the differential Galois theory approach.
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A motivation for this work is a series of papers of
Rink [6, 7] who presented the famous Fermi-Pasta-
Ulam (FPU) system as a perturbation of one integrable
and KAM non-degenerate system, namely the normal
form of order four in the vicinity of an equilibrium.
Non-degenerate in KAM theory sense integrable sys-
tem means that its frequency map is a local diffeomor-
phism (see Sect. 2 for more details).

Our aim is to check whether this fact is true for
the Gross–Neveu models. Unfortunately, this is not the
case for the Gross–Neveu models with exceptions of
the two degrees of freedom cases.

Before giving the corresponding assertions, we
shall remind briefly some facts about normal forms.
Consider the Hamiltonian system with a Hamilto-
nian H(x,y). In the neighbourhood of the equilibrium
(x,y) = (0,0), we have the following expansion of H:

H = H2 +H3 +H4 + . . . , H2 =∑ω j
(
x2

j +y2
j

)
, ω j > 0.

(2)

The frequencies ω1, . . . ,ωn are said to be in reso-
nance if there exist k j ∈ Z, j = 1, . . . ,n such that
∑k jω j = 0,k = ∑ |k j| being the order of resonance.
With the help of a near-identity canonical transforma-
tion (in fact a series of canonical transforms), H is
simplified. This simplified Hamiltonian in the non-
resonant case is called a Birkhoff normal form. When
resonances appear, the corresponding normal form is
called a Birkhoff-Gustavson normal form. To avoid the
problem of convergency, one can consider a Hamilto-
nian system which is truncated to some order normal
form,

H̄ tr = H2 + . . .+Hm.

It is known that the truncated form to any order
Birkhoff normal form of a system without resonance
is integrable [8]. The truncated Birkhoff-Gustavson
normal form has at least two integrals, H2 and H̄ tr.
Hence, truncated normal forms of Hamiltonian sys-
tems with two degrees of freedom are integrable. It is
natural to raise the question about the integrability in
truncated Birkhoff-Gustavson normal forms in more
degrees of freedom. The exact integrals for the nor-
mal form H̄ tr, when appear, are approximate (asymp-
totic) integrals for the original system, i.e. if the nor-
mal form is integrable then the original system is
called near integrable. More details can be found in
Verhulst [9].

Our results are presented in the following theorems.

Theorem 1. The Hamiltonian systems, corresponding
to the Gross–Neveu models for algebras so(4), so(5),
sp(4), sl(3) have Birkhoff-Gustavson normal forms
H̄ tr = H2 +H4 integrable and non-degenerate in KAM
theory sense.

Theorem 2. The Hamiltonian systems, corresponding
to the Gross–Neveu models for so(6) ∼ sl(4), so(7),
sp(6) have non-integrable Birkhoff-Gustavson normal
forms H̄ tr = H2 +H4.

One should note that the results are not surprising.
The Hamiltonian systems for Gross–Neveu models
enjoy 1 : 1 : . . . : 1 resonance, as well as many symme-
tries. Due to these symmetries there are no third-order
resonant terms in the truncated form up to order four
Hamiltonians. In the two degrees of freedom cases,
where these truncations are integrable, it is natural to
expect non-degeneracy. From the other side, appar-
ently this resonance and the symmetries are not suf-
ficient to assure integrability in the systems with more
degrees of freedom as in the case of FPU chains, which
is indeed very rare.

The paper is organized as follows. In Section 2
we briefly recall some definitions and results on in-
tegrability of real and complex Hamiltonian systems.
The proof of Theorem 1 is presented in Section 3.
The systems are naturally divided in two parts. In the
first part the integrals are quadratic and in the second
part integrals are quartic. Thus, we need different ap-
proaches. In Section 4 we prove Theorem 2. The proof
is based on Morales-Ramis theory using Differential
Galois groups of the linearized system along a partic-
ular solution. In fact, we explore only the monodromy
group and prove that it is non-Abelian. As it is con-
tained in the differential Galois group, the result fol-
lows from Morales-Ramis theorem. We study the so(6)
model in details and give the main points for the other
cases so(7) and sp(6).

2. Theory

In this section we summarize briefly some results on
integrability of Hamiltonian systems in real and com-
plex domains.

First, we consider the real case. Let (M2n,ω) be
a 2n-dimensional symplectic manifold and let H be
a Hamiltonian function on M2n defining the corre-
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sponding Hamiltonian system

ẋ = XH(x). (3)

An Hamiltonian system is integrable if there exist n
independent integrals F1 = H,F2, . . .,Fn in involution,
namely {Fi,Fj} = 0 for all i and j, where {,} is
the Poison bracket [8]. On a neighbourhood U of the
connected compact level sets of the integrals Mc =
{Fj = c j, j = 1, . . .,n} by Liouville-Arnold theorem
one can introduce a special set of symplectic coordi-
nates, I j,ϕ j, called action-angle variables. Then, the
integrals F1 = H,F2, . . .,Fn are functions of action vari-
ables only and the flow of XH is described by the
canonical equations

İ j = 0, ϕ̇ j =
∂H
∂ I j

, j = 1, . . .,n. (4)

Therefore, near Mc, the phase space is foliated with
XFi invariant tori over which the flow of XH is
quasi-periodic with frequencies (ω1(I), . . .,ωn(I)) =
( ∂H

∂ I1
, . . ., ∂H

∂ In
).

The map

(I1, I2, . . ., In)→
(

∂H
∂ I1

,
∂H
∂ I2

, . . .,
∂H
∂ In

)
(5)

is called frequency map.
Now, consider a small perturbation of an integrable

Hamiltonian H0

H = H0(I)+ εH1(I,ϕ), ε � 1.

