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This paper describes a scheme for the numerical calculation of crystal field (CF) energy levels
and at the same time wave functions of the trivalent erbium ion in cubic symmetry. The 16-fold
degenerate term 4I15/2 of the trivalent erbium ion splits into three Stark quartets Γ8 and two different
doublets Γ6 and Γ7 (irreducible representations). The CF energy matrix of the Er3+ ion has been
constructed and calculated from the complete diagonalization method, and the corresponding wave
functions were used to calculate the ground state g-values. This method is outlined and illustrated by
the examples of the Si:Er for comparison. The calculated g-factors are g = 6.8 and g = 6.0 for Γ6 and
Γ7, respectively.
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1. Introduction

Trivalent erbium ions (Er3+) have played an impor-
tant role in the development of optical communication
technology [1, 2] in the last years. The transition from
the first excited state 4I13/2 to the ground state 4I15/2 in
Er3+ at 1.53 µm corresponds to an important telecom-
munication wavelength since standard silica based op-
tical fibers have their maximum transparency at this
wavelength.

When a rare earth (RE) ion is placed in a crystal lat-
tice, it is subject to a number of forces which are absent
in the free ion. These crystal forces are of very complex
nature. There are, for instance, resonance interactions
with neighbouring ions of the same kind, and there are
electric and magnetic interactions with each individual
ion in the vicinity.

The crystal field model has been very successful in
the analysis of 4 f N configurations of rare-earth ions
in solids [3 – 5], whose energy levels are reproduced
through a Hamiltonian which involves both free-atom
and crystal field operators.

The presence of the crystal field will modify the en-
ergy levels and wave functions of the free ions, and the
determination of these modifications is subject of the
crystal field theory. From a theoretical point of view,
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the rare earth elements are one of the most convenient
fields for the elaboration and testing of the quantum
theories of atomic spectroscopy and their application
to an ion included in a crystal. These techniques allow
the energy level scheme, deduced from experiment, to
be simulated.

In a cubic field, the doublets Γ6 and Γ7 can be de-
scribed by a spin Hamiltonian with an effective spin
S = 1/2 and isotropic g-factors. For Γ6 and Γ7 belong-
ing to the J = 15/2 state (Er3+ ion), the wave functions
and, hence, g-factors are uniquely determined. A de-
viation from a pure LS-coupling somewhat changes
these values. Moreover, such values of the g-factor
may be observed if resonance occurs in a pure ground
state; an admixture of the wave functions of excited
states changes the value of the isotropic g-factor. The
pattern of the electron paramagnetic resonance (EPR)
of Er3+ ions in the Γ6 and Γ7 states in a cubic crys-
tal field is closely similar to that in a lower symmetry
field, since Γ6 and Γ7 correspond to Kramers doublets.

The aim of the present work is to establish the
crystal-field energy levels and wave functions of Er3+

ion in cubic symmetry. The corresponding wave func-
tions were used to calculate the ground state g-values.
The calculations were performed by the MATLAB
computer program.
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2. Calculations

If the RE ion is introduced into a crystalline ma-
trix, the spin-orbit levels split further into CF levels
under the action of the electric field provided by the
crystal.

The CF Hamiltonian is most commonly expressed
as

HCF = ∑
n,m

Bm
n Om

n , (1)

where Bm
n and Om

n are, respectively, CF energy param-
eters and Stevens operator equivalents which are ex-
pressed in powers of the components J+, J−, and Jz of
the angular momentum operator [6]. Alternatively, it
can be expressed in terms of CF coefficients Am

n :

HCF = ∑
n,m

Am
n 〈rn〉θnOm

n , (2)

where 〈rn〉 are radial averages over the 4 f -electron
wave functions and θn are the Stevens coefficients
αJ , βJ , γJ for n = 2, 4, 6, respectively. These expres-
sions are only valid for the CF split ground-state multi-
plet. The interaction represented in (1) or (2) splits the
(2J + 1)-fold degenerate ground-state multiplet into
a series of CF energy level eigenvalues with energy Ei

and corresponding eigenstate, labeled by its irreducible
representation Γi.

For systems with cubic point symmetry there ex-
ists an ingenious and widely employed method (com-
monly referred to as Lea-Leask-Wolf (LLW) method)
of parametrizing the eigenfunctions and eigenvalues of
the CF Hamiltonian

HCF = B0
4(O

0
4 +5O4

4)+B0
6(O

0
6−21O4

6) (3)

by setting the two parameters required for the descrip-
tion of the CF in terms of parameters x and W defined
by

B0
4F4 = Wx (4)

and

B0
6F6 = W (1−|x|). (5)

The operator equivalents Om
n needed are as follows:

βJ
〈
r4〉O0

4 = βJ
〈
r4〉[

35J4
Z−30J(J +1)J2

Z

+25J2
Z−6J(J +1)+3J2(J +1)2] ,

(6a)

βJ
〈
r4〉O4

4 = βJ
〈
r4〉[

1
2
(J4

+ + J4
−)

]
, (6b)

γJ
〈
r6〉O0

6 = γJ
〈
r6〉[231J6

Z−315J(J +1)J4
Z

+735J4
Z +105J2(J +1)2J2

Z

−525J(J +1)J2
Z +294J2

Z−5J3(J +1)3

+40J2(J +1)2−60J(J +1)
]
,

(6c)

γJ
〈
r6〉O4

6 =
γJ

4

〈
r6〉{[

11J2
Z− J(J +1)−38

]
· (J4

+ + J4
−)+(J4

+ + J4
−)

[
11J2

Z− J(J +1)−38
]}

.
(6d)

Here the values of the arbitary numerical factors F4 and
F6 are chosen for convenience in each calculation. Tab-
ulated values can be found in [7]. The parameter ratio
can be expressed as

B0
4

B0
6

=
x

1−|x|
F6

F4
. (7)

The coefficients B0
4 and B0

6 determine the magnitude of
the crystal field splitting as a result of the arrangement
of the surrounding cations and anions.

