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A generic nonlinear Maxwell model for the stress tensor in viscoelastic materials is studied under
mixing scenarios in a three-dimensional steady lid-driven cavity flow. Resulting laminar and turbulent
flow profiles are investigated to study their mixing efficiencies. Massless tracer particles and passive
concentrations are included to show that the irregular spatio-temporal chaos, present in turbulent flow,
is useful for potential mixing applications. A Lyapunov measure for filament divergence confirms that
the turbulent flow is more efficient at mixing.
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1. Introduction

Viscoelastic materials display non-Newtonian be-
haviour under flow, such as shear-thinning/thickening,
yield stress, stress relaxation, etc. These can lead to in-
teresting phenomena such as die swell and rod climb-
ing (Weissenberg effect). In low Reynolds number
flows elastic turbulence can develop in viscoelastic
polymer solutions [1, 2] due to elastic instabilities.

High normal stress differences are the cause for
secondary flows, which can become irregular, produc-
ing turbulent behaviour. A generic description of such
a complex rheological behaviour is provided by a gen-
eralized nonlinear Maxwell model [3,4]. Depending on
the choice of the relevant model parameters, numer-
ical studies of a three-dimensional lid-driven flow, at
low Reynolds numbers, demonstrated the occurrence
of both laminar and turbulent flow behaviour [5].

In this article we report results on the mixing prop-
erties of the lid-driven flow as inferred from this
model. The motion of massless tracer particles and
the time dependence of passive concentrations reveal
the irregular spatio-temporal chaos, present in turbu-
lent flow. A Lyapunov measure for filament diver-
gence confirms that the turbulent flow is more effi-
cient at mixing. On the one hand, the theoretical stud-
ies confirm the turbulent nature of the flow. On the
other hand, the enhanced mixing achieved in a low
Reynolds number turbulent flow is of practical impor-
tance for micro-fluidics [6 – 10]. Modelling of such
materials requires a choice for a constitutive rela-
tion for the stress, which includes a necessary de-
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viation from the simple linear Newtonian descrip-
tion.

2. Maxwell Model

The nonlinear Maxwell model used here was pre-
viously studied extensively in spatially homogeneous
flow conditions [3, 4, 11]. Recently the model has
been applied to a flow geometry which required the
analysis of the full three-dimensional hydrodynamic
problem [5]. It was observed that a self-generating
time-dependent turbulent-like flow regime develops
from steady forcing when the nonlinearities in the
model are dominant. This response is similar to the
experimental work performed by Arratia et al. [12],
but in contradistinction to the case of time-periodic
flow as studied in [13]. In the following we explore
the role of such a turbulent flow for mixing pur-
poses, compared to that of its laminar flow counter-
part.

The theoretical description of the hydrodynamic
problem is based on the local momentum conserva-
tion and a constitutive law for the shear stress tensor.
For an incompressible fluid, the relevant equations are
ρ

dvvv
dt =−∇p+∇ ·σσσ and ∇ ·vvv = 0.
The symmetric traceless stress tensor σσσ is given

by the sum of two terms, one involving the sec-
ond Newtonian viscosity η∞, the other one the ex-
tra stress πππ , viscoelastic effects can be included, σσσ =
2η∞γγγ +

√
2Grefπππ . Here Gref is a reference shear mod-

ulus. Its specific value is not needed for the following
analysis.
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The dimensionless stress πππ is assumed to obey the
following generalized Maxwell model [3, 4]:

dπππ

dt
= 2ωωω×πππ +2κ γγγ ·πππ−τ

−1
0

(
ΦΦΦ

π − `2
0∇2

πππ
)
+
√

2γγγ.

(1)

In the above equations, vvv is the velocity, p is the
pressure, γγγ is the strain rate tensor, ωωω is the vorticity, κ

is akin to a slip parameter in the Johnson–Segalman
model [14], τ0 is a relaxation time coefficient, `0 is
a characteristic length, and ΦΦΦπ ≡ ∂Φ

∂π
being the deriva-

tive of a potential function with respect to πππ , where Φ

is the potential function to be chosen. Here the symbol
· · · represents the symmetric traceless (deviatoric) part
of a tensor, e.g. xab = 1

2 (xab + xba)− 1
3 xccδab, where

δab is the unit tensor. The total stress σσσ is taken as devi-
atoric, i.e. as symmetric traceless. The substantive (ad-
vective) derivative is also used in the above equations,
d
dt (∗)≡

∂ (∗)
∂ t +uuu ·∇∇∇(∗).

