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A mathematical model will be analyzed in order to study the effects of viscous dissipation and
Ohmic heating (Joule heating) on magnetohydrodynamic (MHD) natural convection flow of a tem-
perature dependent viscosity from heated vertical wavy surface. The present physical problem is
studied numerically by using the appropriate variables, which reduce the complex wavy surface
into a flat one. An implicit marching Chebyshev collocation scheme is employed for the analysis.
Numerical solutions are obtained for velocity, temperature, local skin friction, and Nusselt number
for a selection of parameter sets consisting of Eckert number, Prandtl number, MHD variation, and
amplitude-wavelength ratio parameter. Numerical results show that these parameters have significant
influences on the velocity and the temperature profiles as well as for the local skin friction and Nusselt
number.

Key words: Wavy Surface; Magnetohydrodynamic; Viscous Dissipation; Chebyshev Collocation
Method.
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1. Introduction

The natural convection about a heated vertical wavy
surface has received a great deal of attention due to its
relation to practical applications of complex geome-
tries. The electric and magnetic fields must obey a set
of physical laws, which are expressed by Maxwell’s
equations. The solution to such problems requires the
simultaneous solution for the set of fluid mechanics
and electromagnetism equations. Through the stud-
ied cases there is a special case of this type of cou-
pling known as magnetohydrodynamic (MHD). Many
works on heat transfer have focused mainly on regular
geometries, few studies have been carried out to ex-
amine the effect of geometric complexity, such as ir-
regular surfaces, on the convection heat transfer. That
is because complicated boundary conditions or exter-
nal flow fields are difficult to deal with. The natural
convection along a wavy surface, such as sinusoidal
surfaces, have been studied by Yao [1], Moulic and
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Yao [2], Rees and Pop [3], Pop and Na [4]. They solved
the transformation boundary layer equations of the nat-
ural convection in Newtonian fluids by a numerical fi-
nite difference method. Results show that the local heat
transfer rates vary periodically along the wavy surface,
with a frequency equal to twice the frequency of the
wavy surface. Recently, Jang et al. [5 – 7] investigated
natural or mixed convection heat and mass transfer
along a wavy surface. Another interesting application
of hydromagnetic to metallurgy lies in the purification
of molten metals from non-metallic inclusions by the
application of a magnetic field. Developments of new
technologies in these areas require both improvements
in our ability to create adequate mathematical mod-
els and in our understanding of the fundamental physi-
cal processes involved in the fluid flow. The sinusoidal
wavy surface can be viewed as an approximation to
much practical geometries in heat transfer. A good ex-
ample is a cooling fin. Since cooling fins have a larger
area than a flat surface, they are better heat transfer de-
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vices. Free convection in a non-Darcian wavy porous
enclosure studied by Rathish Kumar and Shalini [8].
Recently, Rathish Kumar and Shalini [9] investigated
non-Darcy free convection induced by a vertical wavy
surface in a thermally stratified porous medium. Natu-
ral convection along a vertical complex wavy surface
was studied by Yao [10]. On the other hand, Hossain
and Pop [11] investigated the magnetohydrodynamic
boundary layer flow and heat transfer along a con-
tinuous moving wavy surface. The problem of free-
convection flow from a wavy vertical surface in pres-
ence of a transverse magnetic field was studied by Hos-
sain et al. [12]. Natural convection flow along a verti-
cal wavy surface with uniform surface temperature in
presence of heat generation/absorption was studied by
Molla et al. [13]. Hossain and Rees [14] have inves-
tigated the combined effect of thermal and mass dif-
fusion on the natural convection flow of a viscous in-
compressible fluid from a vertical wavy surface. In all
the above studies the viscosity of the fluid has been as-
sumed to be constant. However, it is known that this
physical property may change significantly with tem-
perature. Kafoussias and Williams [15] and Kafoussias
et al. [16] investigated the effect of temperature de-
pendent viscosity on the mixed convection flow from
a vertical flat plate in the region near the leading edge
using the local non-similarity method. Natural con-
vection flow of a viscous fluid with the viscosity in-
versely proportional to a linear function of temperature
from a vertical wavy cone was investigated by Hossain
et al. [17]. Hossain et al. [18] have studied the problem
of natural convection of a fluid with variable viscosity
from a heated vertical wavy surface. Although these
intensive works were done by the above mentioned
authors, the effects of viscous dissipation and Ohmic
heating on MHD natural convection flow of the New-
tonian fluid case were not studied or developed. Conse-
quently, the main purpose of this research is an exten-
sion of the work done by Hossain et al. [18]. Hence the
purpose of this work is to study the more general prob-
lem which includes the effects of viscous dissipation
and Ohmic heating on MHD natural convection flow
of a Newtonian fluid with a temperature dependent vis-
cosity from a vertical wavy surface in the presence of
a magnetic field. The results of the present study are
an important process of manufacturing. The prediction
of heat transfer from an irregular surface is of funda-
mental importance and is encountered in several heat
transfer devices, such as flat-plate solar collectors and
flat-plate condensers in refrigerators. Irregularities fre-

