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1. Introduction

Canal surfaces are very useful for representing long
thin objects, for instance, poles, 3D fonts, brass in-
struments or internal organs of the body in solid mod-
elling. It includes natural quadrics (cylinder, cone, and
sphere), revolute quadrics, tori, pipes, and Dupin cy-
clide. Also, canal surfaces are among the surfaces
which are easier to describe both analytically and oper-
ationally. They are still under active investigation, both
for finding best parameterizations (see, for instance,
[1 – 6]) or for application in different fields (for in-
stance in medicine, see [7]).

We remind that, if C is a space curve, a tubular
surface associated to this curve is a surface swept by
a family of spheres of constant radius (which will be
the radius of the tube), having the center on the given
curve. Alternatively, as we shall see in the next section,
for them we can construct quite easily a parameteri-
zation using the Frenet frame associate to the curve.
The tubular surfaces are used quite often in computer
graphics, but we think they deserve more attention
for several reasons. For instance, there is the prob-
lem of representing the curves themselves. Usually, the
space curves are represented by using solids rather then
tubes. There are, today, several very good computer al-
gebra system (such as Maple, or Mathematica) which
allow the vizualisation of curves and surfaces in differ-
ent kind of representations.

The aim of this paper is to study a canal surface sur-
rounding a timelike horizontal biharmonic curve in the
Lorentzian Heisenberg group Heis3.

Let (M,g) and (N,h) be Lorentzian manifolds and
φ : M→ N a smooth map. Denote by ∇φ the connec-
tion of the vector bundle φ ∗T N induced from the Levi–
Civita connection ∇h of (N,h). The second fundamen-
tal form ∇dφ is defined by

(∇dφ)(X ,Y ) = ∇
φ

X dφ(Y )− dφ(∇XY ),
X ,Y ∈ Γ (T M).

Here ∇ is the Levi–Civita connection of (M,g). The
tension field τ(φ) is a section of φ ∗T N defined by

τ(φ) = tr∇dφ . (1)

A smooth map φ is said to be harmonic if its tension
field vanishes. It is well known that φ is harmonic if
and only if φ is a critical point of the energy:

E(φ) =
1
2

∫
h(dφ , dφ)dvg

over every compact region of M. Now let φ : M→N be
a harmonic map. Then the HessianH of E is given by

Hφ (V,W ) =
∫

h(Jφ (V ),W )dvg,

V,W ∈ Γ (φ ∗T N).

0932–0784 / 11 / 0600–0441 $ 06.00 c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

mailto:essin.turhan@gmail.com


442 E. Turhan and T. Körpinar · On Characterization Canal Surfaces

Here the Jacobi operator Jφ is defined by

Jφ (V ) := ∆
φV −Rφ (V ), V ∈ Γ (φ ∗T N), (2)

∆
φ :=−

m

∑
i=1

(
∇

φ
ei

∇
φ
ei
−∇

φ

∇ei ei

)
,

Rφ (V ) =
m

∑
i=1

RN(V, dφ(ei))dφ(ei),
(3)

where RN and {ei} are the Riemannian curvature of N
and a local orthonormal frame field of M, respectively,
[8 – 15].

Let φ : (M,g)→ (N,h) be a smooth map between
two Lorentzian manifolds. The bienergy E2(φ) of φ

over compact domain Ω ⊂M is defined by

E2(φ) =
∫

Ω

h(τ(φ),τ(φ))dvg.

A smooth map φ : (M,g)→ (N,h) is said to be bihar-
monic if it is a critical point of the E2(φ).