A generalisation of the Maxwell model with terms
nonlinear in the shear stress was invented to treat shear
thickening and shear thinning behaviour [3]. A spe-
cial (simple nontrivial) case for the potential function,
which corresponds to an expansion of Φ up to terms
of fourth order in πππ , using the second and third-order
invariants, thus,

ΦΦΦ
π = Aπππ−

√
6Bπππ ·πππ +Cπππ πππ : πππ . (2)

With the stress replaced by the alignment tensor,
this expression has the same functional form as that
one used to treat the orientational relaxation in molec-
ular fluids and nematic liquid crystals. There, the po-
tential function is essentially the Landau–de Gennes
free energy. The equations have been derived within
the framework of irreversible thermodynamics [15,16]
and a Fokker–Planck equation [17 – 19]. Foundations
of the equations used here, as well as their dimension-
less form and the scaling of variables are discussed
in [3 – 5,11]. Some short remarks are appropriate here.
The coefficient A is proportional to 1−T ∗/T whereas
B and C are practically independent of the tempera-
ture T . The characteristic (pseudo critical) temperature
T ∗ is below the temperature Tc where a transition oc-
curs from an ordinary fluid state to a state with a yield
stress which is determined by πc = 2B/(3C). Divid-
ing πππ by πc one obtains a rescaled expression as in (2)
with B and C replaced by the numbers 3 and 2, respec-
tively. At the same time A is replaced by A∗ which is
defined such that A∗ = 1 corresponds to the temper-

ature Tc. In the rescaled equations it suffices to spec-
ify the one coefficient A∗ rather than the values of the
original three coefficients A,B,C in order to specify
whether the equilibrium state of the system is fluid or
one with a yield stress. Furthermore, the time is ex-
pressed in units of the relaxation time in fluid state
at Tc. The shear rate is in units of the reciprocal of this
time. The link of the present theoretical modelling with
a real physical system is made via reference values for
the shear stress and the shear rate which are treated as
parameters characteristic for a specific substance. Two
examples for a comparison with experimental rheolog-
ical data are given in [11].

The equations, in dimensionless form, are dis-
cretized on a regular grid using second-order finite
difference approximations for the spatial derivatives.
A forth-order Runge–Kutta method is used for the tem-
poral derivatives. The incompressibility condition is
implemented using a pressure correction method [20].
A lid-driven cavity flow is chosen with a simple cuboid
geometry, and a plate speed such that simulations run
with the Reynolds number, Re≈ 1. The no-slip bound-
ary condition is used for the velocity field, whilst local
zero-gradient Neumann conditions are used for πππ . Sim-
ulations are performed on an NEC SX-6 vector super-
computer, more details on the simulation techniques,
and preliminary investigations can be found in [5].

3. Mixing Dynamics

The time-dependent nature of the flow can be vi-
sualized by the paths taken of ‘perfect’ tracer particles
released into the flow [21]. These tracers, which are as-
sumed to have exactly the same flow properties of the
containing substance, are allowed to follow the mate-
rial around freely, but are only influenced by the veloc-
ity field in the material. In this way the tracers do not
affect the flow and merely provide a way of recording
and displaying its history [22].

A similar technique is used in experiments, but there
are restrictions on what can be used as it is very un-
likely that a perfect tracer can be found. Adding any
foreign particles to a material can change its proper-
ties, the idea is to find one which has the least effect
that is still distinguishable and measurable from the
main substance. Often radio-isotopes [23] and high-
frequency ultrasonic imaging [24] are used to obtain
information about fluid flow.

Many independent particles can be added to give
a global picture of the flow, like a long time exposure
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photograph of illuminated fluid particles. Statistical in-
formation about the way a flow can disperse and mix
is gathered by analysing particle distributions.

One measure for mixing as a function of time can
be obtained by releasing a small cluster of particles in
a part of the cavity and then monitoring their evolu-
tion. The distribution of points can be measured by the
standard deviation of the distances of each point from
the mean center of all points. In (3) the standard devia-
tion s(t) is calculated using the position of each particle
ri(t), from the center average r̄(t) of N points,

s(t) =

√
1
N

N

∑
i=1

(ri(t)− r̄(t))2 . (3)

Efficient mixing processes are also known to have
good stretching and folding of fluid elements, so ma-
terial filaments are also placed in the fluid to measure
stretching [25]. A fluid filament is defined as a one-
dimensional length of fluid which is specified by the
location of its end points. These end points are treated
as massless particles and evolve during flow using the
methods outlined above for massless tracer particles.

