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The exact chirped soliton-like and quasi-periodic wave solutions of the (3+1)-dimensional gener-
alized nonlinear Schrödinger equation including linear and nonlinear gain (loss) with variable coef-
ficients are obtained detailedly in this paper. The form and the behaviour of solutions are strongly
affected by the modulation of both the dispersion coefficient and the nonlinearity coefficient. In ad-
dition, self-similar soliton-like waves precisely piloted from our obtained solutions by tailoring the
dispersion and linear gain (loss).
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1. Introduction

Consider the generalized nonlinear Schrödinger
equation (NLSE) in (3+1) dimensions with variable
coefficients:

i∂zψ =
β (z)

2

(
∆⊥ψ +∂

2
t ψ
)
+ γ(z)|ψ|2ψ

+ ig(z)ψ + iχ(z)|ψ|2ψ,
(1)

where ψ(z,x,y, t) is the complex envelope of the elec-
tric field, z is the propagation coordinate, ∆⊥= ∂ 2

x +∂ 2
y

represents the transverse Laplacian, and t is the re-
duced time, i.e., time in the frame of reference moving
with the wave packet. The functions β (z), γ(z), g(z),
and χ(z) are, respectively, the group velocity disper-
sion (GVD), self-phase modulation (SPM), linear and
nonlinear gain (loss). NLSE appears in many branches
of physics and applied mathematics [1], such as, for
example, in semiconductor electronics [2, 3], optics in
nonlinear media [4], photonics [5], plasmas [6], funda-
ment of quantum mechanics [7], dynamics of accel-
erators [8], mean-field theory of Bose–Einstein con-
densates [9] or in biomolecule dynamics [10]. Dur-
ing the past several years, many theoretical issues
concerning the NLSE have received considerable at-
tention. However, the use of the NLSE is a kind of
an idealization of the much more complicate physi-
cal problem, therefore other effects as GVD and SPM

were discussed in the literature. For example, the using
nonlinear optical fibers with inhomogeneous disper-
sion and nonlinearity for various purposes, including
pulse compression [11], stimulation of modulation in-
stability [12], soliton control [13], dispersion manage-
ment [14], and soliton amplification in long commu-
nication lines [15] has been considered theoretically
in a number of papers. Recently, great interest has
been generated when it was suggested that the (2+1)-
dimensional generalized NLSE with varying coeffi-
cients may lead to stable 2D solitons [16]. The gener-
alized NLSE (1) in this paper is of considerable im-
portance, as it describes the full spatiotemporal op-
tical solitons, or light bullets, in (3+1) dimensions.
When the coefficients are constants, the behaviour of
solutions to the NLSE strongly depends on the di-
mensionality of the problem. In (1+1) dimensions, (1)
reduces to

i∂zψ =
β (z)

2
∂

2
t ψ + γ(z)|ψ|2ψ + ig(z)ψ

+ iχ(z)|ψ|2ψ.
(2)

Equation (2) describes the amplification or absorp-
tion of pulses propagating in a monomode optical
fiber with distributed dispersion and nonlinearity. In
practical applications the model is of primary interest
not only for the amplification and compression of
optical solitons in inhomogeneous systems, but also
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for the stable transmission of soliton control. In the
limit χ(z)→ 0, i.e. when the nonlinear gain (loss) is
comparatively insignificant and so can be neglected,
authors of [17, 18] have studied this condition. In this
paper, utilizing the ansatz method and a procedure for
balancing terms in the expansion, we will find chirped
wave solutions of (1).

We define the complex wave ψ of (1) character-
ized by a nonlinear chirp, resulting from the nonlinear
gain [19, 20]:

ψ(z,x,y, t) = B(z,x,y, t)exp{in0 ln[A(z,x,y, t)]
+ iΦ(z,x,y, t)},

(3)

where n0 denotes the nonlinear chirp parameter, and A,
B, and Φ are real functions of z, x, y, and t. Substi-
tuting ψ into (1), we find the following coupled equa-
tions:

β (∂yB∂yΦ +∂xB∂xΦ +∂tB∂tΦ)