A natural question is whether this small perturbation
destroy the quasi-periodic motions of the unperturbed
system. KAM-theory [10 – 12] gives conditions for the
integrable system H0 which ensures the survival of
the most of the invariant tori. One condition, usually
called Kolmogorov’s condition, is that the frequency
map should be a local diffeomorphism, that is

det

(
∂ 2H0

∂ Ii∂ I j

)
6= 0, (6)

on an open and dense subset of U . We should note that
the measure of the surviving tori decreases with the
increase of both perturbation and the measure of the
set where above Hessian is too close to zero.

Another condition of this type is the so called
Arnold-Moser condition of isoenergetical non-degen-

eracy. Let us fix an energy level H0 = h0. Define the
following map:

Fh0 : I→ (ω1(I) : ω2(I) : . . . : ωn(I)), (7)

forming the (n− 1)-dimensional variety H−1
0 (h0) into

the projective space P n−1. Then the system is isoener-
getically non-degenerate if the map Fh0 is a homeomor-
phism. Analytically this is equivalent to non-vanishing
of the following determinant:

D1 =

(
∂ 2H0/∂ I2 ∂H0/∂ I

∂H0/∂ I 0

)
. (8)

Of course, again the measure of the surviving tori de-
pends on the measure of the set where the determinant
D1 is too close to zero.

Before considering integrability in the complex set-
ting, let us recall the notion of monodromy. Given a lin-
ear non-autonomous system

ẋ = A(t)x, x ∈ Cn

with t defined on some Riemann surface Γ . Contin-
uation of the solutions along non-trivial loops on Γ

defines a linear authomorphism of the space of so-
lutions, called the monodromy transformation. Ana-
lytically, this transformation can be presented in the
following way: Let X(t) be a fundamental matrix so-
lution. The linear authomorphism ∆γ associated with
a loop γ ∈ π1(Γ , t0) corresponds to multiplication of
X(t) from the right by a constant matrix Mγ , called
monodromy matrix,

∆γ X(t) = X(t)Mγ .

The set of all these matrices form the monodromy
groupM.

Now, let us consider a complex analytic symplec-
tic manifold (M2n,ω) and a holomorphic Hamiltonian
system XH on it. Again we call such Hamiltonian sys-
tem integrable in Liouville sense if there exist n inde-
pendent first integrals F1 = H,F2, . . .,Fn in involution.
It is essential to have necessary conditions for inte-
grability or, equivalently, sufficient conditions for non-
integrability.

There are only few methods for proving non-
integrability, mainly based on a linearization of the
considered system around a particular solution. Let
z = z(t) be a solution (not equilibrium) of the Hamil-
tonian system and let Γ := {z = z(t)} be its integral
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curve. The variational equations (VE) corresponding
to z = z(t) are

η̇ =
∂XH

∂x
(z(t))η .

Reducing VE by the first integral dH, we get the so
called normal variational equations (NVE)

ξ̇ = A(t)ξ with dimension 2(n−1). (9)

In 1982 Ziglin proved the following result for inte-
grability of a complex-analytical Hamiltonian systems:

Theorem 3. ([4]) Suppose that a Hamiltonian system
has n first integrals, independent around Γ , but not
necessary on Γ . Suppose that there is a non-resonant
element g in the monodromy group of NVE. Then every
other element g′ of the monodromy group transforms
the set of eigendirections of g into itself.

Let us remind that g ∈ Sp(2n,C) (the monodromy
group is a subgroup of the symplectic group) is a reso-
nant if lr1

1 . . .lrn
n = 1, where ri are non-zero integers and

li are the eigenvalues of g.
Another method for proving non-integrability is

based on the differential Galois theory. The solutions
of (9) define an extension L1 of the coefficient field L of
NVE. This naturally defines a differential Galois group
G = Gal(L1/L). Then the following result is obtained:

Theorem 4. (Morales-Ramis [13]) Suppose that
a Hamiltonian system has n meromorphic first inte-
grals in involution. Then the identity component G0 of
the Galois group G = Gal(L1/L) is Abelian.

If once it is proven that G0 is not Abelian, then the
respective Hamiltonian system is non-integrable in the
Liouville sense. However, the fact that G0 is Abelian
doesn’t imply integrability. For more detailed descrip-
tion on differential Galois theory, as well as additional
facts and technical details, see [13, 14]. One should
note that by its definition the monodromy group is
contained in the differential Galois group of the corre-
sponding linear system. We will use only monodromy
here.

3. Proof of Theorem 1

In this section, we consider the Gross–Neveu mod-
els related to Lie algebras so(4), so(5), sp(4), sl(3)

referred to as low-dimensional Gross–Neveu models.
They correspond to some two degrees of freedom
Hamiltonian systems (sl(3) after reduction). These
systems near the origin can be considered as pertur-
bations of their normal forms which are integrable and
KAM-non-degenerate. These systems naturally fall in
two subclasses.

For the cases sl(3) and so(4) the second integral is
quadratic. This fact allows us to construct action-angle
variables explicitly following [7]. Hence, the corre-
sponding Hamiltonians of the normal forms are easily
expressed via action variables, which makes the verifi-
cation of Kolmogorov’s condition straightforward.

For the cases so(5) and sp(4) the second integral is
quartic. The expressions of the corresponding Hamil-
tonians of the normal forms via action variables are
not explicit. So, we adopt Horozov’s approach [15] for
verification of Kolmogorov’s condition in these cases.
We consider sl(3) and so(5) in details and give the key
points for the other cases.

3.1. sl(3)

The Gross–Neveu model related with sl(3) is actu-
ally a three degrees of freedom system described with
the Hamiltonian

H =
1
2

3

∑
j=1

y2
j +(ex1−x2 + e−x1+x2)+(ex2−x3 + e−x2+x3)

+(ex1−x3 + e−x1+x3). (10)

It is easy to check that the total momentum y1 + y2 +
y3 is conserved. Hence, the motion of the mass center
1
3 ∑

3
j=1 x j is linear and therefore unbounded.

