Steady Flow of Maxwell Fluid with Convective Boundary Conditions
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We performed a study for the flow of a Maxwell fluid induced by a stretching surface. Heat transfer
is also addressed by using the convective boundary conditions. We solved the nonlinear problem by
employing a homotopy analysis method (HAM). We computed the velocity, temperature, and Nusselt
number. The role of embedded parameters on the velocity and temperature is particularly analyzed.
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1. Introduction

Many fluids in industry and engineering applica-
tions cannot be described by the Navier—Stokes equa-
tions. Examples of such fluids are polymer solutions,
paints, certain oils, lubricants, colloidal and suspen-
sion solutions, clay coating etc. As a consequence of
diverse physical structure of such fluids there is not
a single model which can predict all the salient fea-
tures of non-Newtonian fluids. The non-Newtonian
fluids in general are classified into three categories
namely the differential, rate, and integral types. There
is a simplest class of rate type fluids known as Maxwell
fluid. This model can easily describe the character-
istics of the relaxation time. Such effects cannot be
predicted in the differential type non-Newtonian flu-
ids. The channel flow of an upper convected Maxwell
(UCM) fluid induced by suction has been taken into
account by Choi etal. [1]. Tan and Xu [2] investi-
gated the flow due to a suddenly moved plate in a vis-
coelastic fluid with fractional Maxwell model. Fetecau
et al. [3] discussed the flow of a Maxwell fluid induced
by an oscillatory rigid plate. Zierep and Fetecau [4]
discussed the Rayleigh—Stokes problem for a Maxwell
fluid for three different types of initial and/or bound-
ary conditions. Jamil and Fetecau [5] provided the ex-
act solution for the helical flows of a Maxwell fluid
between two infinite coaxial circular cylinders. The
stability analysis of double-diffussive convection of
a Maxwell fluid in a porous medium has been ad-
dressed by Wang and Tan [6]. Sadeghy et al. [7] numer-
ically analyzed the stagnation point flow of an upper

convected Maxwell fluid. Hayat et al. [8] analyzed the
magnetohydrodynamic (MHD) flow and mass trans-
fer of a UCM fluid past a porous shrinking sheet
in the presence of chemical reactive species. Qi and
Xu [9] examined the unsteady flow of a fractional
Maxwell fluid in a channel. Hayat and Qasim [10]
carried out the analysis for the flow and mass trans-
fer characteristics in a Maxwell fluid past a stretching
sheet with thermal radiation, Ohmic dissipation, and
thermophoresis.

Interest in the stretching flows subject to boundary
layer approximation has now increased substantially.
This is because of their extensive applications in the
polymer industry and manufacturing processes includ-
ing wire drawing, spinning of filaments, hot rolling,
crystal growing, fiber production, paper production,
and continuous casting. A closed form solution for
steady flow past a stretching surface has been provided
by Crane [11]. Later, the flow problems of the stretch-
ing surface have been extended in numerous ways such
as to include MHD effects, heat and mass transfer, non-
Newtonian fluid, suction/injection etc. Such flows are
rarely discussed when the convective boundary condi-
tions are taken into account. Aziz [12] investigated the
boundary layer flow over a flat plate with convective
boundary conditions. Ishak [13] generalized the flow
analysis of Aziz [12] by introducing the suction and in-
jection. Makinde and Aziz [14] investigated the MHD
mixed convection flow from a vertical plate embedded
in a porous medium. Very recently Yao et al. [15] dis-
cussed the stretching/shrinking wall problem in a vis-
cous fluid.
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The objective of present study is to extend the flow
analysis of Yao etal. [15] from viscous to Maxwell
fluid. Further our interest is to provide an analytic so-
lution for a highly nonlinear problem. The structure of
the paper is as follows. The flow problem is formulated
in Section 2. Sections 3 and 4 deal with the series so-
lutions and their convergence, respectively. Homotopy
analysis method (HAM) [16—25] is used in computa-
tion of series solutions. Results and discussion are in-
cluded in Section 5. Section 6 consists of conclusions.