+
1
A

βn0(∂yB∂yA+∂xB∂xA+∂tB∂tA)−∂zB+gB

+ χB3− 1
2A2 βBn0

[
(∂yA)2 +(∂xA)2 +(∂tA)2]

+
1
2

βB
(
∆⊥+∂

2
t

)
Φ +

1
2A

βBn0
(
∆⊥+∂

2
t

)
A = 0,

(4)

γB3 +B∂zΦ−
1

2A2 βBn2
0

[
(∂yA)2 +(∂xA)2 +(∂tA)2]

+
1
2

β
(
∆⊥+∂

2
t

)
B+

1
A

Bn0∂zA
(5)

− 1
2

βB
[
(∂yΦ)2 +(∂xΦ)2 +(∂tΦ)2]

− 1
A

βBn0(∂yA∂yΦ +∂xA∂xΦ +∂tA∂tΦ) = 0.

2. Chirped Wave Solutions of the NLSE with First
Ansatz

In [19], the author found the chirped bright and dark
soliton-like solution for (2). Enlightened by the forms
of solutions in this reference, we here seek chirped
wave solutions to (1) and assume the functions to be
of the first ansatz

A = f (z)F(θ), B =
G(z)
F(θ)

dF(θ)
dθ

, (6)

θ = k(z)x+ l(z)y+m(z)t +ω(z),

Φ = a(z)(x2 + y2 + t2)+b(z)(x+ y+ t)+ e(z),
(7)

where f , G, k, l, m, ω , a, b, and e are the parameter
functions to be determined later, and F(θ) is a solu-
tion of the following first-order nonlinear ordinary dif-
ferential equation [21, 22]:

dF(θ)
dθ

=

√
n

∑
i=0

ciF i(θ). (8)

Then the derivatives with respect to the variable θ be-
come the derivatives with respect to the variable F(θ)
as

d
dθ
→

√
n

∑
i=0

ciF i d
dF

,

d2

dθ 2 →
1
2

n

∑
i=1

iciF
i−1 d

dF
+

n

∑
i=0

ciF
i d2

dF2 , . . .

(9)

We remark here that the exact solutions of (1) depend
on the explicit solvability of (8); we consider only the
case n = 4 in this paper:

dF(θ)
dθ

=
(10)√

c0 + c1F(θ)+ c2F2(θ)+ c3F3(θ)+ c4F4(θ).

Substituting (6) and (7) along with (10) into (4) and (5),
one obtains a set of conditions on the coefficients and
parameters:

dk
dz

= 2akβ ,

dm
dz

= 2amβ ,

dl
dz

= 2alβ ,

(11)
da
dz

= 2βa2,

db
dz

= 2baβ ,

dω

dz
= bβ (k + l +m),

de
dz

=−n0

f
d f
dz
−G2

γc2 +
3
2

βb2

+
1
2

βn2
0c2(k2 + l2 +m2),

c4
[
2χG2 +3βn0(k2 + l2 +m2)

]
= 0, (12)

c0
[
−2χG2 +3βn0(k2 + l2 +m2)

]
= 0
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with c1 = c3 = 0. And the linear and nonlinear gain (or
loss) must satisfy the following conditions:

g =
1
G

(
dG
dz
−χc2G3−3βaG

)
, (13)

χ = ε
3n0γ

2−n2
0

. (14)

Equation (14) implies that the nonlinear chirp parame-
ter n0 is in fact determined by the ratio χ(z)/γ(z); from
the physical point of view, we come to the conclusion
that n2

0 6= 2 for arbitrary nonlinear materials. We con-
sider the most generic case, in which f (z) and G(z) are
assumed nonzero and β (z), f (z), and g(z) are arbitrary.
The following set of exact solutions is found:

a = a0α, b = b0α,

k = k0α, l = l0α, m = m0α,

ω = ω0 +b0(k + l +m)
∫ z

0
βdz,

(15)

G = G0a
3
2 exp

[
− ε

3
4a

n0c2(l2 +m2 + k2)
]

· exp

(∫ z

0
gdz

)
,

e = e0 +
1

4a

[
2c2(k2 + l2 +m2)+3b2]−n0ln f ,

χ = ε
3n0γ

2−n2
0

=−ε
3βn0(l2 +m2 + k2)

2G2 ,

(16)

where

ε =
{

1 if c0 = 0,
−1 if c4 = 0,

(17)

and α is the function related only to the GVD coeffi-
cient:

α =
1

1−2a0
∫ z

0 βdz
. (18)

a0, b0, l0, m0, k0, ω0, G0, and e0 are free parameters
which can be determined by initial or boundary condi-
tions. It should be noted that the function α affects all
of the parameters.