In order to follow our aim, we reduce the Hamilto-
nian (10) to one with two degrees of freedom with the
help of the above integral. Let us perform the following
canonical transformation:

Q1 = x1− x2, Q2 = x2− x3, Q3 = x1 + x2 + x3,

P1 =
1
3
(2y1− y2− y3), P2 =

1
3
(y1 + y2−2y3),

P3 =
1
3
(y1 + y2 + y3).

In these coordinates (10) reads

H = P2
1 −P1P2 +P2

2 +
3
2

P2
3 +(eQ1 + e−Q1)

+(eQ2 + e−Q2)+
(
eQ1+Q2 + e−(Q1+Q2)).



472 O. Christov · Low-Dimensional Gross–Neveu Models

Hence, Q3 is cyclic and P3 is an integral. We leave out
P3 and denote by HR the reduced Hamiltonian

HR = P2
1 −P1P2 +P2

2 +(eQ1 + e−Q1)+(eQ2 + e−Q2)

+
(
eQ1+Q2 + e−(Q1+Q2)). (11)

The corresponding equations of motion are

Q̇1 = 2P1−P2, Ṗ1 = −
[
(eQ1 − e−Q1)

+
(
eQ1+Q2 − e−(Q1+Q2))],

Q̇2 = 2P2−P1, Ṗ2 = −
[
(eQ2 − e−Q2)

+
(
eQ1+Q2 − e−(Q1+Q2))].

The point (Q,P) = (0,0) is an equilibrium point. By
linearization about that point one gets

ξ̇1 = 2η1−η2, η̇1 =−4ξ1−2ξ2,

ξ̇2 = 2η2−η1, η̇2 =−2ξ1−4ξ2.

The eigenvalues of the linearized system are ±i
√

6,
±i
√

6 that is 1 : 1 resonance. Expanding HR about
(Q,P) = (0,0) and neglecting irrelevant additive con-
stant, we obtain

HR = P2
1 −P1P2 +P2

2 +2
(
Q2

1 +Q2
2 +Q1Q2

)
+

1
12

[
Q4

1 +Q4
2 +(Q1 +Q2)4]+O(||Q||6).

First, we diagonalize the quadratic part of the above
Hamiltonian via coordinate change,(

Q1

Q2

)
=

( √
3√
2

1√
2

−
√

3√
2

1√
2

)(
q1

q2

)
,(

P1

P2

)
=

(
1√
6

1√
2

− 1√
6

1√
2

)(
p1

p2

)
,

and then scale p j→ 4
√

6p j, q j→ q j/
4
√

6 to obtain

HR =
√

6
2

(
p2

1 + p2
2 +q2

1 +q2
2

)
+

1
16

(
q2

1 +q2
2

)2

+O(||q||6).

Next, we put

q j =
1
2
(z j +w j), p j =

1
2i

(z j−w j), j = 1,2. (12)

The resonant terms of order four are z2
1w2

1, z2
2w2

2, z2
1w2

2,
z2

2w2
1, z1w1z2w2. Since we are interested in the normal

form truncated up to order four, we just remove the
non-resonant terms and get

H̄ tr
R =
√

6
2

(z1w1 + z2w2)+2−7[3(z1w1 + z2w2)2

+(z1w2− z2w1)2]. (13)

It was mentioned earlier that the truncated normal form
has two integrals H2 = z1w1 + z2w2 and H̄ tr

R or equiva-
lently here H2 and BB = z1w2− z2w1.

The Hamiltonian H̄ tr
R (13) of the truncated up to or-

der four normal form and the quadratic integrals in
cartesian coordinates (q, p) take the form

H̄ tr
R =
√

6
2

(
p2

1 + p2
2 +q2

1 +q2
2

)
+

1
27

[
3
(

p2
1 + p2

2 +q2
1 +q2

2

)2−4(p1q2−q1 p2)2],
a =

1
2

(
p2

1 + p2
2 +q2

1 +q2
2

)
, b = p1q2−q1 p2.

In order to introduce action variables, we need to find
the set of regular values of the energy momentum map

EM : (p1, p2,q1,q2)→ (a,b).

This is already done in [7]. Denote by Ur = {(a,b) ∈
R2,a > 0, |b| < a}. Then for all (a,b) ∈Ur, the level
sets of EM−1(a,b) are diffeomorphic to two-tori.

Let arg : R2 \ {(0,0)} → R/2πZ be the argument
function arg(r cosΦ ,r sinΦ)→ Φ . Define the follow-
ing set of variables (a,b,Φ ,Ψ), a,b as above and

Φ =
1
2

arg(p2−q1, p1 +q2)

+
1
2

arg(−p2−q1, p1−q2),

Ψ =
1
2

arg(p2−q1, p1 +q2)

− 1
2

arg(−p2−q1, p1−q2).

These functions are well defined since (a,b)∈Ur. With
the formula darg(x,y) = xdy−ydx

x2+y2 one can verify that
the set (a,b,Φ ,Ψ) are canonical coordinates, actually
action-angle coordinates

dp1∧dq1 +dp2∧dq2 = da∧dΦ +db∧dΨ .

The truncated Hamiltonian H̄ tr
R is a function of actions

a,b

H̄ tr
R =
√

6a+2−5(3a2−b2). (14)



O. Christov · Low-Dimensional Gross–Neveu Models 473

Now, the non-degeneracy is straightforward

det

(
∂ 2H̄ tr

R

∂a∂b

)
= det

( 6
25 0
0 − 2

25

)
=−3.2−8 < 0.