The section τ2(φ) is called the bitension field of φ

and the Euler–Lagrange equation of E2 is

τ2(φ) :=−Jφ (τ(φ)) = 0. (4)

Biharmonic functions are utilized in many physical
situations, particularly in fluid dynamics and elastic-
ity problems. Most important applications of the the-
ory of functions of a complex variable were obtained
in the plane theory of elasticity and in the approxi-
mate theory of plates subject to normal loading. That
is, in cases when the solutions are biharmonic func-
tions or functions associated with them. In linear elas-
ticity, if the equations are formulated in terms of dis-
placements for two-dimensional problems then the in-
troduction of a stress function leads to a fourth-order
equation of biharmonic type. For instance, the stress
function is proved to be biharmonic for an elastically
isotropic crystal undergoing phase transition, which
follows spontaneous dilatation. Biharmonic functions
also arise when dealing with transverse displacements
of plates and shells. They can describe the deflec-
tion of a thin plate subjected to uniform loading over
its surface with fixed edges. Biharmonic functions
arise in fluid dynamics, particularly in Stokes flow
problems (i.e., low-Reynolds-number flows). There are
many applications for Stokes flow such as in engineer-
ing and biological transport phenomena (for details,
see [2, 16]). Fluid flow through a narrow pipe or chan-
nel, such as that used in micro-fluidics, involves low

Reynolds number. Seepage flow through cracks and
pulmonary alveolar blood flow can also be approxi-
mated by Stokes flow. Stokes flow also arises in flow
through porous media, which have been long applied
by civil engineers to groundwater movement. The in-
dustrial applications include the fabrication of micro-
electronic components, the effect of surface roughness
on lubrication, the design of polymer dies and the de-
velopment of peristaltic pumps for sensitive viscous
materials. In natural systems, creeping flows are im-
portant in biomedical applications and studies of ani-
mal locomotion.

In [17] the authors completely classified the bihar-
monic submanifolds of the three-dimensional sphere,
while in [18] there were given new methods to
construct biharmonic submanifolds of codimension
greater than one in the n-dimensional sphere. The bi-
harmonic submanifolds into a space of nonconstant
sectional curvature were also investigated. The proper
biharmonic curves on Riemannian surfaces were stud-
ied in [19]. Inoguchi classified the biharmonic Legen-
dre curves and the Hopf cylinders in three-dimensional
Sasakian space forms [20]. Then, Sasahara gave in [21]
the explicit representation of the proper biharmonic
Legendre surfaces in five-dimensional Sasakian space
forms.

In this paper, we describe a new method for con-
structing a canal surface surrounding a timelike hori-
zontal biharmonic curve in the Lorentzian Heisenberg
group Heis3. Firstly, we characterize timelike bihar-
monic curves in terms of their curvature and torsion.
Also, by using timelike horizontal biharmonic curves,
we give explicit parametrizations of canal surfaces in
the Lorentzian Heisenberg group Heis3.

2. The Lorentzian Heisenberg Group Heis3

The Heisenberg group plays an important role in
many branches of mathematics such as representation
theory, harmonic analysis, partial differential equations
(PDEs) or even quantum mechanics, where it was ini-
tially defined as a group of 3×3 matrices{1 x z

0 1 y
0 0 1

 : x,y,z ∈ R

}

with the usual multiplication rule.
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We will use the following complex definition of the
Heisenberg group.

Heis3 = C×R =
{

(w,z) : w ∈ C,z ∈ R
}

with

(w,z)∗ (w̃, z̃) =
(
w+ w̃,z+ z̃+ Im(〈w, w̃〉)

)
,

where 〈,〉 is the usual Hermitian product in C.
The identity of the group is (0,0,0) and the inverse

of (x,y,z) is given by (−x,−y,−z).

Let a = (w1,z1), b = (w2,z2), and c = (w3,z3). The
commutator of the elements a,b ∈ Heis3 is equal to

[a,b] = a∗b∗a−1 ∗b−1

= (w1,z1)∗ (w2,z2)∗ (−w1,−z1)∗ (−w2,−z2)
= (w1 +w2−w1−w2,z1 + z2− z1− z2)
= (0,α),

where α 6= 0 in general. For example

[(1,0),(i,0)] = (0,2) 6= (0,0).

Which shows that Heis3 is not Abelian.
On the other hand, for any a,b,c ∈Heis3, their dou-

ble commutator is

[[a,b],c] =
[
(0,α),(w3,z3)

]
= (0,0).

This implies that Heis3 is a nilpotent Lie group with
nilpotency 2.

The left-invariant Lorentz metric on Heis3 is

g =−dx2 + dy2 +(xdy+ dz)2.