3. Results and Discussion

3.1. CF Interaction

The free Er3+ ion has an electron configuration 4 f 11

for which the lower term is 4I15/2, and the first excited
multilpet 4I13/2, which is about 6500 cm−1 higher than
4I15/2. In a cubic crystal field, the 16-fold degenerate
term 4I15/2 splits into three Stark quartets Γ8 and two
different doublets Γ6 and Γ7. The ground state in a cubic
field can be one of the doublets (Γ6 or Γ7), whose rela-
tive position depends on the ratio between the fourth-
and sixth-order terms in the crystal-field expansion.

The calculated energies, as obtained by a diagonal-
ization of the appropriate CF Hamiltonian matrix given
by (3), are summarized in Table 1 and the eigenstates
of the ground state labeled by its irreducible represen-
tation Γ6 and Γ7 levels are:

Γ6 : 0.6333

∣∣∣∣±13
2

〉
+0.5818

∣∣∣∣±5
2

〉
−0.4507

∣∣∣∣∓3
2

〉
−0.2394

∣∣∣∣∓11
2

〉 (8)
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Table 1. Observed and calculated energy levels (cm−1) of the
ground state 4I15/2 and the first excited state 4I13/2 for Si:Er.

Level Refs. [8, 9] Ref. [10]
E (obs.) Ea (cal.) E (obs.) Eb (cal.)

4I15/2 0 0 0 0
71 76 78.8 79.4

153 151 157.3 156.7
244 243 249.3 252.7
408 368 417.8 383.3

4I13/2 6498 6500 6504.8 6503.2

a CF parameters: x = 0.35 and W = 0.8406 cm−1

b CF parameters: x = 0.35 and W = 0.8753 cm−1

and

Γ7 : 0.5818

∣∣∣∣±15
2

〉
+0.3307

∣∣∣∣∓7
2

〉
+0.7181

∣∣∣∣∓1
2

〉
+0.1909

∣∣∣∣∓9
2

〉
.

(9)

The calculated energy levels with spin J = 13/2 in
a cubic crystal field as a function of parameter x for
W = 0.8406 cm−1 are given in Figure 1. These levels
are labeled according to the convention for Td symme-
try.

Figure 2 shows the energy levels E in the state 4I15/2
as a function of the parameter x. The spacing between
the energy levels is controlled by W . For W > 0, the
Γ7 level will lie lowest between −1 < x < −0.46, the
Γ6 level will lie lowest between −0.46 < x < 0.58, and
for x > 0.58 the lowest energy state will be Γ8. The en-
ergies of the Γ8 levels vary nonlinearly with the crystal

Fig. 1. Calculated energy levels with spin J = 13/2 in a cu-
bic crystal field as a function of parameter x for W =
0.8406 cm−1.

Fig. 2. Calculated energy levels with spin J = 15/2 in
a cubic crystal field as a function of parameter x for W =
0.8406 cm−1.

field parameter x. Always five levels are obtained: two
doublets belonging to the Γ6 and Γ7 irreducible repre-
sentations, respectively, and three quartets of Γ8 sym-
metry type.

The energy levels (cm−1) were performed by the
MATLAB computer program and are listed in Table 1.
We have also included in this table the experimental
CF levels of the Si:Er [8 – 10] for comparison. The po-
sitions of the Stark levels vary with the host. It can be
seen that the calculated crystal field energies are con-
sistent with the observed ones.

Actual calculations were performed with scaling
factors F4 = 60 and F6 = 13 860 for J = 15/2 and
F4 = 60 and F6 = 7560 for J = 13/2.

3.2. Zeeman Effect

The Zeeman splitting of about 0.1 meV induced in
an EPR experiment in the K-band (frequency 23 GHz)
is only a small perturbation on the states formed af-
ter spin-orbit and crystal-field interactions. Energies of
the J = 15/2 spin-orbit ground state sublevels are cal-
culated in the presence of a crystal field and a magnetic
field. The energy of the Zeeman effect is calculated by
applying the operator

HZ = gJβHJ. (10)

Where gJ is the Landé factor and β is the Bohr Mag-
neton.

By the magnetic field the degeneracy in the crystal-
field quartet and doublet levels is lifted. The g-factor g
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can be calculated from the following expression:

g = 2gJ 〈Γi|Jz |Γi〉 . (11)

The calculated g-factors according to (8) and (9) are
g = 6.8, g = 6.0 for Γ6 and Γ7, respectively.

It is important to note here that the g-value de-
pends directly on the coefficients in the wave functions
(see (8) and (9)).

The calculated g-value (6.0) for Γ7 of this work is in
better agreement with the observed values (close to 6)
of Er3+ ion in various semiconductors [11 – 13].
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