Filaments of length |dXXX | are initialized, and at time t
its new length |dxxx| can be used to calculate a Lyapunov
exponent λi corresponding to the starting orientation
MMMi around a starting location XXX ,

λi(X ,Mi)≡ lim
t→ ∞

|dXXX | → 0

[
1
t

ln

(
|dxxx|
|dXXX |

)]
. (4)

It is the sensitivity to initial conditions, present in
chaotic systems, that this exponent tries to measure.
Normally there are N ·MMMi Lyapunov exponents in an
N-dimensional flow, each of which could be a differ-
ent value. If at least one of the exponents is larger than
zero, then the length of the filament increases exponen-
tially with time. The long term average at many points
within the cavity will provide a measure for the en-
tire flow. A flow which is better at mixing would be
expected to have a larger value for this Lyapunov ex-
ponent. A similar experimental technique has been de-
veloped recently for studying turbulence in elastic tur-
bulent flow [26].

Much like experimentally adding a dye to a mix-
ing fluid flow, a process of modelling the dispersion
of a passive concentration can be performed theoreti-
cally. This method is modelled by a scalar concentra-
tion which is applied to a volume of fluid evolving un-
der the velocity field, with an added diffusion effect.

The important aspect of diffusion was not covered by
any of the previous methods outlined.

A binary fluid is created by assigning concentrations
to parts of the fluid. These concentrations are then al-
lowed to mix as the flows are simulated, but do not
create any flows themselves, hence being passive. This
is a very visual method, which also allows for the iden-
tification of areas of unmixed stagnant regions. These
are highlighted as regions of the cavity where the mix-
ing action does not reach and whatever initial concen-
tration remains.

Modelling of this concentration is carried out as the
simulations are being performed, but could equally be
done afterwards if the full velocity field information
is retained. The advection of a passive scalar φ by an
incompressible velocity field v is described by

∂

∂ t
φ +(vvv ·∇)φ −Dc∇2

φ = 0 , (5)

where Dc is a diffusivity constant.
As before, dimensionless variables are used in the

computations. The value φ is a concentration quan-
tity which will be transported around the cavity and
also allowed to diffuse. By initialising the concentra-
tion within the cavity in specific volumes it will be pos-
sible to study the mixing as a function of time.

If some initial concentration is left in a cavity with
no external forcing, e.g. a zero-velocity field, then dif-
fusion alone will provide the only mixing action. The
act of diffusion on its own provides a base measure-
ment for comparisons. Any velocity field which ad-
vects the concentrations will speed up the mixing pro-
cess by moving regions of concentrations to different
parts of the cavity. In mixing flows, the process of
stretching and folding of fluid elements is the key to
efficient mixing.

This method is found to give good results in the high
Peclet number regime, when Dc is low enough that the
features do not just diffuse away too quickly. For these
simulations, a value of Dc = 0.005, in reduced units, is
used. Whilst this technique is simple to include, it lacks
some of the resolution of more advanced adaptive front
tracking techniques [27].

To gauge the mixing of the passive concentration,
it is necessary to measure statistical properties of the
scalar field distributed through the cavity, as a function
of time. The ideal end result will be a homogeneous
mixed solution throughout the cavity. The value of this
homogeneous mixed concentration φm depends on the
amount of concentration added at the start of the pro-
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cess. As no concentration is added or lost, an averaging
over all grid points at the time of initialisation ts will
give the value φm.

At each time step during the mixing, the deviation
φd of the concentration at each grid point φp from the
homogeneous concentration φm is found from φd =∣∣φp−φm

∣∣.
The average value of φd throughout the cavity will

give an indication of how unmixed the concentration
is. The temporal evolution of this quantity will then
reveal how efficient each mixing scenario is. The initial
distribution for the passive binary solution added to the
cavity is chosen to be that of φc = 1 in one half of the
cavity split along the x-axis, and the rest of the cavity
is assigned φc = 0.