The following set of left-invariant vector fields
forms an orthonormal basis for the corresponding Lie
algebra:{

e1 =
∂

∂ z
, e2 =

∂

∂y
− x

∂

∂ z
, e3 =

∂

∂x

}
. (5)

The characterising properties of this algebra are the
following commutation relations:

[e2,e3] = 2e1, [e3,e1] = 0, [e2,e1] = 0,

with

g(e1,e1) = g(e2,e2) = 1, g(e3,e3) =−1. (6)

Proposition 2.1. For the covariant derivatives of the
Levi–Civita connection of the left-invariant metric g
defined above, the following is true:

∇ =

 0 e3 e2
e3 0 e1
e2 −e1 0

 , (7)

where the (i, j)-element in the table above equals ∇eie j

for our basis

{ek,k = 1,2,3}= {e1,e2,e3}.

We adopt the following notation and sign conven-
tion for the Riemannian curvature operator:

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z.

The Riemannian curvature tensor is given by

R(X ,Y,Z,W ) = g(R(X ,Y )W,Z).

Moreover, we put

Ri jk = R(ei,e j)ek, Ri jkl = R(ei,e j,ek,el),

where the indices i, j, k, and l take the values 1, 2,
and 3.

R121 = e2, R131 = e3, R232 =−3e3

and

R1212 =−1, R1313 = 1, R2323 =−3. (8)

3. Timelike Biharmonic Curves in the Lorentzian
Heisenberg Group Heis3

The biharmonic equation for the curve γ reduces to

τ2(γ) = ∇
3
T(s)T(s)−R

(
T(s) ,∇T(s)T(s)

)
T(s) = 0,

that is, γ is called a biharmonic curve if it is a solution
of the above equation.

An arbitrary curve γ : I→ Heis3 is spacelike, time-
like or null, if all of its velocity vectors γ ′(s) are, re-
spectively, spacelike, timelike or null, for each s ∈ I ⊂
R. Let γ : I→Heis3 be a unit speed timelike curve and
{T,N,B} are Frenet vector fields, then Frenet formulas
are as follows:

∇T(s)T(s) = κ1 (s)N(s) ,
∇T(s)N(s) = κ1 (s)T(s)+κ2 (s)B(s) , (9)

∇T(s)B(s) =−κ2 (s)N,
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where κ1, κ2 are curvature function and torsion func-
tion, respectively.

With respect to the orthonormal basis {e1,e2,e3}we
can write

T(s) = T1 (s)e1 +T2 (s)e2 +T3 (s)e3,

N(s) = N1 (s)e1 +N2 (s)e2 +N3 (s)e3,

B(s) = T(s)×N(s) = B1 (s)e1 +B2 (s)e2 +B3 (s)e3.

Theorem 3.1. (see [15]) γ : I → Heis3 be a unit
speed timelike biharmonic curve if and only if

κ1 (s) = constant 6= 0,

κ
2
1 (s)−κ

2
2 (s) = 1−4B2

1 (s) , (10)

κ
′
2 (s) = 2N1 (s)B1 (s) .

Theorem 3.2. If γ : I→ Heis3 is a unit speed time-
like biharmonic curve, then γ is timelike helix.

Proof. We can use (7) to compute the covariant
derivatives of the vector fields T, N, and B as:

∇T(s)T(s) =T ′1 (s)e1 +(T ′2 (s)+2T1 (s)T3 (s))e2

+(T ′3 (s)+2T1 (s)T2 (s))e3,

∇T(s)N(s) =(N′1 (s)+T2 (s)N3 (s)−T3 (s)N2 (s))e1

+(N′2 (s)+T1 (s)N3 (s)+T3 (s)N1 (s))e2

+(N′3 (s)+T2 (s)N1 (s)+T1 (s)N2 (s))e3,

∇T(s)B(s) =(B′1 (s)+T2 (s)B3 (s)−T3 (s)B2 (s))e1

+(B′2 (s)+T1 (s)B3 (s)+T3 (s)B1 (s))e2

+(B′3 (s)+T2 (s)B1 (s)+T1 (s)B2 (s))e3.
(11)

It follows that the first components of these vectors
are given by

〈∇T(s)T(s),e1〉= T ′1(s),
〈∇T(s)N(s),e1〉= N′1(s)+T2(s)N3(s)−T3(s)N2(s),
〈∇T(s)B(s),e1〉= B′1(s)+T2(s)B3(s)−T3(s)B2(s).