The form of solutions depends on what (10) utilized.
We note that some solutions of (10), such as the Ja-
cobi elliptic function solutions, can not exist because
of the constraint c0c4 = 0 made in (3) for nonlinear
chirp. If we set c0, c2, and c4 in (10) specifically ac-
cording to [22], we will have several soliton-like and
quasi-periodic solutions as follows:

Case I: When c0 = 0, ε = 1, we have

Ψ1 =−G(z) tanh(θ)
· exp{in0 ln[ f (z)sech(θ)]+ iΦ(z,x,y, t)}

(19)

with c2 = 1, c4 =−1.

Ψ4 =−G(z)coth(θ)
· exp{in0 ln[ f (z)csch(θ)]+ iΦ(z,x,y, t)}

(20)

with c2 = 1, c4 = 1.

Ψ2 =−G(z)cot(θ)
· exp{in0 ln[ f (z)csc(θ)]+ iΦ(z,x,y, t)}

(21)

with c2 =−1, c4 = 1.

Ψ3 = G(z) tan(θ)
· exp{in0 ln[ f (z)sec(θ)]+ iΦ(z,x,y, t)}

(22)

with c2 =−1, c4 = 1.

Case II: When c4 = 0, ε =−1, we have

Ψ7 = G(z) tanh(θ)
· exp{in0 ln[ f (z)cosh(θ)]+ iΦ(z,x,y, t)}

(23)

with c0 =−1, c2 = 1.

Ψ8 = G(z)coth(θ)
· exp{in0 ln[ f (z)sinh(θ)]+ iΦ(z,x,y, t)}

(24)

with c0 = 1, c2 = 1.

Ψ5 = G(z)cot(θ)
· exp{in0 ln[ f (z)sin(θ)]+ iΦ(z,x,y, t)}

(25)

with c0 = 1, c2 =−1.

Ψ6 =−G(z) tan(θ)
· exp{in0 ln[ f (z)cos(θ)]+ iΦ(z,x,y, t)}

(26)

with c0 = 1, c2 =−1.
From the above results (19) – (26), the functions θ

and Φ are written as (7), where G, k, l, m, ω , a, b,
and e satisfy (15) – (18), and β (z), f (z), and g(z) are
arbitrary functions.

We can clearly see from the expressions that when
a(z) = 0, namely, when the linear chirp effect vanishes,
we can obtain readily from (11) – (14) the homoge-
neous solutions, only the expressions of G, θ , Φ are
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different:

ω = ω0 +b0(k0 + l0 +m0)
∫ z

0
βdz,

G = G0 exp

[
− ε

3
2

n0c2
(
k2

0 +m2
0 + l2

0

)∫ z

0
βdz

+
∫ z

0
gdz

]
, (27)

e = e0 +
[

c2
(
l2
0 +m2

0 + k2
0

)
+

3
2

b2
0

]∫ z

0
βdz−n0 ln f ,

χ = ε
3n0γ

2−n2
0

=−ε
3βn0

(
l2
0 +m2

0 + k2
0

)
2G2

with (17), and k = k0, m = m0, l = l0, and b = b0
are constants. We can find that the amplitude B is not
a constant. This means that the pulse energy is not al-
ways conserved.

We can also find from (14) that if the nonlinear chirp
parameter n0 = 0, we will have χ = 0. Thus in this
case, the main chirp effect contains only linear chirp.
Then we have

G = G0a
3
2 exp

(∫ z

0
gdz

)
,

e = e0 +
1

4a

[
2c2(l2 +m2 + k2)+3b2],

γ =−β (k2 +m2 + l2)
G2 ,

(28)

and (15) with (18). Therefore, we may think that the
nonlinear chirp results from nonlinear gain and this
means that we can compensate the nonlinear gain by
properly choosing the initial nonlinear chirp in the real
optical communication system. We can also see that
the change of nonlinear chirp will directly affect the
pulse initial phase, pulse amplitude, and the system’s
linear gain (loss). These characteristics can well be de-
duced to all solutions. In this case, every solution F(θ)
of (10) is applicable, such as the Jacobi elliptic func-
tion solutions.