quently occur in the process of manufacturing. More-
over, surfaces are sometimes intentionally roughened
to enhance heat transfer because the presence of rough
surfaces disturbs the flow and alters the heat transfer
rates. There is now a discussion of research performed
on some irregular surfaces following. The fluid vis-
cosity is assumed to vary as inversely proportional to
a linear function of temperature. The spectral method
can yield greater accuracy for a smooth solution with
far fewer nodes and therefore less computational time
than the finite-difference and finite-element schemes
(see Elgazery [19]). The dimensionless nonlinear par-
tial differential equations are solved numerically by us-
ing the implicit Chebyshev collocation method. It is
hoped that the results obtained will not only provided
useful information for applications but also serve as
a complement to the previous studies.

2. Mathematical Formulation

Consider the steady, laminar boundary layer in
a two-dimensional natural-convection of a Newto-
nian fluid of a temperature dependent viscosity from
a vertical wavy surface. A uniform magnetic field of
strength B0 is imposed along the Y -axis (Fig. 1). The
thermo-physical fluid properties are assumed to be
isotropic and constant except the buoyancy term in
the X momentum equation, the fluid viscosity µ , which
was introduced by [20] and which was also used by
Kafoussias et al. [16] in the form

µ =
µ∞

1+ γ(T −T∞)
,

where γ is a constant and µ∞, T , and T∞ are the fluid
free-stream dynamic viscosity, the temperature of the
fluid in the boundary layer, and the temperature of
the fluid far away from the wavy surface, respectively.
Also, the temperature at the wavy surface is kept at the
constant value Tw of the X-coordinate. The wavy sur-
face of the plate is described in the function

Y = σ̄(X) = a · sin(X/L), (1)

where a is the amplitude of the wavy surface and L is
the wavelength of the wavy surface.

Under the Boussinesq and boundary layer approxi-
mations which are used to characterize the buoyancy
effect, the governing continuity, momentum, and en-
ergy conservation equations are

∂U
∂X

+
∂V
∂Y

= 0, (2)



N. S. Elgazery and N. Y. Abd Elazem · Effects of Viscous Dissipation and Joule Heating 429

Y

X

Tw

a

L

∞ T

σ(X) =a·sin(X/L)־B0

g

T

Fig. 1. Schematic diagram of the physical system.
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The boundary conditions are given by [18]:{
U = V = 0, T = Tw at Y = σ̄(X),
U → 0, T → T∞, P→ P∞ as Y → ∞.

(6)

Based on the previous equations, (U,V ) are the veloc-
ity components along the (X ,Y ) axis, respectively. ρ ,

βT, P, and P∞ are the density of the fluid, the volumet-
ric coefficient of the thermal expansion, the pressure of
the fluid, and the constant pressure of the ambient fluid,
respectively. σ∗ is the electrical conductivity. B0, kf, cp,
and g are the applied magnetic field, the fluid thermal
conductivity, the fluid specific heat at constant pres-
sure, and the acceleration due to gravity, respectively.

