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With the help of a Cole-Hopf transformation, the nonlinear Burgers system in (3+1) dimensions
is reduced to a linear system. Then by means of the linear superposition theorem, a general variable
separation solution to the Burgers system is obtained. Finally, based on the derived solution, a new
type of localized structure, i.e., a solitonic bubble is revealed and some evolutional properties of the

novel localized structure are briefly discussed.
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1. Introduction

In nonlinear science, soliton theory plays an im-
portant role and has been widely applied in many
natural sciences such as biology, chemistry, mathe-
matics, communication, and particularly in almost all
branches of physics like fluid dynamics, optics, plasma
physics, field theory, condensed matter physics, and
so on [1—12]. As is known, many dynamical sys-
tems in natural fields are characterized by nonlinear
evolution partial differential equations called as gov-
erning equations. Solving these nonlinear equations is
much more difficult than solving the linear ones. For-
tunately, a wealth of approaches for finding exact so-
lutions of nonlinear partial differential equations, such
as the inverse scattering transformation [13], bilinear
approach [14], symmetry method [15], Bécklund and
Darboux transformations [16], Painlevé truncated ex-
pansion [17], variable separation approach [18], and
extended mapping approach [19, 20], etc. were pre-
sented successfully, and applied to many integrable
systems in (1+1) dimensions and (2+1) dimensions.
Some significant types of localized excitations such
as dromions, rings, compactons, peakons, and folded
solitons are derived [19—-25]. Now an important and
natural problem is that: can we obtain some localized

excitations, particularly some novel localized excita-
tions like solitonic bubbles [26—31], taper-like soli-
tons in higher-dimensional systems? To answer the
question, we take the (3+1)-dimensional Burgers sys-
tem as a concrete example:

Uy = 2uity + 2V, + 2Wit + Uy + Uyy + Uy,

Uy = Vy, Uz =Wy, (D

which is a generalized version in the (3+1) dimensions
of the Burgers system. Obviously, if u is z-independent
(or z=2x, w=u), (1) will be degenerated to the known
(2+1)-dimensional Burgers system, which is derived
from the generalized Painlevé integrability classifica-
tion in [32] and has been proved to be variable sep-
aration approach solvable [33 —35]. Furthermore, if u
is both z-independent and y-independent (or z =y = x,
w=v=u), (1) will become a usual (14 1)-dimensional
Burgers equation, which has been widely applied in
many scientific fields. An alternative potential version
of (1) was obtained from the invertible deformation
of a heat conduction equation [36]. More detail phys-
ical backgrounds about the (3+1) dimensions of the
Burgers system can be refereed to the above mentioned
literature and reference therein. In the following parts
of the paper, we discuss its general exact solutions with
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interesting localized excitations such as solitonic bub-
ble, taper-like solitons and their evolution properties
via a Cole-Hopf transformation approach.

2. Exact Solutions to the (3+1)-Dimensional
Burgers System

In this section, we give out a quite general solu-
tion to the (3+1)-dimensional Burgers system. As is
known, to search for solitary wave solutions to a given
nonlinear partial differential system, one may use dif-
ferent approaches, such as multilinear variable sep-
aration approach [18], Painlevé truncated expansion
method [37], and the mapping approach [38]. One of
the useful and powerful methods is the so-called Cole-
Hopf transformation approach [39]. Let us begin with
a special Cole-Hopf transformation for u, v, w in (1):

u=(Inf)y+uo, v=_(Inf)x+vo, w=(Inf):+wo,
2

where f = f(x,y,z,¢) is an arbitrary function of vari-
ables {x,y,z,t} to be determined and {ug, vo,wp} is an
arbitrary known seed solution of (1). It is evident that
(1) possess a trivial seed solution

ug =0, V()ZV()()C,Z,I), W()ZO, 3)

with vo(x,z,¢) being an arbitrary function of the indi-
cated arguments. Now substituting (2) together with
the seed solution (3) into (1) yields

(fx *fay)(ft — fax *fyy — Jfz— 2V0fx) =0. 4

Based on (4), one can find that if f satisfies

ft_fxx_fyy_fzz_ZVOfxzoz 5)

then (4) is satisfied automatically.