3.2. so(4)

The Gross–Neveu model related with so(4) is a two
degrees of freedom system described with the Hamil-
tonian

H =
1
2

(
y2

1 + y2
2

)
+ ex1+x2 + e−x1−x2

+ ex2−x1 + ex1−x2 ,
(15)

which is integrable. The second integral is B =
(1/2)(y1 + y2)2 + 2(exp(x1 + x2) + exp(−x1 − x2)).
Nevertheless, we concentrate our attention on the trun-
cated normal form.

The corresponding equations of motion are

ẋ1 = y1, ẏ1 =−(ex1+x2 − e−x1−x2 − e−x1+x2 + ex1−x2),
ẋ2 = y2, ẏ2 =−(ex1+x2 − e−x1−x2 + e−x1+x2 − ex1−x2).

The point (x,y) = (0,0) is an equilibrium point. By
linearization about that point one gets

ξ̇i = ηi, η̇i =−4ξi, i = 1,2.

The eigenvalues of the linearized system are ±i2, ±i2
that is 1 : 1 resonance. Expanding H about (x,y) =
(0,0) and neglecting irrelevant additive constant, we
obtain

H =
1
2

(
y2

1 + y2
2

)
+2
(
x2

1 + x2
2

)
+

1
6

(
x4

1 + x4
2 +6x2

1x2
2

)
+O(||x||6).

Further, we perform a canonical change of variables
y j =

√
2p j, x j = q j/

√
2, j = 1,2 to obtain

H = p2
1 + p2

2 +q2
1 +q2

2 +
1

24

(
q4

1 +q4
2 +6q2

1q2
2

)
+O(||q||6).

Next, we put as usual (12). The resonant terms of order
four are already known from the previous subsection.
Since we are interested in the normal form truncated up
to order four, we just remove the non-resonant terms
and get

H̄ tr = z1w1 + z2w2 +2−6[(z1w1 + z2w2)2

+(z1w2 + z2w1)2]. (16)

It was mentioned earlier that the truncated normal form
has two integrals H2 = z1w1 + z2w2 and H̄ tr or equiva-
lently here H2 and BB = z1w2 + z2w1.

The Hamiltonian H̄ tr (16) of the truncated up to or-
der four normal form and the quadratic integrals in
cartesian coordinates (q, p) take the form

H̄ tr = p2
1 + p2

2 +q2
1 +q2

2 +
1
26

[(
p2

1 + p2
2 +q2

1 +q2
2

)2

+4
(

p1 p2 +q1q2
)2]

,

a =
1
2

(
p2

1 + p2
2 +q2

1 +q2
2

)
, b = p1 p2 +q1q2.

As before for (a,b)∈Ur = {(a,b)∈R2,a > 0, |b|< a}
the level set of integrals is a torus and the following
functions are well defined:

Φ = − 1
2

arg(q1−q2, p1− p2)

− 1
2

arg(q1 +q2, p1 + p2),

Ψ =
1
2

arg(q1−q2, p1− p2)

− 1
2

arg(q1 +q2, p1 + p2).

One can verify that the set (a,b,Φ ,Ψ) are canoni-
cal coordinates, actually action-angle coordinates. The
truncated Hamiltonian H̄ tr is a function of actions a,b

H̄ tr = 2a+2−4(a2 +b2). (17)

Now, the non-degeneracy is immediate.

3.3. so(5)

The Gross–Neveu model related with so(5) is a two
degrees of freedom system described with the Hamil-
tonian

H =
1
2

(
y2

1 + y2
2

)
+ ex1 + e−x1 + ex2 + e−x2 + ex1−x2

+ e−(x1−x2) + ex1+x2 + e−(x1+x2). (18)

The corresponding equations of motion are

ẋ1 = y1, ẏ1 =−
(
ex1 − e−x1 + ex1−x2 − e−(x1−x2)

+ ex1+x2 − e−(x1+x2)),
ẋ2 = y2, ẏ2 =−

(
ex2 − e−x2 − ex1−x2 + e−(x1−x2)

+ ex1+x2 − e−(x1+x2)).
Recall that this system is not integrable [3, 5]. Clearly,
(0,0) is an equilibrium point. The eigenvalues of the
linearized system are ±i

√
6, ±i

√
6 , that is 1 : 1 res-
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onance. Expanded around (0,0), the Hamiltonian (18)
up to irrelevant constant reads

H =
1
2

(
y2

1 + y2
2

)
+3
(
x2

1 + x2
2

)
+

1
4

(
x4

1 + x4
2 +4x2

1x2
2

)
+O(||x||6).

Next, we scale x j = q j/
4
√

6,y j = p j
4
√

6, put as
usual (12), remove the non-resonant terms and get the
normal form up to order four:

H̄ tr =
√

6
2

(z1w1 + z2w2)+
1

3.26

[
3(z1w1 + z2w2)2

+
3
2
(z1w2 + z2w1)2 +

1
2
(z1w2−w1z2)2

]
. (19)

As we know, the truncated normal form is integrable
and the two integrals are H2 and H̄ tr or equivalently H2
and BB = 3(z1w2 + z2w1)2 +(z1w2−w1z2)2.

Next, we put

z j =
√

2a je
−iψ j , w j =

√
2a je

iψ j (20)

and after that, we perform the following canonical
change of variables:

J1 =
a1 +a2

2
, J2 =

a1−a2

2
,

χ1 = ψ1 +ψ2,χ2 = ψ1−ψ2

(21)

to obtain

H̄ tr = 2
√

6J1

+
1

24

[
6J2

1 +
(
J2

1 − J2
2

)
(2cos(2χ2)+1)

]
.

(22)

So, χ1 is a cyclic variable and J1 is a first integral. Note
that in these coordinates, the symplectic form is the
exact two-form dσ , where

σ = J1dχ1 + J2dχ2. (23)

In order to get rid of the linear term in Ĥ tr, we con-
tinue with the canonical transformation

J j→ J′j, χ1→ χ
′
1 +2
√

6t, χ2→ χ
′
2, H̄

tr→ H̄ ′
tr
.