We now introduce the following dimensionless vari-
ables:

x =
X
L

, y =
Y − σ̄

L
Gr

1
4 , u =

ρL

µ∞Gr
1
2

U,

v =
ρL

µ∞Gr
1
4

(V −σxU), θ =
T −T∞

Tw−T∞

,

M =
σ∗B2

0L2

µ∞Gr
1
2

, p =
L2

ρν2
∞Gr

(P−P∞),

Gr =
gβT(Tw−T∞)ρ2L3

µ2
∞

, Ec =
gβTL

cp
,

Pr =
µ∞cp

kf
, σ =

σ̄

L
,

(7)

where ν∞ is the fluid free-stream kinematic viscosity,
M is the magnetic parameter, Gr is the temperature
Grashof number, Pr is the Prandtl number, Ec is the
Eckert number, σ̄ is the coordinate of the wavy sur-
face in (1), and σ is the dimensionless coordinate of
the wavy surface.

Introducing expressions (7) into (2) – (5) and ignor-
ing the small-order terms in Gr, the transformed gov-
erning equations in the dimensionless form can be ob-
tained as written below:
∂u
∂x

+
∂v
∂y

= 0, (8)
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+σx
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1+σ2

x

1+ εθ
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εσx
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)(
∂θ

∂y
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(
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(
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)(
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∂y

)2

+M Ec u2.

(11)
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It is noticeable that σx, σxx indicate the first and sec-
ond differentiations of σ(x) = α sin(x) with respect
to x where α = a

L is the amplitude-wavelength ratio,
therefore, σx = d σ̄

dX = dσ

dx and σxx = dσx
dx . For the cur-

rent problem, the pressure gradient ∂ p
∂x is zero. There-

fore (9) can be reduced to the following equation after
eliminating ∂ p

∂y in (9) and (10):

u
∂u
∂x

+ v
∂u
∂y

=
(

1+σ2
x

1+ εθ

)
∂ 2u
∂y2 −

ε
(
1+σ2

x

)
(1+ εθ)2(

∂u
∂y

)(
∂θ

∂y

)
+

(
1

1+σ2
x

)
θ −

(
σxσxx

1+σ2
x

)
u2

−
(

M
1+σ2

x

)
u.

(12)

The quantity ε = γ(Tw − T∞) is defined by the
viscosity-temperature variation, expressed by the equa-
tion µ = µ∞

1+γ(T−T∞) . It can be seen clearly that the
dimensionless viscosity µ

µ∞
lies in the range between

( 1
1+ε

) and 1; its value is decreasing with increasing
temperature when ε > 0. The difference (Tw − T∞)
is greater than zero (Tw > T∞) (free convection) and
ε > 0. This means that γ , the thermal property of the
fluid, is positive (ε = γ(Tw−T∞)) and hence the fluid
must be liquid (e.g. water, Pr = 7) and not a gas (e.g.
air, Pr = 0.7) (see Kafoussias and Williams [15]).

Actually, the present work is a continuation and an
extension of a work written by Hossain et al. [18],
where the fluid viscosity is assumed to vary as an
inverse linear function of temperature. Then the ex-
pression µ = µ∞

1+γ(T−T∞) is used in the present paper
whereas in [18] the authors used the wrong expression
µ = µ∞[1 + γ(T −T∞)]. So (9) and (10) are correct in
the present paper, i.e., in (9), the coefficient of the term
( ∂u

∂y )( ∂θ

∂y ) in [18] is − ε

1+ε
whereas this term is not pre-

sented in the corresponding equation (9) in the present
work. On the other hand, in (10), in the present work,

there is the term (the last term) − ε σx(1+σ2
x )

(1+εθ)2 ( ∂u
∂y )( ∂θ

∂y ),
whereas this term is not presented in the corresponding
equation (10) of [18].