3. Chirped Wave Solutions to the NLSE with
Second Ansatz

Now, let us concentrate on our attention to find the
solution of (1) with the second ansatz:

A = B = G1(z)F(θ)+
G2(z)
F(θ)

(29)

with (7), where f , G, k, l, m, ω , a, b, and e are the
parameter functions to be determined later, and F(θ)
is a solution of (10). The similar ansatzs (7) and (29)
for (1) with the limits χ(z)→ 0 can be found in [18].
Substituting (29) along with (10) into (4) and (5), one
also obtains (11) and another set of conditions on the
coefficients and parameters:

2χG2
1 +3βn0c4(m2 + l2 + k2) = 0,

2χG2
2 +3βn0c0(m2 + l2 + k2) = 0,

de
dz

=−4γG1G2 +
1

2G1
β (k2 + l2 +m2)

·
[
G1c2

(
n2

0−1
)
−2G2c4

(
n2

0 +1
)]

+
3
2

βb2

− n0

G1

dG1

dz
,

(30)

c0(2
√

c4c0− εc2) = 0 (31)

with c1 = c3 = 0 and ε =±1. The linear and nonlinear
gain (or loss) must satisfy the following conditions:

g =−β (k2 + l2 +m2)n0c2−4G1G2χ−3βa

+
1

G1

dG1

dz
,

(32)

χ =
3n0γ

2−n2
0

. (33)

We consider the most generic case, in which G1 is
assumed nonzero and β (z) and g(z) are arbitrary func-
tions. The following set of exact solutions is found:

a = a0α, b = b0α,

k = k0α, l = l0α, m = m0α,

ω = ω0 +b0(k + l +m)
∫ z

0
βdz,

(34)

G1 = G0a
3
2 exp

[
n0

2a
(c2− ε6

√
c0c4)(l2 +m2 + k2)

]
· exp

(∫ z

0
gdz

)
, G2 = ε

√
c0

c4
G1,

e = e0 +
1
4a

[
(c2− ε6

√
c0c4)

(
n2

0−1
)

(35)

· (l2 +m2 + k2)+3b2]−n0lnG1,

χ =
3n0γ

2−n2
0

=−3βn0c4(m2 + l2 + k2)
2G2

1

,

where α satisfies (18). Note the relation (31) among
the constants c0, c2, and c4. If we set c0, c2, and c4
specifically according to [22], we will have several ex-
act soliton-like and quasi-periodic solutions as follows:
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Case I: When c0 = 0, G2 = 0, and G1 is assumed
nonzero, we have

Ψ9 = G1(z)sech(θ)
· exp{in0 ln[G1(z)sech(θ)]+ iΦ(z,x,y, t)}

(36)

with c2 = 1, c4 =−1.

Ψ12 = G1(z)csch(θ)
· exp{in0 ln[G1csch(θ)]+ iΦ(z,x,y, t)}

(37)

with c2 = 1, c4 = 1.

Ψ10 = G1(z)csc(θ)
· exp{in0 ln[G1csc(θ)]+ iΦ(z,x,y, t)}

(38)

with c2 =−1, c4 = 1.

Ψ11 = G1(z)sec(θ)
· exp{in0 ln[G1sec(θ)]+ iΦ(z,x,y, t)}

(39)

with c2 =−1, c4 = 1.
Case II: When c0 6= 0, and G1 and G2 are assumed

nonzero, we have

Ψ13 = G1(z)
[

tanh(θ)+
ε

tanh(θ)

]
exp

{
in0 ln

[
G1(z)

(
tanh(θ)+

ε

tanh(θ)

)]
+ iΦ(z,x,y, t)

}
(40)

with c0 = 1, c2 =−2, c4 = 1.