To simplify the notations, we drop the primes and the
multiplier 1/24 and reach the Hamiltonian, we will
work with, as

H̄ tr = 6J2
1 +
(
J2

1 − J2
2

)
(2cos(2χ2)+1), (24)

which admits the integrals H̄ tr = h and F = J1 = f ≥ 0.

In order to construct the action variables, we need to
find the set of regular values of the energy momentum
map

EM : (J1,J2,χ1,χ2)→ (H̄ tr,F).

These turn out to be

Ur = Ur1∪Ur2, (25)

where Ur1 = {(h, f ) ∈ R2, f > 0,6 f 2 > h > 5 f 2} and
Ur2 = {(h, f ) ∈ R2, f > 0,9 f 2 > h > 6 f 2}. Moreover,
for each (h, f ) ∈Ur, the level set EM−1(h, f ) is a two-
torus Th, f .

Choose a basis γ1,γ2 of the homology group
H1(Th, f ,Z) with the following representatives. For γ1
we take the circle on Th, f defined by fixing χ2,J1 and
J2 and letting χ1 run through [0,2π]. For γ2 we fix χ1
and let J2,χ2 make one circle on the curve given by the
equation

6 f 2 +
(

f 2− J2
2

)
(2cos2χ2 +1) = h.

The corresponding action variables I j =
∫

γ j
σ , where σ

is the one-form (23), have the following form:

I1 = 2π f ,

I2 = 2
∫

χ
+
2

χ
−
2

√
f 2(2cos2χ2 +7)−h

2cos2χ2 +1
dχ2,

(26)

where χ
−
2 < χ

+
2 are the two roots of the equation

f 2− h−6 f 2

2cos2χ2 +1
= 0 in (0,π).

Put z = cos2χ2, |z| ≤ 1, y2 = (2z + 1)(1 − z2)
( f 2(2z+7)−h) and denote by γ an oval of the curve

Γh, f = {(y,z) ∈ C2 : y2 = (2z+1)(1− z2)

· ( f 2(2z+7)−h)}.

Then we have

ψ(h, f ) def= I2 =
∫

γ

ydz
(2z+1)(1− z2)

. (27)

Denote by H(I1, I2) the Hamiltonian of the truncated
normal form (24) expressed in action variables. Earlier
in [15] it was proven that

(2π)2(ψh)4 det

(
∂ 2H

∂ Ii∂ I j

)
= det

(
ψhh ψh f
ψ f h ψ f f

)
. (28)
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Since

ψh =−1
2

∫
γ

dz
y
6= 0 in Ur,

one can see that Kolmogorov’s condition is equivalent
to the condition that D = ψhhψ f f − (ψh f )2 6= 0. In the
following we will express D in terms of Abelian inte-
grals. Since we can homotope the curve γ to another
without changing ψ , it follows that we can take partial
derivatives under the integral sign. Denoting by E the
integral E =

∫
γ

(2z+1)(2z+7)(1−z2)
y3 dz we get successively

the following expressions for the derivatives of ψ:

ψhh =−1
4

∫
γ

(2z+1)(1− z2)
y3 dz, ψh f =

f
2

E,

ψ f f =−hE.

From here D becomes

D =
1
4

E

·
∫

γ

h(2z+1)(1− z2)− f 2(2z+1)(2z+7)(1− z2)
y3 dz

=
1
2

ψhE,

that is, D 6= 0↔ E 6= 0 in Ur. Note that

E =
2
f

ψh f =
2
f

∂

∂ f
ψh =− 1

f
∂

∂ f

(∫
γ

dz
y

)
. (29)

To show that E 6= 0, we first consider (h, f )∈Ur1. Then
z3 = 1

2 ( h
f 2 −7) ∈ (−1,−1/2) and∫

γ

dz
y

= 2
∫ z3

−1

dz√
4 f 2(z+1/2)(1− z2)(z− z3)

=
4

f
√

2(1− z3)
K

√3(z3 +1)
1− z3

 ,

(30)

where K(k) =
∫ 1

0
dz√

(1−z2)(1−k2z2)
is the complete ellip-

tic integral of first kind. By putting k =
√

3(z3+1)
1−z3

, k ∈

(0,1), we obtain that f =
√

h
3

√
k2+3
3k2+5

. Then (30) be-
comes∫

γ

dz
y

=
2√
h

√
3k2 +5K(k).

Therefore,

E =− 2

f
√

h

1
f ′(k)

∂

∂k

(√
3k2 +5K(k)

)
6= 0,

since K(k) is an increasing function in k.

Next, consider (h, f ) ∈ Ur2. In this case z3 ∈
(−1/2,1) and∫

γ

dz
y

= 2
∫ −1/2

−1

dz√
4 f 2(z+1/2)(1− z2)(z− z3)

=
4

f
√

6(1+ z3)
K

(√
1− z3

3(1+ z3)

)
.

(31)

Put k =
√

1−z3
3(1+z3) , k ∈ (0,1). Then, we obtain that f =√

h
3

√
3k2+1
5k2+3

. Thus, (31) reads∫
γ

dz
y

=
2√
h

√
5k2 +3K(k).

From this we get

E =− 2

f
√

h

1
f ′(k)

∂

∂k

(√
5k2 +3K(k)

)
6= 0

due to above mentioned arguments.