The boundary conditions are now given by{
u = v = 0, θ = 1 at y = 0,
u→ 0, θ → 0, p→ 0 as y→ ∞.

(13)

The following non-similar variables have been in-
troduced:

ψ = x
3
4 f (x,η), η =

y

x
1
4

, θ = θ(x,η), (14)

where ψ is the stream function, which satisfies the
equation of continuity (8) and which is defined accord-
ing to u = ∂ψ/∂y and v =−∂ψ/∂x.

The boundary layer equations can be obtained as(
1+σ2

x

1+ εθ

)
f ′′′+

3
4

f f ′′−
(

1
2

+
xσxσxx

1+σ2
x

)
f ′2

−
ε
(
1+σ2

x

)
(1+ εθ)2 θ

′ f ′′+
(

1
1+σ2

x

)
θ −

(
Mx

1
2

1+σ2
x

)
f ′

= x

(
f ′

∂ f ′

∂x
− f ′′

∂ f
∂x

)
, (15)(

1+σ2
x

)
Pr

θ
′′+

3
4

f θ
′ =

x

(
f ′

∂θ

∂x
−θ

′ ∂ f
∂x
− Ec

(1+ εθ)
f ′′2−M Ec x

1
2 f ′2

)
.

(16)

The boundary conditions to be satisfied are{
f (x,η) = f ′(x,η) = 0, θ(x,η) = 1 at η = 0,
f ′(x,η) = 0, θ(x,η) = 0 as η → ∞.

(17)

In the above equations a prime denotes differen-
tiation with respect to η , i.e., f ′(x,η) = ∂ f (x,η)

∂η
and

θ ′(x,η) = ∂θ(x,η)
∂η

. The dimensionless surface shear-
stress and rate of heat transfer in terms of the local
skin-friction C fx and the local Nusselt number Nux, re-
spectively, are defined as

C fx =
2τw

ρU2
∞

, where U∞ =
µ∞Gr

1
2

ρL
,

and

Nux =
x qw

k (Tw−T∞)
.

The quantities of physical interest are the surface
shear-stress and rate of heat transfer which may be
described in terms of the local skin-friction C fx and
the local Nusselt number Nux, respectively, in non-
dimensional form from the relations

C fx = 2

(
1−σ2

x

1+ ε

)(
Gr
x

)− 1
4

f ′′(x,0), (18)

Nux =−x
3
4 Gr

1
4
(
1+σ

2
x

) 1
2 θ
′(x,0). (19)

Also, it is worth mentioning that the corresponding
expressions in [18] (equations (17) and (18)), are dif-
ferent to the present work.
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To initiate the process at x = 0, we prescribe the pro-
files for the functions f ,θ , and their derivatives from
the solutions of the equations(

1
1+ εθ

)
f ′′′+

3
4

f f ′′

(20)
− 1

2
f ′2− ε

(1+ εθ)2 θ
′ f ′′+θ = 0,

1
Pr

θ
′′+

3
4

f θ
′ = 0, (21)

satisfying the boundary conditions{
f (η) = f ′(η) = 0, θ(η) = 1 at η = 0,
f ′(η) = 0, θ(η) = 0 as η → ∞.

(22)

Table 1. Represents comparison of numerical values of skin
friction and Nusselt number for Prandtl number (Pr = 10)
against viscosity parameter ε with Hossain et al. [18]

ε f ′′(0) −θ ′(0)
Hossain Present Hossain Present

et al. [18] work et al. [18] work
0.0 0.591 0.592678 0.825 0.826642
1.0 0.975 0.976952 0.931 0.931709
2.0 1.288 1.290630 0.997 0.997935