(12)

On the other hand, using Frenet formulas (9), we
have

〈∇T(s)T(s) ,e1〉= κ1N1 (s) ,
〈∇T(s)N(s) ,e1〉= κ1T1 (s)+κ2 (s)B1, (13)

〈∇T(s)B(s) ,e1〉=−κ2 (s)N1 (s) .

These, together with (12) and (13), give

T ′1(s) = κ1N1(s),
N′1(s)+T2(s)N3(s)−T3(s)N2(s) =

κ1T1(s)+κ2(s)B1(s),
(14)

B′1(s)+T2(s)B3(s)−T3(s)B2(s) =−κ2(s)N1(s).

Assume that γ is biharmonic.
If we take the derivative in the second equation of

(10), we get

κ
′
2 (s)κ2 (s) = 4B1 (s)B′1 (s) .

Then using κ ′2 (s) = 2N1 (s)B1 (s) 6= 0 and (14), we
obtain

κ2 (s)N1 (s)B1 (s) = 2B1 (s)B′1 (s) .

Then,

κ2 (s) =
2B′1 (s)
N1 (s)

. (15)

If we use T2 (s)B3 (s)− T3 (s)B2 (s) = N1 (s) and
(14), we get

B′1 (s) = (1−κ2 (s))N1 (s) .

We substitute B′1 (s) in (15):

κ2 (s) =
2
3

= constant.

Therefore, also κ2 (s) is constant and we have a con-
tradiction that is κ ′2 (s) = 2N1 (s)B1 (s) 6= 0. This com-
pletes the proof.

Corollary 3.3. γ : I→Heis3 is a unit speed timelike
biharmonic if and only if

κ1 = constant 6= 0,

κ2 = constant,

N1(s)B1(s) = 0,

κ
2
1 −κ

2
2 = 1−4B2

1(s).

(16)

Corollary 3.4. (see [15]) Let γ : I → Heis3 be
a timelike curve on Lorentzian Heisenberg group Heis3

parametrized by arc length. If N1 6= 0 then γ is not bi-
harmonic.
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4. Canal Surfaces around Horizontal Biharmonic
Curves in the Lorentzian Heisenberg Group
Heis3

Now, we shall give here the mathematical descrip-
tion of canal surfaces associated to timelike horizontal
biharmonic curves in the Lorentzian Heisenberg group
Heis3. Our purpose in this section, we will obtain the
tubular surface from the canal surface in the Lorentzian
Heisenberg group Heis3. If we find the canal surface
with taking variable radius r(s) as constant, then the
tubular surface can be found, since the canal surface is
a general case of the tubular surface.

Firstly, consider a nonintegrable two-dimensional
distribution (x,y) → H(x,y) in Heis3 defined as H =
kerω , where ω = xdy + dz is a 1-form on Heis3. The
distributionH is called the horizontal distribution.

A curve γ : I → Heis3 is called horizontal curve if
γ ′(s) ∈ Hγ(s), for every s.

Lemma 4.1. Let γ : I→Heis3 is a timelike horizon-
tal curve. Then,

z′(s)+ x(s)y′(s) = 0. (17)

Proof. Using the orthonormal left-invariant frame
(7), we have

γ
′(s) = x′(s)∂x + y′(s)∂y + z′(s)∂z

= x′(s)e3 + y′(s)e2 +ω(γ ′(s))e1.

Then, γ(s) is a timelike horizontal curve, we get

ω(γ ′(s)) = 0.

We substitute ω = xdy+ dz in the above equation

ω(γ ′(s)) = z′(s)+ x(s)y′(s) = 0. (18)

We obtain (17) and the lemma is proved.

Lemma 4.2. If γ(s) is a timelike horizontal curve,
then

x′(s)e3 + y′(s)e2 =x′(s)
∂

∂x
+ y′(s)

∂

∂y

− x(s)y′(s)
∂

∂ z
.