3.4. sp(4)

The Gross–Neveu model related with sp(4) is a two
degrees of freedom system described with the Hamil-
tonian

H =
1
2

(
y2

1 + y2
2

)
+ e2x1 + e−2x1 + e2x2 + e−2x2

+ ex1−x2 + e−(x1−x2) + ex1+x2 + e−(x1+x2).
(32)

The equations of motion can be written in the stan-
dard way and one can obtain the eigenvalues of the
linearized equations about the equilibrium as ±i

√
12,

±i
√

12 that is they are in 1 : 1 resonance. After similar
transformations as in the previous cases, the truncated
up to order four normal form is

H̄ tr =
√

3(z1w1 + z2w2)+
1

3.26

[
9(z1w1 + z2w2)2

−3(z1w2 + z2w1)2 +4(z1w2−w1z2)2]. (33)

We know that the truncated normal form is integrable
and the two integrals are H2 and H̄ tr or equivalently H2
and BB =−3(z1w2 + z2w1)2 +4(z1w2−w1z2)2.

Performing consequently the changes of vari-
ables (20), (21) and removing the linear term, we re-
duce H̄ tr to a Hamiltonian with a cyclic variable

H̄ tr = 18J2
1 +
(
J2

1 − J2
2

)
(cos(2χ2)−7), (34)

which admits the integrals H̄ tr = h and F = J1 = f ≥ 0.
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The regular values of the energy momentum map-
ping here are

Ur = {(h, f ) ∈ R2, f > 0, 10 f 2 < h < 12 f 2}.

Then the corresponding action variables are

I1 = 2π f , I2 = 2
∫

χ
+
2

χ
−
2

√
h− f 2(cos2χ2 +11)

7− cos2χ2
dχ2,

(35)

where χ
−
2 < χ

+
2 are the two roots of the equation

h− f 2 (cos(2χ2)+11) = 0 in (0,π).

Now, we put z = cos2χ2, |z| ≤ 1,y2 = (7− z)(1−
z2)(h− f 2(z + 11)) and denote the oval of the curve
by γ:

Γh, f = {(y,z) ∈ C2 : y2 = (7− z)(1− z2)

· (h− f 2(z+11))}.

Then we have

ψ(h, f ) def= I2 =
∫

γ

ydz
(7− z)(1− z2)

. (36)

Since ψh = 1
2

∫
γ

dz
y 6= 0 in Ur from (28) it is seen

that in order to verify Kolmogorov’s condition, one
needs to show that the Hessian of the function ψ -
D = ψhhψ f f − (ψh f )2 is nonzero. We again express
the entries of D via Abelian integrals. Denote this time
E =

∫
γ

(z+11)(7−z)(1−z2)
y3 dz. Then

ψhh =−1
4

∫
γ

(7− z)(1− z2)
y3 dz,

ψh f =
f
2

E, ψ f f =−hE.

Hence,

D =
1
4

E

·
∫

γ

h(7− z)(1− z2)− f 2(z+1)(7− z)(1− z2)
y3 dz

=
1
4

E
∫

γ

dz
y

=
1
2

ψhE

and D 6= 0↔ E 6= 0. As before, E can be presented in
the following way

E =
2
f

ψh f =
1
f

∂

∂ f

∫
γ

dz
y

.

To show that E 6= 0, we consider (h, f )∈Ur. Then z2 =
h
f 2 −11 ∈ (−1,1) and

∫
γ

dz
y

= 2
∫ z2

−1

dz√
f 2(7− z)(1− z2)(z2− z)

=
2
√

2

f
√

7− z2
K

√3(z3 +1)
7− z2

 .

(37)

By putting k =
√

3(z2+1)
7−z2

,k ∈ (0,1) we obtain f =√
h
6

√
k2+3
3k2+5

. Then

E =
√

2

f
√

h

1
f ′(k)

∂

∂k

(√
3k3 +5K(k)

)
6= 0.

This completes the proof of Theorem 1.

Remark 1. The variables

W0 =
1
2
(z1w1 + z2w2), W1 =

i
2
(z1w2− z2w1),

W2 =
1
2
(z1w2 + z2w1), W3 =

1
2
(z2w2− z1w1)

are known as Hopf variables. They satisfy the rela-
tion W 2

1 +W 2
2 +W 2

3 = W 2
0 . In fact, every truncated nor-

malized Hamiltonian with two equal frequencies can
be written as a function of these variables [16]. See
also [17] for a nice geometrical treatment of some clas-
sical integrable systems using these variables.

Remark 2. Kummer [16], along his studies on peri-
odic solutions of Hamiltonians with two equal frequen-
cies, verifies Arnold-Moser’s condition. Let us show
how the condition (7) can be treated in these particu-
lar cases. For the cases sl(3) (reduced) and so(4) one
can obtain that the determinant D1 is not zero from the
Hamiltonians (14) and (17), respectively, since a,b are
the action variables. For the cases so(5) and sp(4) we
will show that the map (7) Fh, h = const. is regular in
Ur. Note that f can be taken as a coordinate on the set
h = const. in Ur, so Fh = Fh( f ). One can infer from [18]
that

Fh( f ) =− 1
2π

ψ f .

Hence, Fh is regular if ψ f f 6= 0 in Ur. But this is indeed
the case because ψ f f =−hE 6= 0.
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4. Proof of Theorem 2

In this section we consider the Hamiltonian sys-
tems with three degrees of freedom, describing the
Gross–Neveu models, corresponding to Lie algebras
so(6) ∼ sl(4), sp(6), and so(7). As it was mentioned
above, they are non-integrable. Here, we will show that
truncated normal forms up to order four are also non-
integrable in the Liouville sense. The proof is based
on the Morales-Ramis method using the differential
Galois theory.

Having the truncated up to order four Hamiltonian,
we bring it to the truncated normal form with the near-
identity symplectic transformation, which preserves
integrability [19]. This means that the truncated Hamil-
tonian and the truncated normal form are simultane-
ously integrable or non-integrable. In this case it is
more convenient to prove the non-integrability for the
truncated Hamiltonians, corresponding to the above al-
gebras. We consider the so(6) case in details and give
the key points for the other cases.