A laminar flow develops when the linear terms in
the model (2) dominate, and a single vortex is cre-
ated inside the cavity. This itself provides a mixing
action as the fluid elements are stretched and folded.
An example of this single-vortex mixing action is
shown in Figure 1 where the lid on top of the box
moves towards the right with constant speed. Here

Fig. 1. Laminar flow mixing a passive scalar quantity. A slice is taken through the 3D cavity normal to the driving lid, and
parallel to the plate velocity. Snapshots are taken a ∆t = 4.0 increments.

the single vortex is very clear and the spiral-like mix-
ing that occurs as a result. The largest Lyapunov ex-
ponent calculated for this flow was 0.002. This is
very low and practically zero, which would corre-
spond to a stable periodic orbit in any other system of
equations.

This single vortex flow presents a vast improvement
over the process of just diffusion alone. This is due
to the advection of concentration created by the mov-
ing fluid driven by the top plate. This creates the much
needed stretching and folding action required for good
mixing. However, it is apparent that the concentration
is trapped by the streamlines and hence mixing can still
be improved.

Increasing the top plate velocity has the effect of
speeding up the vortex inside of the cavity. This extra
velocity results in a speed-up of the mixing process.
The stretching part happens at a faster rate in quicker
flows, hence the concentration is advected around the
cavity faster. The expense of having a faster moving
plate is that more energy would be required to drive
the mixing apparatus.
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Fig. 2. Turbulent flow mixing of a passive scalar. A slice is taken through the 3D cavity normal to the driving lid, and parallel
to the plate velocity. The time increment between snapshots is 4.0.

A turbulent-like flow develops when the nonlin-
ear terms in the model (2) dominate, and an irreg-
ular behaviour is observed. Here, a much more effi-
cient mixing occurs compared to that of the laminar
regime. High first normal stress differences are ob-
served, which create secondary flows. The nonlinear
‘elastic’ instability overcomes viscous diffusion to cre-
ate spatial and temporal chaos.

Figure 2 illustrates an example flow where turbu-
lence has developed, revealed through the mixing of
a passive concentration. The spatio-temporal chaotic
behaviour of the velocity is revealed through the var-
ious time slices, taken at ∆t = 4.0 increments in time.
Different size scales for features can be identified,
which appear and disappear as the simulation pro-
ceeds. This creates a very effective stretching and fold-
ing action, which, coupled with the underlying rate of
diffusion results in good mixing. The largest Lyapunov
exponent measured for this flow was 0.12.

The path traced by massless particles randomly
placed within the cavity can be seen in Figure 3

for laminar and turbulent flows. Here it is observed that
the particles are confined to the vortex that is produced
in a laminar flow, whilst in the turbulent flow a more
irregular path is taken.

The measurement of φd(t) (from the passive con-
centration) and s(t) (from tracers) is compared be-
tween the different simulations in Figure 4(a) and 4(b),
respectively. Here it can be seen that changing the
strength of the linear components (A∗, dimensionless
parameter from (2)) has a direct effect on the mixing
efficiency. The best mixing occurs at lowest values of
A∗, until flow turns more laminar, when the efficiency
is decreased.

As can be inferred from Figure 4(a) at the time t =
40, the laminar flow already enhances the mixing over
the pure diffusion by a factor of approximately 2. In
the turbulent flow, for A∗ < 0.3, is again enlarged by
a factor of about 4.

It is interesting to note that in Figure 4(b) the mass-
less particles are compressed as well as dispersed by
the turbulent flow due to its irregular nature. On av-
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Fig. 3 (colour online). Paths traced by massless particles released at random positions in (a) laminar flow (b) turbulent flow.
Red circles mark the starting positions.
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Fig. 4 (colour online). Evolution of (a) φd(t) and (b) s(t) for the various values of A∗. Model parameters are the same as those
in examples above for comparisons. Tracer concentrations are initialised at t = 10 after a short transient period.

erage the particles tend to move apart, clearly much
faster than the pure laminar flow.

4. Conclusion

In conclusion, the turbulent flow regime found in
a general Maxwell model for viscoelastic materials has

been shown to exhibit far better mixing properties than
a laminar counterpart. The spatio-temporal chaotic be-
haviour of the resulting velocity field creates a stretch-
ing and folding action required for good mixing.
The measured Lyapunov exponent for turbulent flow
was calculated to be 0.12 compared to 0.002 for
laminar flow. The temporal evolution of two mix-
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ing measures, from massless tracer particles and pas-
sive concentrations, revealed the efficiency of each
flow. The size of nonlinearities in the equations is
identified as a key factor in controlling the mixing
rate.
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[19] M. Kröger, Phys. Rep. 390, 453 (2004).
[20] J. H. Ferziger and M. Perić, Computational Methods
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