(19)

Proof. Using our orthonormal basis, we obtain

∂

∂x
= e3,

∂

∂y
= e2 + xe3,

∂

∂ z
= e1.

Substituting above system in Lemma 4.1, we have
(19).

On the other hand, an envelope of a 1-parameter
family of surfaces is constructed in the same way
that we constructed a 1-parameter family of curves.
The family is described by a differentiable function
F(x,y,z,λ ) = 0, where λ is a parameter. When λ can
be eliminated from the equations

F(x,y,z,λ ) = 0

and

∂F(x,y,z,λ )
∂λ

= 0.

We get the envelope, which is a surface described
implicitly as G(x,y,z) = 0. For example, for a 1-
parameter family of planes we get a develople sur-
face [23].

Definition 4.3. The envelope of a 1-parameter fam-
ily of the Lorentzian spheres in the Lorentzian Heisen-
berg group Heis3 is called a canal surface in the
Lorentzian Heisenberg group Heis3. The curve formed
by the centers of the Lorentzian spheres is called cen-
ter curve of the canal surface. The radius of the canal
surface is the function r such that r(s) is the radius of
the Lorentzian sphere. Here the Lorentzian circle is in
the plane determined by γ(s), N(s), B(s) and with its
center in γ(s).

On the other hand, let γ : I→ Heis3 be a unit speed
curve whose curvature does not vanish. Consider a tube
of radius r around γ . Since the normal N(s) and bi-
normal B(s) are perpendicular to γ , the Lorentzian
circle is perpendicular γ and γ(s). As this Lorentzian
circle moves along γ , it traces out a surface about γ

which will be the tube about γ , provided r is not too
large.

Theorem 4.4. Let the center curve of a canal sur-
face Canal(s,θ) be a unit speed timelike horizontal
biharmonic curve γ : I→ Heis3. Then, the parametric
equations of Canal(s,θ) are

xCanal(s,θ) =
1
κ1

sinh(κ1s+ζ )+ r(s)r′(s)cosh(κ1s+ζ )

± r(s)
√

1+(r′(s))2 sinh(κ1s+ζ )cosθ +a1,
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yCanal(s,θ) =
1
κ1

cosh(κ1s+ζ )+ r(s)r′(s)sinh(κ1s+ζ )

± r(s)
√

1+(r′(s))2 cosh(κ1s+ζ )cosθ +a2,

zCanal(s,θ) = (20)
2
κ1

s− 1

4κ2
1

sinh2(κ1s+ζ )− a1

2κ1
cosh(κ1s+ζ )

+ r(s)r′(s)
[
− 1

κ1
sinh2(κ1s+ζ )−a1 sinh(κ1s+ζ )

]
± r(s)

√
1+(r′(s))2 cosh(κ1s+ζ )

·
[
− 1

κ2
1

sinh(κ1s+ζ )− c1s− c2

]
cosθ

± r(s)
√

1+(r′(s))2 sinθ +a3,

where a1,a2,a3,c1,c2 are constants of integration and
r(s) is the radius of the Lorentzian sphere.

Proof. Since γ is timelike biharmonic, γ is a timelike
helix. So, without loss of generality, we take the axis
of γ parallel to the spacelike vector e1. Then,

g(T(s),e1) = T1(s) = sinhϕ, (21)

where ϕ is a constant angle.
The tangent vector can be written in the following

form:

T(s) = T1(s)e1 +T2(s)e2 +T3(s)e3. (22)

On the other hand, the tangent vector T is a unit
timelike vector, so the following condition is satisfied:

T 2
2 (s)−T 2

3 (s) =−1− sinh2
ϕ. (23)

Noting that cosh2
ϕ− sinh2

ϕ = 1, we have

T 2
3 (s)−T 2

2 (s) = cosh2
ϕ. (24)

The general solution of (24) can be written in the
following form:

T2(s) = coshϕ sinh µ(s),
T3(s) = coshϕ cosh µ(s),

(25)

where µ is an arbitrary function of s.
So, substituting the components T1(s), T2(s), and

T3(s) in (22), we have the following equation:

T(s) = sinhϕe1 + coshϕ sinh µ(s)e2

+ coshϕ cosh µ(s)e3.
(26)

Since |∇T(s)T(s)|= κ1, we obtain

µ(s) =
(

κ1− sinh2ϕ

coshϕ

)
s+ζ , (27)

where ζ ∈ R.
Thus, (26) and (27) imply

T(s) = sinhϕe1 + coshϕ sinh(℘s+ζ )e2

+ coshϕ cosh(℘s+ζ )e3,
(28)

where ℘= κ1−sinh2ϕ

coshϕ
.