4.1. so(6)

Let us recall the Hamiltonian for the so (6) Gross–
Neveu model,

H =
1
2

3

∑
j=1

y2
j + ∑

3≥ j>k≥1

ex j+xk + e−x j−xk + ∑
j 6=k

ex j−xk .
(38)

The corresponding equations of motion are

ẋ j = y j, (39)
ẏ j =−∑

k 6= j

(ex j+xk − e−x j−xk)−∑
k 6= j

(ex j−xk − exk−x j).

After linearization about the stationary point (x,y) =
(0,0), we obtain

ξ̇ j = η j, η̇ j =−8ξ j, j = 1,2,3.

The eigenvalues of this system are ±2
√

2i, ±2
√

2i,
±2
√

2i , and thus in 1 : 1 : 1 resonance.
Next, we expand the Hamiltonian H around (x,y) =

(0,0) and truncate it to order four to obtain

H tr =
1
2

3

∑
j=1

(
y2

j +8x2
j

)
+

1
3

(
x4

1 + x4
2 + x4

3

)
+
(
x2

1x2
2 + x2

1x2
3 + x2

2x2
2

)
.

(40)

In what follows, we consider the complexified system
with the Hamiltonian H tr, that is (x j(t),y j(t)) ∈ C6,
t ∈ C. The corresponding equations read

ẋ j = y j, ẏ j =−8x j−
4
3

x3
j−2x j

(
∑
k 6= j

x2
k

)
. (41)

It is easy to be seen that the equations (41) have a fam-
ily of phase curves

Γ (h) : y2
1 = 2h−8x2

1−
2
3

x4
1,

x2 = x3 = y2 = y3 = 0.
(42)

These curves can be parameterized as follows:

x1 =
√

λ1dn

(√
2
3

λ1 t,k

)
, y1 = ẋ1,

x2 = x3 = y2 = y3 = 0,

(43)

where dn is the Jacobi elliptic function [20] and λ1,λ2
are the roots of 2

3 λ 2 + 8λ − 2h = 0, |λ1| > |λ2|, k′ =√
λ2
λ1

, k′ =
√

1− k2. So, we have a particular solu-

tion (43).
The function dn(τ,k) has two periods T1 = 2K√

2
3 λ1

,

T2 = 4iK′√
2
3 λ1

(K′(k) = K(k′)) and two simple poles t0 =

iK′√
2
3 λ1

, t1 = 3iK′√
2
3 λ1

in the parallelogram of periods. Ge-

ometrically, the curves Γ (h) are complex tori with two
points removed.

In order to reduce the domain of the solution (43),
we consider the involution

R : (x1,y1,x2,y2,x3,y3)→ (−x1,−y1,x2,y2,x3,y3),

which leaves the system (41) invariant, it maps the
phase curves Γ (h) onto themselves and it interchanges
the places of the two missing points. Then, Γ̂ (h) =
Γ (h)/R are tori with one point removed. Let FR be the
set of the fixed points of the involution R i.e. FR :=
(0,0,x2,y2,x3,y3). Then we can factorize M/FR by R
to obtain a symplectic manifold M̂. The Hamiltonian
H tr (40) is naturally mapped into a Hamiltonian func-
tion Ĥ tr on M̂. From [4] we know that if the system (41)
has three independent integrals, then the system de-
fined by Ĥ tr has also three independent integrals.

Next, we need the normal variational equations
(NVEs) along Γ̂ (h). It is straightforward that the NVEs
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have the form

ξ̇ j = η j, η̇ j =−8ξ j−2x2
1(t)ξ j, j = 2,3. (44)

Each NVE splits into two equal subsystems each of
them can be written as a second order linear differen-
tial equation ξ̈ j +(8+2x2

1(t))ξ j = 0, j = 2,3. In order
to prove non-integrability, we need to show that the Ga-
lois group G j corresponding to at least one of them is
non-Abelian. Since the NVEs are equal, we consider
one of them and drop the index

ξ̈ + f (t)ξ = 0, (45)

where f (t) = 8+2λ1dn2(
√

2
3 λ1 t,k).

The function f (t) has periods T1,T2/2 and the paral-
lelogram of these periods has only one pole – t0. Equa-
tion (45) is of Fuchsian type. It is known that in this
case the monodromy group topologically generates the
Galois group [13, 14]. The differential Galois group
of (45) is an algebraic subgroup of SL(2,L) which is
connected. Here L is the field of all elliptic functions.
Now, we shall study the monodromy groupM of (45).

Let α1 be a path over Γ̂ (h) which corresponds to
adding of period T1, and α2 be a path over Γ̂ (h)
which corresponds to adding of period T2/2. Let g1 :=
g(α1) and g2 := g(α2) be the monodromy transfor-
mations which correspond to the closed paths α1 and
α2 on Γ̂ (h), respectively. The commutator [g1,g2] =
g1g2g−1

1 g−1
2 is the transformation which corresponds

to one winding around the regular singular point t0
of (45).

It is known [21] that the eigenvalues of the com-
mutator are given by exp(2πiρ1,2), where ρ1,2 are the
roots of the indicial equation

ρ(ρ−1)+ f0 = 0

and where f0 is the coefficient of the term (t − t0)−2

in the Laurent expansion of f (t). Since f (t) = 8 +

2λ1

(
−i√

2
3 λ1(t−t0)

)2

+ . . . =− 3
(t−t0)2 + . . ., we have f0 =

−3. Then, the commutator has eigenvalues exp(πi(1±√
13)) that is [g1,g2] 6= id, so M is not Abelian and

hence G is not Abelian too. According to Morales-
Ramis theorem the truncated to order four Hamiltonian
form (also the truncated normal form) for the Lie alge-
bra so(6) is non-integrable.