The nonlinear interactions among the governing
continuity, momentum, and energy conservation par-
tial differential equations (15) – (16) are transformed
into a linear algebraic system and have been solved
numerically with the boundary conditions (17) by us-
ing an implicit Chebyshev pseudospectral procedure
(the spatial derivatives are computed with a differen-
tiation matrix by using Chebyshev collocation method,
and the time derivatives are computed with the Crank–
Nicolson implicit finite-difference method; see Elgaz-
ery [19]). The computer program of the numerical
method and the numerical computations have been
done by the symbolic computation software Mathe-
matica 5.2TM running on a PC. Also, the solution of
the above equations (20) – (21) with boundary con-
ditions (22) are obtained using the Newton–Raphson
iteration technique and these are entered in Table 1
for different values of the governing parameters. The
present results are compared to those obtained by Hos-
sain et al. [18]. It was found that the present results
agree very well with the previous results.

3. Results and Discussion

In this section, a comprehensive numerical para-
metric study is conducted and the results are reported

in terms of graphs. This is done in order to illus-
trate special features of the solutions. So the nu-
merical solution, by using the Chebyshev colloca-
tion method in η-direction and the Crank–Nicolson
method in x-direction, was obtained for distributions
of the dimensionless velocity f ′(x,η) and the di-
mensionless temperature θ(x,η) as well as the lo-
cal skin-friction coefficient C fx and the local Nusselt
number Nux. To study the behaviour of these pro-
files, curves are drawn for various values of the pa-
rameters that describe the flow, e.g. the Eckert num-
ber Ec, the Prandtl number Pr, the magnetic param-
eter M, and the amplitude-wavelength ratio α . It has
to be noticed that the values of the parameter set,
which are representing a realistic case, are taken
from [18]. In Figures 11 – 16, for example, the value
Pr = 7 corresponds to water at approximately 20 ◦C.
Under these circumstances the density ρ of water,
the specific heat at constant pressure cp, the kine-
matic viscosity ν∞, and the volumetric coefficient of
the thermal expansion βT are equal to (see Cebeci
and Bradshaw [21] p. 467) ρ = 1000.52 kg/m3, cp =
4.1818 K J kg−1 k−1, ν∞ = 1.006 ·10−6 m2 sec−1, and
βT = 0.18 ·10−3 k−1 respectively, the wavelength of
the wavy surface amounts to L = 0.237 m, and accord-
ing to its definition, the Eckert number Ec = gβ TL

cp
(g =

9.81 m sec−2) takes the value Ec = 10−7. These values
of studied parameters are shown in Figures 2 – 16.

First of all, a comparison between the values of the
skin-friction f ′′(0) and Nusselt number −θ ′(0) com-
puted by Hossain et al. [18] and their corresponding
numerical results for the Prandtl number (Pr = 10)
against (ε = 0,1,2) are given in Table 1. Also, a com-
parison between the values of −θ ′(x,0) of the curves
computed by Hossain et al. [18] (Fig. 4 b) and their
corresponding numerical results for α = 0.3, ε = 3,
M = 0, and Ec = 0 is given in Figure 2. As is evident
from Table 1 and Figure 2, it can be concluded that
there is great agreement between the results of the skin-
friction f ′′(0), Nusselt number −θ ′(0), and the values
of −θ ′(x,0) using the two methods of calculations. In
addition, the obtained results using the present method
indicate that it is an adequate scheme for the solution
of the present problem.

The calculated velocity f ′ and temperature θ cor-
responding to parameter values of x = 25, Pr = 7,
α = 0.2, ε = 1, and M = 1 for different Eckert num-
ber Ec ranged from 0 to 10−6 are shown in Figures 3
and 4. The velocity values showed two stages. In the
first stage, the velocity increased untill η ≈ 1 while in
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Fig. 2. Comparison of −θ ′(x,0) for different values of Prandtl number Pr with Hossain et al. [18] at α = 0.3, ε = 3, Ec = 0,
and M = 0.
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Fig. 3. Effect of Eckert number Ec on velocity distribution at x = 25, Pr = 7, α = 0.2, ε = 1, and M = 1 (the inset shows
a zoom of curves).