Using (5) in (27), we obtain

T(s) =
(

coshϕ cosh(℘s+ζ ), coshϕ sinh(℘s+ζ ) ,

sinhϕ− 1
℘

cosh2
ϕ sinh2(℘s+ζ )

−a1 coshϕ sinh(℘s+ζ )
)
,

(29)

where a1 is constant of integration.
From (29), the parametric equations of unit speed

timelike biharmonic curve γ are

xγ (s) =
1
℘

coshϕ sinh(℘s+ζ )+a1,

yγ (s) =
1
℘

coshϕ cosh(℘s+ζ )+a2, (30)

zγ (s) =sinhϕs− 1
℘

cosh2
ϕ

[
− s

2
+

sinh2(℘s+ζ )
4℘

]
− a1 coshϕ

℘
cosh(℘s+ζ )+a3,

where a1,a2,a3 are constants of integration.
On the other hand, using (18) and (28) we have

T1 (s) = sinhϕ = 0. (31)

Thus, we choose

coshϕ = 1. (32)

Using (31) and (32) in the system (30), then the
parametric equations of unit speed timelike horizontal
biharmonic curve γ are

xγ(s) =
1
κ1

sinh
(
κ1s+ζ

)
+a1,

yγ(s) =
1
κ1

cosh
(
κ1s+ζ

)
+a2,

zγ(s) =− 1
κ1

[
− s

2
+

sinh2(κ1s+ζ )
4κ1

]
− a1

κ1
cosh

(
κ1s+ζ

)
+a3,

(33)

where a1,a2,a3 are constants of integration.
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Substituting (31) into (28), we get

T(s) = sinh(κ1s+ζ )e2 +cosh(κ1s+ζ )e3. (34)

Using (5) in (34), we obtain

T(s) =
(

cosh(κ1s+ζ ), sinh(κ1s+ζ ),

− 1
κ1

sinh2(κ1s+ζ )−a1 sinh(κ1s+ζ )
)

.

(35)

Assume that the center curve of a tubular sur-
face is a unit speed timelike biharmonic curve γ and
Canal(s,θ) denote a patch that parametrizes the en-
velope of the Lorentzian spheres defining the tubular
surface. Then we obtain

Canal(s,θ) =γ(s)+ξ (s,θ)T(s)+η(s,θ)N(s)
+ρ(s,θ)B(s), (36)

where ξ , η , and ρ are differentiable on the interval on
which γ is defined.

On the other hand, using Frenet formulas (9) and
(34), we have

N(s) = cosh(κ1s+ζ )e2 + sinh(κ1s+ζ )e3].

Similarly, using (5) in above equation, we obtain

N(s) =
(
sinh(κ1s+ζ ), cosh(κ1s+ζ ),

− 1

κ2
1

sinh(κ1s+ζ )cosh(κ1s+ζ )

− c1scosh(κ1s+ζ )− c2 cosh(κ1s+ζ )
)
.

(37)

On the other hand, the binormal vector B(s) is

B(s)=−e1 = (0,0,−1). (38)

Using Definition 4.3, we have

g
(
Canal(s,θ)− γ(s), Canal(s,θ)− γ(s)

)
= r2(s).