2. Governing Problems

We consider the two-dimensional boundary layer
flow of an incompressible Maxwell fluid bounded by
a continuously stretching sheet with heat transfer in
a stationary fluid. We adopt that the velocity of the
stretching sheet is uy (x) = bx, (where b is a real num-
ber). Further the constant mass transfer velocity is
taken as vy, with vy, > 0 for injection and vy, < 0 for
suction, respectively. The x- and y-axes in the Cartesian
coordinate system are parallel and perpendicular to the
sheet, respectively. The governing equations are [7,10]
and [15]
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in which u and v denote the velocity components in
the x- and y-directions, A the relaxation time, T the
fluid temperature, o the thermal diffusivity of the fluid,
v = (u/p) the kinematic viscosity, p the density of the
fluid, and the viscous dissipation is not accounted.
The boundary conditions are defined as

3

U =uy(x) =bx, v=ry,

oT “)
_kTy h(T; —Ty) aty =0,
u=0, T=T, asy — oo, 5)

where k indicates the thermal conductivity of the fluid,
h the convective heat transfer coefficient, vy, the wall
heat transfer velocity, and 7; the convective fluid tem-
perature below the moving sheet.
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We introduce the similarity transformations

u=axf'(n), v=—vavf(n),

T—-T. (6)
o(n) = ; ny\/€

It —T.
Here a is a constant and prime denotes the differentia-
tion with respect to 1.
Equations (2) —(5) yield

" =P BRIF S =) =0, (D)
0" +Prfo’ =0, (8)
f=S, f'=bla=qa
8'=—y(1-6(0) atn=0,
=0, 6=0 asn=oo,

€))
(10)

where (1) is satisfied automatically; B = Aa is the

Deborah number, S = — \;ZT is the suction parameter,
o= g is a parameter, Pr = % is the Prandtl number,
Y= % 5 is the Biot number, a is a constant, and prime

shows differentiation with respect to 1.
The expression of the local Nusselt number Nu, is

Nu, = ﬁ, (1)
where the heat transfer gy, is defined as
wei().
In dimensionless scale, (11) becomes
Nu/Rel/2 —0'(0).
3. Homotopy Analysis Solutions
We express f and 6 by a set of base functions
{n*exp(—nn), k>0,n>0} (13)
as follows:
=3 3 dbmtexp(-nm), (14)
n=0k=0
-y me,m exp(—nn), (15)
n=0k=



T. Hayat et al.

in which a¥,, and b’,‘n , are the coefficients. We further
select the followmg initial approximations and auxil-

iary linear operators:

X
folm =s+a (1), e =22 )
Li=f"—f, Lo=06"-8, (17)
with
Li(Cr+GCre"+C3e7 M) =0,
f(C1+Ce"+C3e™ M) (18)

[,¢ (C4€n +Cs e_”) =0,

where C; (i = 1-5) denote the arbitrary constants.
The associated zeroth-order deformation problems
are

(1=p)Le[f(n:p) — fo(m)] = pheNe[F(n:p)],  (19)
(1-p )C?[ (n:p) = 60(n)] = 20)
pheNo[f(n:p),0(n.p)],
f(0:p) =S, f/(0:p) =b/a=a, f'(eo:p) =0, o
6'(0,p) = —y[1-6(0,p)], 6(c,p) =0,
32 27
A7) = SEL .y L2
N 2 N
0 y 2 dJ )
—(%’L”) +p|27n.p) 2L5L0) @)
0%f , N 23F ,
-gﬂ”—mmngﬁmy
NG [é(n7p)7f(n7p)] =
226(n, . 26, (23)
8(7;7217)+Prf(n,p)(g?1m~

Here p is an embedding parameter, ¢ and kg are the
non-zero auxiliary parameters and N; and Ny the non-
linear operators.

Note that for p =0 and p = 1 we have

F(M:0) = fo(n), é( 0) 90(71) and 4)
and when p increases from O to 1 then f(7n,p) and

8(n, p) varies from fo(1),60(n) to f(n) and G(n)
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In view of Taylor’s series one can expand
fM.p) = fo(n)+ X fu()p", (25)
m=1
0(n,p)=60(n) X, Om(n)p (26)
m=1
_ 1 9"f(n;p)
fm(n) - m‘ anm p:07 (27)
o) = 9"6(n;p)
" mtoonm |y

where the convergence of above series strongly de-
pends upon A and hg. Considering that s¢ and hg are
selected properly so that (25) and (26) converge at
p = 1 and thus one has

fm) = fo(m)+ 2 fu(n) (28)
m=1
6(n) = 60(n) + Y, 6a(n) (29)
m=1
The problems at mth-order are
L[ fn(N) = Xmfm—1(N)] = KR (M), (30)
Lo[0n(N) — xmOn—1(N)] = heRg (n), (€29)
fn(0) = f,(0) = fr () =0,
6,(0) — 761,(0) = B(>=) =0, 4
m—1
Rm( ) fr/ri/ 1 Z [fm 1— kfk fm 1 kflé//}

. (33)

k
+B Z Stk Y, Pf/i—zfz" _fk—lfl/”}a
k=0 i=0

m—1
REM) =6, +Pr Y 6, | fi,
=0

_ 07 m S 13
=931, m>1.
The general solutions can be expressed in the forms

fu(M) = fr(M)+Ci1 +Cre+C3e7 ", (36)
0n(n) = 6,,(n) +Cae" +Cse™" (37

(34)

(35)

in which f, and 6,; indicate the special solutions.
4. Convergence of the Homotopy Solutions

Clearly, the expressions (28) and (29) contain the
non-zero auxiliary parameters h¢ and fig which can ad-
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Fig. 1. fi-curves for f and 6.

