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In this work, a powerful analytical method called homotopy perturbation method (HPM) is used
to obtain the series solution for nonlinear problems in classic dynamics. The governing equations are
obtained using the Lagrange method and solved analytically by HPM. The present solution gives an
expression which is valid for the whole domain of the solution. Comparisons of the obtained solutions
with numerical results indicate that HPM is effective and convenient for solving holonomic problems
and can be used in the same way for other nonlinear problems.
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1. Introduction

Nonlinear phenomena play important roles in ap-
plied mathematics, physics, and also in engineering
problems in which the variation of each parameter
depends on different factors. Solving nonlinear equa-
tions may guide authors to have a better understanding
of the problems physics common observations. More-
over, obtaining exact solutions for nonlinear problems
is a great purpose which has been quite untouched.

In addition, in recent years, scientists have presented
some new methods for solving nonlinear partial dif-
ferential equations; for instance, the Bäcklund trans-
formation method [1], the Lie group method [2], Ado-
mian’s decomposition method [3], the inverse scatter-
ing method [4], the homotopy analysis method [5, 6],
and He’s homotopy perturbation method and parame-
ter expanding method [7 – 14].

HPM is one of the most effective and convenient
methods for both linear and nonlinear equations. This
method does not depend on a small/large parameter.
HPM has been shown to effectively, easily, and accu-
rately solve a large class of linear and nonlinear prob-
lems with components converging rapidly to accurate
solutions.

In this study, first by using the Lagrange method,
the governing equations are obtained then HPM is ap-

plied to find an analytical solution for the nonlinear dif-
ferential equation governing nonlinear problems in dy-
namics and is used to investigate the behaviour of the
limit cycle and phase plane. The perturbation method
is not able to solve this problem because there is no
small/large parameter. The numerical solution based
on the shooting method and the fourth-order Runge–
Kutta method developed by the author to indicate the
accuracy of the results. It is shown that the results are in
very good agreement with those obtained using numer-
ical methods. Finally, the influence of constant param-
eters on the system response and its stability is shown.

2. Lagrange Equations

A brief development of the Lagrange equation is
shown, presented here for the general form of kinetic
and potential energies equations.

It is clear that based on a conservative system, the
total energy should be zero:

d(T +U) = 0. (1)

The potential energy U is a function only of general-
ized velocities, q̇i, and the kinetic energy T is a func-
tion of the generalized coordinates qi and q̇i which can
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mailto:a.kimiaeifar@gmail.com


462 A. Kimiaeifar · Stability and Response of Holonomic Problems

be shown as follows:

T = T (q1, q2, ...qn, q̇1, q̇2, ... q̇n), (2)

U = U(q̇1, q̇2, ... q̇n). (3)

The derivative of T with respect to generalized coordi-
nates is

dT =
N

∑
i=1

∂T
∂qi

dqi +
N

∑
i=1

∂T
∂ q̇i

dq̇i. (4)

To eliminate the second term with dq̇i, we start with
the equation for the kinetic energy:

T =
1
2

N

∑
i=1

N

∑
j=1

mi jq̇iq̇ j. (5)

Differentiating this equation with respect to q̇i, multi-
plying by q̇i, and summing over i from 1 to N, yields
the following result:

2T =
1
2

N

∑
i=1

N

∑
j=1

mi jq̇iq̇ j =
N

∑
i=1

∂T
∂ q̇ j

q̇i (6)

or

2T =
N

∑
i=1

∂T
∂ q̇ j

q̇i. (7)

From the differential of 2T in (7) by using the product
rule in calculus, we get

2dT =
N

∑
i=1

d

(
∂T
∂ q̇i

)
q̇i +

N

∑
i=1

∂T
∂ q̇i

dq̇i. (8)

And finally for the kinetic energy it is obtained:

dT =
N

∑
i=1

[
d

dT

(
∂T
∂ q̇i

)
− ∂T

∂ q̇i

]
dq̇i. (9)

By doing the same procedure for the potential energy
and substituting in (1) results in

d(T +U) =
N

∑
i=1

[
d

dT

(
∂T
∂ q̇i

)
− ∂T

∂ q̇i
+

∂U
∂ q̇i

]
dq̇i = 0.

(10)

By doing some simplifications and since ∂U
∂ q̇i

= 0, (10)
can be written as

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂ q̇i
= 0, i = 1, 2, ... N. (11)

3. Basic Idea of HPM

To illustrate the basic ideas of this method, the fol-
lowing nonlinear general differential equation is con-
sidered:

A(u)− f (r) = 0, r ∈Ω , (12)

with the boundary conditions as below:

B
(

u,
∂u
∂n

)
= 0, r ∈ Γ . (13)

Where A is a general differential operator, B a bound-
ary operator, f (r) a known analytical function, and Γ

is the boundary of the domain Ω .
The operator A is divided into two parts L (linear

part) and N (nonlinear part). Therefor (5) results in

L(u)+N(u)− f (r) = 0. (14)

The homotopy-perturbation structure is written as:

H(v, p) = (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)] = 0,

(15)

where

v(r, p) : Ω × [0, 1]→ R. (16)

Obviously, considering (15) results in

H(v,0) = L(v)−L(u0) = 0,

H(v,1) = A(v)− f (r) = 0,
(17)

where p ∈ [0,1] is an embedding parameter and u0 is
the first approximation that satisfies the boundary con-
dition. The process of the changes in p from zero to
unity is that of v(t, p) changing from u0 to ur. By con-
sidering v as

v(t) = v0(r)+ pv1(r)+ p2v2(r)+ ..., (18)

the best approximation for the solution is

u = lim
p→1

v = v0 + v1 + v2 + ... .