(39)

Since C(s,θ)−γ(s) is a normal vector to the tubular
surface, we get

g(Canal(s,θ)− γ(s), Canals(s,θ)) = 0. (40)

From (18) and (35), we get

−ξ
2(s)+η

2(s)+ρ
2(s) = r2(s),

−ξ (s)ξs(s)+η(s)ηs(s)+ρ(s)ρs(s) = r(s)r′(s).
(41)

When we differentiate (36) with respect to s and use
the Frenet–Serret formulas, we obtain

Canals(s,θ) =
(
1+ξs(s)+η(s)κ1

)
T(s)

+
(
ξ (s)κ1−ρ(s)κ2 +ηs(s)

)
N(s)

+
(
ρs(s)+η(s)κ2

)
B(s).

(42)

Then (40), (41), and (42) imply that

ξ (s) = r(s)r′(s). (43)

Also, from (41) and (42) we get

η
2(s)+ρ

2(s) = r2(s)
(
1+(r′(s))2). (44)

The solution of (44) can be written in the following
form:

η(s) =±r(s)
√

1+(r′(s))2 cosθ ,

ρ(s) =±r(s)
√

1+(r′(s))2 sinθ .
(45)

Thus (36) becomes

Canal(s,θ) =γ(s)+ r(s)r′(s)T(s)

± r(s)
√

1+(r′(s))2N(s)cosθ

± r(s)
√

1+(r′(s))2B(s)sinθ .

(46)

Substuting (33), (35), (37), and (38) into (46), we
obtain the system (20). This completes the proof.

Corollary 4.5. If the radius of the Lorentzian
sphere is r(s) = s, then the parametric equations
Canal(s,θ) are

xCanal(s,θ) =
1
κ1

sinh(κ1s+ζ )+ scosh(κ1s+ζ )

±
√

2ssinh(κ1s+ζ )cosθ +a1,

yCanal(s,θ) =
1
κ1

cosh(κ1s+ζ )+ ssinh(κ1s+ζ )

±
√

2scosh(κ1s+ζ )cosθ +a2,
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zCanal(s,θ) =
2
κ1

s− 1

4κ2
1

sinh2(κ1s+ζ )

− a1

2κ1
cosh2(κ1s+ζ ) (47)

+ s

[
− 1

κ1
sinh2(κ1s+ζ )−a1 sinh(κ1s+ζ )

]

Fig. 1 (colour online). Plot with the parameters ζ = 0 and
κ1 = r = a1 = a2 = a3 = c1 = c2 = 1.

Fig. 2 (colour online). Plot with the parameters ζ = 0 and
κ1 = r = a1 = a2 = a3 = c1 = c2 = 1.

±
√

2ssinθ ±
√

2scosh(κ1s+ζ )

·
[
− 1

κ2
1

sinh(κ1s+ζ )− c1s− c2

]
cosθ +a3,

where a1,a2,a3,c1,c2 are constants of integration.

Fig. 3 (colour online). Plot with the parameters κ1 = 1, ζ = 0
and r = a1 = a2 = a3 = c1 = c2 =−1.

Fig. 4 (colour online). Plot with the parameters κ1 = r = 1,
ζ = 0 and a1 = a2 = a3 = c1 = c2 = 0.



E. Turhan and T. Körpinar · On Characterization Canal Surfaces 449

It is easy to see that when the radius function r(s) is
constant, the definition of a canal surface reduces to the
definition of a tube. In fact, we can characterize tubes
among all canal surfaces.

Theorem 4.6. If Canal(s,θ) is a tubular surface,
that is r(s) is constant, then the parametric equations
of tubular surface are

xTube(s,θ) =
1
κ1

sinh(κ1s+ζ )

+ r sinh(κ1s+ζ )cosθ +a1,

yTube(s,θ) =
1
κ1

cosh(κ1s+ζ )

+ r cosh(κ1s+ζ )cosθ +a2, (48)

zTube(s,θ) =
2
κ1

s− 1

4κ2
1

sinh2(κ1s+ζ )

− a1

2κ1
cosh2(κ1s+ζ )+ r sinθ + r cosh(κ1s+ζ )

·
[
− 1

κ2
1

sinh(κ1s+ζ )− c1s− c2

]
cosθ +a3,

where a1,a2,a3,c1,c2 are constants of integration.

Next, we apply Theorem 4.6.

We can draw the tubular surface Tube(s,θ) with the
help of the programme Mathematica as it can be seen
in Figures 1 – 4.
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