Ψ14 = G1(z)
[

coth(θ)+
ε

coth(θ)

]
exp

{
in0 ln

[
G1(z)

(
coth(θ)+

ε

coth(θ)

)]
+ iΦ(z,x,y, t)

}
(41)

with c0 = 1, c2 =−2, c4 = 1.

Ψ15 = G1(z)
[

tan(θ)+
ε

tan(θ)

]
exp

{
in0 ln

[
G1(z)

(
tan(θ)+

ε

tan(θ)

)]
+ iΦ(z,x,y, t)

}
(42)

with c0 = 1, c2 = 2, c4 = 1.

Ψ16 = G1(z)
[

cot(θ)+
ε

cot(θ)

]
exp

{
in0 ln

[
G1(z)

(
cot(θ)+

ε

cot(θ)

)]
+ iΦ(z,x,y, t)

}
(43)

with c0 = 1, c2 = 2, c4 = 1.

From the above results (36) – (43), the functions θ

and Φ are written as (7), where G1, k, l, m, ω , a, b,
and e satisfy (34) – (35) with (18), and β (z) and g(z)
are arbitrary functions.

When the linear chirp effect vanishes, i.e. a(z) = 0,
we can obtain readily from (11) and (30) – (33) the ho-
mogeneous solutions, only the expressions of G1, G2,
θ , and Φ are different:

ω = ω0 +b0(k0 + l0 +m0)
∫ z

0
βdz,

G1 = G0 exp

[
n0
(
l2
0 +m2

0 + k2
0

)
(c2− ε6

√
c0c4)

·
∫ z

0
βdz+

∫ z

0
gdz

]
, G2 = ε

√
c0

c4
G1,

e = e0 +
1
2

[
(c2− ε6

√
c0c4)

(
n2

0−1
)(

l2
0 +m2

0 + k2
0

)
+3b2

0

]∫ z

0
βdz−n0 lnG1,

χ =
3n0γ

2−n2
0

=−
3βn0c4

(
m2

0 + l2
0 + k2

0

)
2G2

1

(44)

with (31), and k = k0, m = m0, l = l0, and b = b0 are
arbitrary constants. If the nonlinear chirp parameter
n0 = 0, we have

G1 = G0a
3
2 exp

(∫ z

0
gdz

)
, G2 = ε

√
c0

c4
G1,

e = e0 +
1
4a

[
(ε6
√

c0c4− c2)(l2 +m2 + k2)+3b2],
γ =−βc4(k2 + l2 +m2)

G2
1

, (45)

and (34) with (18), the same result is also obtained
in [17]. Considering the fact that the constraint (31)
vanishes, the other solutions, such as Jacobi elliptic
function solutions, come into existence.
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Fig. 1. Distributions of the chirped dark soliton-like solution (19) with and without linear chirp (top row) and a view from
above (bottom row): (a) a0 = −0.006, (b) a0 = 0. Other coefficients and parameters: β0 = 1, η = 0.2, k0 = −0.1, b0 = 10,
G0 = 100, n0 = 1.2, ω0 =−1.

4. Self-Similar Wave Solutions

As known to all, self-similar waves are particularly
useful in the design of optical fiber amplifiers, optical
pulse compressors, and solitary wave base communi-
cation links. Remarkably, the self-similar soliton-like
waves can be precisely piloted from our obtained solu-
tions by tailoring the GVD and the linear gain (loss).
Here, we wish to cite some examples, taking the GVD
to be of the form

β (z) = β0 cos(ηz), (46)

where β0 and η are arbitrary constants. In Figure 1, we
depict the chirped dark soliton-like solution (19) with
the gain

g(z) =
3
2

n0β0(k2 + l2 +m2)cos(ηz). (47)

In this instance, the corresponding SPM and the non-
linear gain read

χ =
3n0γ

2−n2
0

(48)

=
3β0 cos(ηz)n0

(
l2
0 +m2

0 + k2
0

)
(2a0β0 sin(ηz)−η)

2G2
0a3

0η
.

Figure 2 shows the chirped bright soliton-like solu-
tion (36) with

g(z) = n0β0(k2 + l2 +m2)cos(ηz). (49)

The corresponding SPM and the nonlinear gain read

χ =
3n0γ

2−n2
0

(50)

=−
3β0 cos(ηz)n0

(
l2
0 +m2

0 + k2
0

)
(2a0β0 sin(ηz)−η)

G2
0a3

0η
.