4. Example 1: A Rotating Mass with Central Force

As a first example, the motion of a particle in a plane
under influence of a central force is considered. In po-
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lar coordinates the motion of a particle m is governed
by

(
m

d2r(t)
dt2 − r

dθ(t)
dt

2)
+ F(r) = 0,

r(0) = a1,
dr(t)

dt

∣∣∣t=0,= a2,(
mr

d2θ(t)
dt2 +2

dr(t)
dt

dθ(t)
dt

)
= 0,

θ(0) = a3,
dθ(t)

dt

∣∣∣t=0,= a4.

(19)

Here, F(r), as external force, is considered as sin(r(t))
and compared with the numerical method. By using
Taylor’s series expansion for sin(r(t)), the above equa-
tion reduces to(

m
d2r(t)

dt2 − r
dθ(t)

dt

2)
+
(

r(t)− 1
6

r3(t)
)

= 0,

r(0) = α,
dr(t)

dt

∣∣∣t=0,= 0,(
mr

d2θ(t)
dt2 +2

dr(t)
dt

dθ(t)
dt

)
= 0,

θ(0) = β ,
dθ(t)

dt

∣∣∣t=0,= 0.

(20)

As it was explained in Part 3, choosing a linear opera-
tor is very important, and linear operators must be cho-
sen in such a way that the answer should be helpful for
the solution procedures and convergence [12]. Accord-
ing to the HPM, the homotopy construction for (20)

can be written as follows:

(1− p)[(v̈+ v)− ε

m
(r̈0 + r0)]

+ p

[
m

(
d2v(t)

dt2 − r
du(t)

dt

2)
+
(

v(t)− 1
6

v3(t)
)]

= 0,

(1− p)[(u)− (θ̈0)]

+ p

[
m

(
r

d2u(t)
dt2 +2

dv(t)
dt

du(t)
dt

)]
= 0, (21)

where

v(t) = v0(t)+ pv1(t)+ p2v2(t)+ ..., (22)

u(t) = u0(t)+ pu1(t)+ p2u2(t)+ ..., (23)

and

r(t) = lim
p→1

v(t) = v0(t)+ v1(t)+ v2(t)+ ..., (24)

θ(t) = lim
p→1

u(t) = u0(t)+u1(t)+u2(t)+ ... . (25)

It should be noted that ε is an unknown parameter
which further is determined. The initial boundary con-
ditions are as follows:

v0(0) = r0(0) = α, v̇0(0) = ṙ0(0) = 0, (26)

u0(0) = θ0(0) = β , u̇0(0) = θ̇0(0) = 0. (27)

Substituting (22) and (23) into (21) and rearranging
based on powers of the p-terms, then solving the ob-
tained linear differential equations yield following an-
swer:

v0(t) = α cos

(√
εt√
m

)
, (28)

u0(t) = β , (29)

v1(t) =
α

(
−1
96

α
2mcos

(√
εt√
m

)√
ε +

3
32

(
−32

3

√
ε +

32
3

ε
3/2 +α

2√
ε

)
mcos

(√
εt√
m

)
+−12+12ε

)
2ε3/2

+
α m
(
α2−12+12ε

)
cos

(√
εt√
m

)
24ε

+
tε
√

m

(
1
8

α
2−1+ ε

)
sin

(√
εt√
m

)
2ε3/2

, (30)

u1(t) = 0. (31)

To prevent divergence, pointed out by He [12], ε

should be determined in such away that secular terms

vanish. The secular terms are known as expressions
such as t sin t, t cos t. Hereby, ε is calculated as

ε = 1− 1
8

α
2. (32)
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Fig. 1. Geometry of Example 2.

As it was mentioned, the solution of (20) for p→ 1
will be as follows:

r(t) = v0(t)+ v1(t), (33)

θ(t) = u0(t)+u1(t). (34)

5. Example 2

A rigid rod is rigidly attached to the axle as shown
in Figure 1. The wheels roll without slip as the pendu-
lum swings back and forth. Only the ball on the end
of the pendulum has appreciable mass, and it may be
considered as particle.

By using the Lagrange method, the governing equa-
tion can be expressed as follows:(
l2 + r2−2rl cosθ

)
θ̈ + rl sinθθ̇

2 +gl sinθ = 0. (35)

Substitute the two first terms of the Taylor series in-
stead of sinθ and cosθ , the above equation reduces

to (
l2 + r2−2rl

(
1− θ 2

2

))
θ̈

+ rl

(
θ − θ 3

6

)
θ̇

2 +gl

(
θ − θ 3

6

)
= 0.