the second stage, the velocity decreased with further
increase of η . The temperature decreased abruptly
by increasing the distance η . It reached approxi-

mately zero at η = 8. Also, the calculated f ′′(x,0)
and −θ ′(x,0) corresponding to parameter values of
Pr = 7, α = 0.2, ε = 1, and M = 1 for different Eckert
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Fig. 4. Effect of Eckert number Ec on temperature distribution at x = 25, Pr = 7, α = 0.2, ε = 1, and M = 1 (the inset shows
a zoom of curves).
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Fig. 5. Effect of Eckert number Ec on f ′′(x,0) at Pr = 7, α = 0.2, ε = 1, and M = 1 (the inset shows a zoom of curves).
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Fig. 6. Effect of Eckert number Ec on −θ ′(x,0) at Pr = 7, α = 0.2, ε = 1, and M = 1 (the inset shows a zoom of curves).
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Fig. 7. Effect of Prandtl number Pr on velocity distribution at x = 25, Ec = 10−7, α = 0.2, ε = 1, and M = 1.

number Ec ranged from 0 to 10−6 are shown in Fig-
gures 5 and 6. It is clear that f ′′(x,0) and −θ ′(x,0)
decreased abruptly by increasing the distance x. As
shown in Figures 3 – 6 it is obvious that Ec has minor
effects on f ′, f ′′(x,0), and −θ ′(x,0). On the other

hand, Ec has no effect on the temperature θ . It is clear
that with increasing Ec the velocity f ′ and f ′′(x,0) dis-
tributions increase as shown in Figures 3 and 5 whereas
it is observed that −θ ′(x,0) decreases as Ec increases
as shown in Figure 6.
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Fig. 8. Effect of Prandtl number Pr on temperature distribution at x = 25, Ec = 10−7, α = 0.2, ε = 1, and M = 1.
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Fig. 9. Effect of Prandtl number Pr on f ′′(x,0) at Ec = 10−7, α = 0.2, ε = 1, and M = 1.

Figure 7 shows profiles of the velocity f ′ as a func-
tion of η for different Prandtl numbers Pr arranged
from 3 to 10. These velocity profiles were obtained
for Ec = 10−7, α = 0.2, ε = 1, x = 25, and M = 1. In
general, the distributions of f ′ were nonlinear for all

Prandtl number values. The velocity f ′ decreased as
Pr was increased. Also the maximum values of f ′

decreased as Pr was increased. Moreover, it is noted
that the crest of f ′ moved downwards as the Prandtl
number was increased. Figure 8 displays results for the
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Fig. 10. Effect of Prandtl number Pr on −θ ′(x,0) at Ec = 10−7, α = 0.2, ε = 1, and M = 1.
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Fig. 11. Effect of magnetic parameter M on velocity distribution at x = 25, Ec = 10−7, α = 0.2, ε = 1, and Pr = 7.
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Fig. 12. Effect of magnetic parameter M on temperature distribution at x = 25, Ec = 10−7, α = 0.2, ε = 1, and Pr = 7.
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Fig. 13. Effect of magnetic parameter M on f ′′(x,0) at Pr = 7, α = 0.2, ε = 1, and Ec = 10−7.
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Fig. 14. Effect of magnetic parameter M on −θ ′(x,0) at Pr = 7, α = 0.2, ε = 1, and Ec = 10−7.
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Fig. 15. Effect of surface amplitude parameter α on f ′′(x,0) at Pr = 7, Ec = 10−7, ε = 1, and M = 1.

dimensionless temperature θ as a function of η for
different Pr arranged from 3 to 10. These tempera-
ture profiles were obtained for Ec = 10−7, α = 0.2,

ε = 1, x = 25, and M = 1. It is clearly seen that as
Pr increases the temperature profiles decreases. This
is in agreement with the physical fact that the thermal
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Fig. 16. Effect of surface amplitude parameter α on −θ ′(x,0) at Pr = 7, Ec = 10−7, ε = 1, and M = 1.