4.2. so(7)

The Hamiltonian for the so(7) Gross–Neveu model
is

H =
1
2

3

∑
j=1

y2
j +

3

∑
j=1

(ex j + e−x j)

+ ∑
3≥ j>k≥1

e(x j+xk) + e−(x j+xk) + ∑
j 6=k

e(x j−xk).
(46)

The corresponding equations of motion are

ẋ j = y j, ẏ j =−(ex j − e−x j) (47)

−∑
k 6= j

(
e(x j+xk)− e−(x j+xk)

)
−∑

k 6= j

(
e(x j−xk)− e(xk−x j)

)
.

After linearization about the stationary point (x,y) =
(0,0), we obtain

ξ̇ j = η j, η̇ j =−10ξ j, j = 1,2,3.

The eigenvalues of this system are ±
√

10i, ±
√

10i,
±
√

10i, and thus in 1 : 1 : 1 resonance.
Next, we expand the Hamiltonian H around (x,y) =

(0,0) and truncate it to order four to obtain

H tr =
1
2

3

∑
j=1

(
y2

j +5x2
j

)
+

5
12

(
x4

1 + x4
2 + x4

3

)
+
(
x2

1x2
2 + x2

1x2
3 + x2

2x2
2

)
.

(48)

The equations of motion of the truncated Hamiltonian
read

ẋ j = y j, ẏ j =−10x j−
5
3

x3
j −2x j

(
∑
k 6= j

x2
k

)
. (49)

The curves Γ (h) are given by the equations

Γ (h) : y2
1 = 2h−10x2

1−
5
6

x4
1,

x2 = x3 = y2 = y3 = 0,
(50)

and correspond to the solutions

x1 =
√

λ1dn

(√
5
6

λ1 t,k

)
, y1 = ẋ1,

x2 = x3 = y2 = y3 = 0.

(51)

The corresponding Fuchsian equation is (45) with

f (t) = 10+2λ1dn2(
√

5
6 λ1 t,k). The eigenvalues of the

commutator are exp(πi(1±
√

53/5)) that is [g1,g2] 6=
id, soM is not Abelian and hence G is not Abelian too.
According to Morales-Ramis theorem the truncated to
order four Hamiltonian form (also the truncated nor-
mal form) for the Lie algebra so(7) is non-integrable.
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4.3. sp(6)

The Hamiltonian for the sp(6) Gross–Neveu model
is

H =
1
2

3

∑
j=1

y2
j +

3

∑
j=1

(e2x j + e−2x j)

+ ∑
3≥ j>k≥1

e(x j+xk) + e−(x j+xk) + ∑
j 6=k

e(x j−xk).

(52)

The corresponding equations of motion are

ẋ j = y j,

ẏ j =−2(e2x j − e−2x j)−∑
k 6= j

(e(x j+xk)

− e−(x j+xk))−∑
k 6= j

(
e(x j−xk)− e(xk−x j)

)
.

(53)

After linearization about the stationary point (x,y) =
(0,0), we obtain

ξ̇ j = η j, η̇ j =−16ξ j, j = 1,2,3.

The eigenvalues of this system are ±4i, ±4i, ±4i, and
thus in 1 : 1 : 1 resonance.

Next, we expand the Hamiltonian H around (x,y) =
(0,0) and truncate it to order four to obtain

H tr =
1
2

3

∑
j=1

(
y2

j +16x2
j

)
+

5
3

(
x4

1 + x4
2 + x4

3

)
+
(
x2

1x2
2 + x2

1x2
3 + x2

2x2
2

)
.

(54)

The equations of motion of the truncated Hamiltonian
read

ẋ j = y j, ẏ j =−16x j−
10
3

x3
j −2x j

(
∑
k 6= j

x2
k

)
. (55)

The curves Γ (h) are given by the equations

Γ (h) : y2
1 = 2h−16x2

1−
10
3

x4
1,

x2 = x3 = y2 = y3 = 0,
(56)

and correspond to the solutions

x1 =
√

λ1dn

(√
10
3

λ1 t,k

)
, y1 = ẋ1,

x2 = x3 = y2 = y3 = 0.

(57)

The corresponding Fuchsian equation is (45) with

f (t) = 16 + 2λ1dn2(
√

10
3 λ1 t,k). The eigenvalues of

the commutator are exp(πi(1 ±
√

17/5)) that is
[g1,g2] 6= id, so M is not Abelian and hence G is
not Abelian, too. According to Morales-Ramis theo-
rem the truncated to order four Hamiltonian form (also
the truncated normal form) for the Lie algebra sp(6) is
non-integrable.

This finishes the proof of Theorem 2.

5. Conclusions

In this paper, low-dimensional Gross–Neveu mod-
els are studied. The aim is to establish whether their
normal forms up to order four are integrable and non-
degenerate in KAM-theory sense. It turns out that this
fact holds only for two degrees of freedom systems.
Application of the KAM-theory implies that there ex-
ist many invariant tori on which motion is quasi pe-
riodic. Moreover, the result of Theorem 1 partially
explains the following situation. Maciejewski et al.
in [5] carried out some numerical experiments in or-
der to understand a dynamical meaning for proved
non-integrability of the Gross–Neveu systems. They
take two systems, related to the Lie algebras sl(3)
and so(5). Using suitable Poincaré cross-sections, they
observe for these systems very regular structures of
the phase portraits. They conclude that if the chaos
is present in these systems then it must be smaller
than the numerical precision. The answer is that in the
neighbourhood of the equilibrium, the Hamiltonians
corresponding to the above Lie algebras can be con-
sidered as perturbations of their KAM non-degenerate
normal forms. So, the result of Theorem 1 is numer-
ically confirmed. For the essentially three degrees of
freedom Gross–Neveu models we prove that they do
not have integrable truncated normal forms. In fact,
this means that in the vicinity of the equilibrium they
do not possess more than two integrals. This result can
be proven in higher dimensions also.
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