(36)

The initial boundary conditions are considered as

θ(0) = 1, θ̇(0) = 0. (37)

According to the HPM, the homotopy construction for
(36) can be written as follows:

(1− p)[(v̈+ v)− ε(θ̈0 +θ0)]

+ p

[(
l2 + r2−2rl

(
1− θ 2

2

))
θ̈

+ rl

(
θ − θ 3

6

)
θ̇

2 +gl

(
θ − θ 3

6

)
= 0

]
= 0,

(38)

where

v(t) = v0(t)+ pv1(t)+ p2v2(t)+ ... (39)

and

θ(t) = lim
p→1

v(t) = v0(t)+ v1(t)+ v2(t)+ ... .

(40)

The initial boundary conditions are

v0(0) = θ0(0) = 1, v̇0(0) = θ̇0(0) = 0. (41)

Substituting (39) and (40) into (38) and rearranging
based on powers of the p-terms, then solving the ob-
tained linear differential equations and also vanishing
the secular term one obtains:

v0(t) = cos
(√

εt
)
, (42)

v1(t) =
m
(

144l2ε−248rlε−129gl +144r2ε

)
cos
(√

εt
)

576ε
+

1

2ε3/2

[
− 47

384
l

(
rε

3/2 +
4
47

g
√

ε

)
cos
(
3
√

εt
)

+
1

1152
rl cos

(
5
√

εt
)
ε

3/2 +
((

1
2

r2− 71
96

rl +
1
2

l2
)

ε
3/2− 7

16
l
√

εg

)
cos
(√

εt
)

(43)

· tε sin
(
3
√

εt
)(

l2
ε +
(
−71
48

rε− 7
8

g

)
l + r2

ε

)]
,
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where

ε =
42gl

48l2−71rl +48r2 . (44)

Finally the answer is

θ(t) = v0(t)+ v1(t). (45)

6. Results and Discussion

In this paper, the effectiveness of the presented
homotopy perturbation method was investigated by
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Fig. 2. Effects of constant parameters on position and ve-
locity, Example 1; (a): m = 0.1,α = 1.0,β = 1.0; (b): m =
1.0,α = 0.5,β = 1.0.

considering two nonlinear dynamics problems. To val-
idate the HPM results, convergence studies were car-
ried out and the results were compared with those ob-
tained using numerical methods which is shown in Fig-
ures 2, 3, and Table 1. It is clear that the maximum rel-
ative error (R.E.) is about 0.005 which from the view
point of engineering is quiet acceptable. In addition to
investigate the behaviour of each system from the view
point of stability, after convincing of the solution, the
phase planes have been plotted and are shown in Fig-
ures 4 and 5. By using HPM, the influence of constant
physical parameters on the stability is easy to inves-
tigate and there is no need to solve the problem by
any variation in an input variable of such numerical
methods.
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.

.

.

(b)

Fig. 3. Effects of constant parameters on position and veloc-
ity, Example 2; (a): l = 1.0,r = 0.1; (b): l = 1.0,r = 0.5.
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R.E. =
∣∣∣ rNumeric− rHPM

rNumeric

∣∣∣
r(t) r′(t)

t HPM Numeric R.E. HPM Numeric R.E.
0.1 0.49519 0.49522 0.00005 −0.09606 −0.09555 0.00528
0.2 0.48085 0.48095 0.00020 −0.19035 −0.18943 0.00483
0.3 0.45744 0.45724 0.00044 −0.27996 −0.28111 0.00409
0.4 0.42480 0.42512 0.00075 −0.36664 −0.36548 0.00318
0.5 0.38414 0.38457 0.00111 −0.44529 −0.44435 0.00212
1.0 0.08918 0.08943 0.00276 −0.68653 −0.68819 0.00240
2.0 −0.46850 −0.46865 0.00031 −0.24261 −0.24158 0.00426
5.0 0.39029 0.39075 0.00117 −0.43477 −0.43371 0.00244
10 0.10830 0.10872 0.00392 −0.68111 −0.68262 0.00222
20 −0.45354 −0.45363 0.00020 −0.29246 −0.29168 0.00266

Table 1. Comparing the pre-
sent analytical and numer-
ical results for Example 1;
α = 0.5,m = 0.5.
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Fig. 4. Phase plane for Example 1; (a): variation of α; (b):
variation of m.
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Fig. 5. Phase plane for Example 2; (a): variation of l; (b):
variation of r.
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7. Conclusions

In this paper, two methods, Lagrange and HPM, were
simultaneously used to obtain an approximate analyti-
cal solution for nonlinear problems in dynamics. It was
shown that by choosing an appropriate linear operator
and vanishing the secular terms, just two orders in series
approximation issufficient toobtainanaccuratesolution
that is valid for the whole domain of the solution. Some

remarkable virtues of the introduced method were illus-
trated and their applications to obtain the higher-order
approximate periodic solutions of nonlinear problems
were demonstrated. The HPM results had a good agree-
ment with those obtained using the numerical method.
In addition, it was shown that this method can predict
the response of the system and its stability based on
the input physical parameters, and HPM is effective and
convenient to solve holonomic problems.
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