boundary layer thickness decreases with increasing Pr.
In other words, the increase in the value of Pr speeds
up the decay of the temperature field away from the
heated surface with a consequent increase in the rate
of heat transfer and a reduction in the thermal bound-
ary layer thickness. Figures 9 and 10 show profiles of
f ′′(x,0) and−θ ′(x,0) as a function ofx for Ec = 10−7,
α = 0.2, ε = 1, and M = 1 in the region 0 ≤ x ≤ 25
for different Pr arranged from 3 to 10. In Figure 9 it
has been found that f ′′(x,0) decreases with increasing
Prandtl number Pr whereas in Figure 10 it has been no-
ticed that −θ ′(x,0) increases with increasing Prandtl
number Pr.

Figures 11–14 illustrate the influence of the mag-
netic parameter M on the velocity f ′, the temperature
θ , f ′′(x,0) and −θ ′(x,0) distributions. It is observed
that with increasing magnetic parameter M the ve-
locity distribution decreases as shown in Figure 11
whereas the temperature distribution increases as
shown in Figure 12. Also, from Figure 13 it is ob-
served that as the magnetic parameter M increases
the f ′′(x,0) distribution decreases. Moreover, it has
been noticed that the −θ ′(x,0) distribution decreases
with increasing magnetic parameter M as shown in
Figure 14. On the other hand, the application of a trans-
verse magnetic field to an electrically conducting fluid

gives rise to a resistive-type force called the Lorentz
force. This force has the tendency to slow down the
motion of the fluid in the boundary layer and to in-
crease its temperature (as shown in Fig. 12). Also, it
is observed that the Ohmic heating (Joule heating) ef-
fect due to the effects on electromagnetic work is found
to produce an increase in the fluid temperature and
thus a decrease in the surface temperature gradient (as
shown in Fig. 14). Further, it is found that the effect
of viscous heating leads to an increase in the tempera-
ture; this effect is more pronounced in the presence of
the magnetic field.

Finally, Figures 15 and 16 show how variations
in the amplitude-wavelength ratio parameter α af-
fect f ′′(x,0) and −θ ′(x,0) profiles when Pr = 7,
Ec = 10−7, ε = 1, and M = 1. It is clear that with
increasing amplitude-wavelength ratio parameter
α both of the f ′′(x,0) and −θ ′(x,0) distributions
decrease.

4. Conclusions

An implicit Chebyshev collocation method has been
used to compute the effects of viscous dissipation
and Ohmic heating (Joule heating) on MHD natural-
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convection flow of a temperature dependent viscosity
from a vertical wavy surface. By using the present
numerical method, a simple coordinate transforma-
tion to transform the complex wavy surface into a flat
plate was implemented. Boundary layer and Boussi-
nesq approximations have been introduced together
to describe the flow field. The system of nonlinear
partial differential equations have been transformed
into a nonlinear algebraic system by using the Cheby-
shev collocation method in η-direction and the Crank–
Nicolson method in x-direction. The effects of different
physical values of the dimensionless parameters that
describe the flow like the Eckert number, Prandtl num-
ber, MHD variation, and the amplitude-wavelength ra-
tio on the flow have been discussed. It has been con-
cluded from the previous results:

i) With increasing Eckert number the velocity
and the f ′′(x,0) distribution increase, while the
−θ ′(x,0) distribution decreases.

ii) With increasing the strength of the applied mag-
netic field decelerates the fluid motion along the
wavy wall inside the boundary layer.

iii) The applied magnetic field tends to impede the
motion of the fluid and make it warmer. Thus it
reduce the surface friction force.

iv) Increasing the amplitude-wavelength ratio pa-
rameter resulted in decreasing the f ′′(x,0) and
−θ ′(x,0) distributions.

v) The results of the velocities showed the changes
in its shape from a position close to the boundary
layer to a position close to the free stream.
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