Table 1. Convergence of the homotopy solution for different
order of approximations when § = 0.2, a = 0.3, Pr = 1.0,
§=0.5, Y= 1.0, and hf = 77,9 =—14.

Order of approximation —£"(0) —6'(0)

1 0.2829900 0.4300000

5 0.2814982 0.4064811
10 0.2814950 0.4047923
20 0.2814950 0.4046587
30 0.2814950 0.4046572
35 0.2814950 0.4046572
40 0.2814950 0.4046572

just and control the convergence of the homotopy so-
lutions. For the range of admissible values of 7 and
hg, the h-curves have been potrayed for 20th-order of
approximations. Figure 1 shows that the range of ad-
missible values of A¢ and hg are —2.4 < iy < —0.2 and
—2.1 < hy < —0.4. The series converges in the whole
region of ] when hif = hg = —1.4.

5. Graphical Results and Discussion

In this section our main interest is to discuss the in-
fluence of emerging parameters such as stretching pa-
rameter o/, Deborah number f3, suction parameter S,
Prandtl number Pr, and Biot number ¥ on the veloc-
ity and temperature fields. The analysis of such vari-
ations is made through Figures 2 -9. Figures 2—4 are
displayed to see the effects of o, B, and S on the ve-
locity field f’. As o increases in Figure 2, the flow ve-
locity increases. Figure 3 shows the effects of 8 on f”.
It is obvious from this figure that f’ is a decreasing
function of 3. The same behaviour is observed as the
suction parameter S increases in Figure 4. It is seen that
the boundary layer thickness decreases with increasing
values of S > 0. Figures 5-9 depict the influences of
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1
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Fig. 2. Influence of o on f”.
«=04,85=05
——B-00
— _B=05
- p=10
- B=15
6 8
n
Fig. 3. Influence of 3 on f’.
«=04, =01

Fig. 4. Influence of S on f’.

Pr, o, S, 7, and 8 on the temperature profile 6. Figure 5
describes the effects of Pr on 6. Here 6 decreases when
Pr increases. Figure 6 indicates that 0 is a decreasing
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Fig. 5. Influence of Pron 6.
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Fig. 6. Influence of ¢ on 0.
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Fig. 8. Influence of ¥ on 6.

Pr=07,2=048=051vy=1.0

— =00
—— =05
—— =10
- B=15

Fig. 9. Influence of 3 on 6.

Table 2. Values of the local Nusselt number Nu/Re}(/ 2 for
the parameters Pr, 7, and & when S = 0.5 and § = 0.2.

— S$=00

0.6\ ~ - 5=05
A

0.5F\\ ----8§=10

A - 8§=15

Pr Y o Nu/Re)]( 2
0.5 1.0 0.1 0.23336
1.0 0.36588
1.5 0.45796
2.0 0.52558
1.0 0.0 0.3189
0.5 0.26799
1.0 0.36591
2.0 0.2039
0.1 0.36588
0.3 0.40466
0.8 0.45825
1.0 0.47254

Fig. 7. Influence of S on 0.

function of ¢. In Figure 7 the variation of temperature
0 is plotted for the different values of S. The tempera-
ture profile decreases by increasing S. Figure 8 shows

the influence of the Biot number y on 6. Temperature
field increases by increasing 7. Figure 9 is plotted to
see the effects of B on temperature profile 6. It can
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been seen from this figure that the temperature is an
increasing function of 3.

6. Concluding Remarks

In this work, we consider the effects of heat trans-
fer on the flow of a Maxwell fluid over a stretching
wall with prescribed boundary conditions. The homo-
topy analysis method has been applied to find the series
solutions. The graphical results are discussed to see the
effects of interesting parameters. The main results are
as follows:
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e By increasing o, the velocity field f” increases.

e The velocity profile f” decreases by increasing Deb-
orah number f3 and suction parameter S.

o Increase in Prandtl number decrease the temperature
profile 6.

o The effects of Biot number y and Deborah number
B on O are similar in a qualitative sense.
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