Figure 3 presents the chirped quasi-periodic wave so-
lution (39) with

g(z) =−n0β0(k2 + l2 +m2)cos(ηz). (51)



398 X.-J. Lai and X.-O. Cai · Chirped Wave Solutions of a Generalized (3+1)-Dimensional NLSE

–20

–10

0

10

20

k0x+l0y+m0t

0
20

40
60

80
100

z

0

0.4

0.8

|phi|

0

20

40

60

80

100

z

–10 0 10 20
k0x+l0y+m0t

–20

–10

0

10

20

k0x+l0y+m0t

0

20

40

60
80

100

z

0
50

100
|phi|

0

20

40

60

80

100

z

–10 0                 10 20
k0x+l0y+m0t

(a) (b)

Fig. 2. Distributions of the chirped bright soliton-like solution (36) with and without linear chirp (top row) and a view from
above (bottom row): (a) a0 = −0.03, (b) a0 = 0. Other coefficients and parameters: β0 = 1, η = 0.2, k0 = −1, b0 = 1.2,
G0 = 100, n0 =−1.3, ω0 = 0.
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Fig. 3. Distributions of the chirped quasi-periodic wave solution (39) with and without linear chirp (top row) and a view from
above (bottom row): (a) a0 = 0.001, G0 = 104, (b) a0 = 0, G0 = 1. Other coefficients and parameters: β0 = 1, η = 0.02,
k0 = 1, b0 =−0.011, n0 = 1, ω0 =−2.
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The corresponding SPM and the nonlinear gain read

χ =
3n0γ

2−n2
0

(52)

=
3β0 cos(ηz)n0

(
l2
0 +m2

0 + k2
0

)
(2a0β0 sin(ηz)−η)

G2
0a3

0η
.

So far, the current situation about the stability of
solutions to the generalized (3+1)-dimensional NLSE
is somewhat controversial. Some authors consider
the stability of radially symmetric structures and do
not include the modulation of diffraction [23 – 25],
some authors point out the solutions are not radially
symmetric, and the modulation of both the diffrac-
tion or dispersion and the nonlinearity is effected
concurrently [18]. As can be seen in the insets of
Figures 1 – 3, the features of our results are in agree-
ment with the ones in [18]. The effect of the particular
periodic chirp function is to produce a periodic varia-
tion along the propagation direction and a monotonic
asymmetric change in the transverse directions. The
figures also show that the presence of the linear chirp
coefficient a0 significantly changes the nature of so-
lutions. And when the linear chirp vanishes, the pulse
shape will be very smooth during the propagation.
On the other hand, the nonlinear chirp only makes
some decreasing in the pulse intensity. However,
experimentally, it might not be easy to maintain such
nonlinearly chirped pulses because of the complication
of the linear and nonlinear gains in practice.

5. Conclusions

In this paper, by applying the ansatz method and
a procedure for balancing terms in the expansion,

the chirped soliton-like and quasi-periodic wave so-
lutions of the (3+1)-dimensional generalized nonlin-
ear Schrödinger equation including linear and nonlin-
ear gain (loss) with variable coefficients are obtained
detailedly. Unlike the ansatz for the field in [17, 18],
here we are concerned with solutions characterized by
a nonlinear chirp, see (3), resulting from the nonlin-
ear gain (loss). Remarkably, the self-similar soliton-
like waves can be precisely piloted from our obtained
solutions by tailoring the GVD and the linear gain
(loss). In the presence of linear chirp, the parame-
ters k, l, m, and b are all acquired z dependence. The
form and the behaviour of solutions are strongly af-
fected by the modulation of both the GVD and the
linear gain (loss) coefficient. The other important fea-
ture is that the chirp influences the form of the ampli-
tude. This may provide methods to control the non-
linear gain or absorption by adding initial nonlinear
chirp in real systems, and control the change of the
pulse amplitude or intensity by adjusting the linear
chirp. In conclusion, our analytical results are natural.
These findings suggest potential applications in areas
such as optical fiber compressors, optical fiber ampli-
fiers, nonlinear optical switches, and optical communi-
cations.
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