In [40], Zhu and Zheng take f as such an ansatz f =
x(x,z,¢)+ @(y,¢) and derive some special solutions for
the Burgers system via a mapping approach. In [34],
motivated by some works on (2+1)-dimensional cases,
Ying and Lou suppose that f has the following variable
separation solution f = ag + a;p(x,z,t) + axq(y,t) +
azp(x,z,t)q(y,t), which is essentially equivalent to
amodified Hirota’s multisoliton form when p and g are
chosen appropriate exponential functions [18]. In our
present paper, we try to obtain a more general solution
to the Burgers system by choosing a more general form
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for f. Since (5) is a linear equation, one can naturally
take advantage of the linear superposition theorem. For
instance

N
f:A+sz(x7Zat)Qk(yat)a (6)

k=1

where A is an arbitrary constant, P(x,z,7) = P, and
Or(»,t) = O (k=1,2,--- N) are variable separated
functions of {x,z,7} and {y,t}, respectively. It is obvi-
ous that the prevenient mentioned ansatz [34, 35, 40] is
a special case of the general ansatz (6).

Inserting the ansatz (6) into (5) yields following set
of variable separation equations:

Pt — 2Py — Pexx — Pz + T7:(2) P = 0, (7
O — Oy — (1) Ok = 0, (8

where I;.(7), (k=1,2,---,N), are arbitrary functions of
time ¢. Then a general variable separation excitation for
the Burgers system (1) reads

. SV POy 7 ©)
A+ 3N POk
Eiv:]kaQk

= Sh=lheek (10)
A+3N | PO 0
i1 POk (11

w= e
A+3N . POk

where vg, P, and Qy admit (7) and (8).

Considering the complexity of (9), (10), and (11)
and for the convenience of the following discussions,
we make simplifications further and give out some spe-
cial exact solutions.

Case 1. We first consider a simplest case: N = 1,

{P1, 01} ={P(x,z,1),0(».1)}, I1(t) = (t). Then (6),
(7), and (8) become

f=A+PQ, (12)
PI_Pxx_ZVOPx_PZZ+T(t)P:07 (13)
Qt_ny_T(t)Q:Q (]4)

It is easy to obtain a general solution of (13). Since
vo(x,z,t) is an arbitrary seed solution, we can view P as
an arbitrary function of {x,z,7}, then the seed solution
vo is fixed by (13),

B_Pxx+Pzz+T(t)P
2P, :

Vo = as)
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Fig. 1. (a) Profile of plateau-type ring soliton for the field U given by (28) with the condition (29); (b) Plot of standard dromion
for the field U given by (28) with the condition (30); (c) Profile of taper-like soliton for the field U given by (28) with the
condition (31); (d) Plot of the periodic wave excitation for the field U given by (28) with the condition (32), and the parameters

fixedaj =ay=k=1,ay=a3 =0.

As to the linear heat equation (14), its general solution
has the following form:

(16)

where A;, C;, and D; are arbitrary constants.
Finally, we derive a special variable separation so-
lution for the Burgers system (1):

PQ,

uy = A+ PO’ a7
_ PxQ R‘_Pxx+1')zz+r(t)P
T 1+ pPo 2P, 18

P0
A+PQ’
with an arbitrary function P(x,z,7) and Q(y,t) shown
by (16).

wi = 19)

Case 2. In a similar way, we consider another
case: N =3, A =ap, {P1, O1} = {px,z,1),a1}, {Ps,

02} ={a, q,1)}, {Ps, O3} = {p(x,2,1), aaq(y,1)},

I;(t) =0, (k=1,2,3), here a;, (i =0...3), are arbitrary

constants, then (6), (7), and (8) become
f=ao+ap+axq+aspq, (20)
Pt — Pxx — 2V0Px — P2z = 0, 2D
qt — qyy = 0. (22)
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Fig.2. Evolutional plots of a solitonic bubble for the field U given by (28) with the condition (33) at times: (a) t = 0.5,
(b)t =2, (c) t =4. (d) Sectional view related to (c) at z = 0.

Based on (20), (21), and (22), one can obtain another
special exact solution for the Burgers system (1):

a+asp)q
L Jay (23)
ao+aip+axq+azpq
) = (al +a361)Px + Pt — DPxx _pzz’ (24)
ap+a1p+axq+azpq 2px
((1] +a3Q)pZ (25)

2= )
ao+aip+axq+azpq

with an arbitrary function p(x,z,#) and g(y,7) ex-
pressed by

=

q(y,t) = z [CieAi()’+Ait) +DieAi(y_A’t)] (26)
i=0

[Kj(yz-i-ZKjt) +Ljy+Bj],

+
j=0

J

=

where A;, B, C;, D;, Kj, and L; are all arbitrary con-
stants.

It is interesting to mention that the previous de-
rived result in [40] is equivalent to a special solution
of Case 2 when setting a3 =ap =0, ap = a; = 1, and

_ _ o Py . _Xx
p=2x(xz1), g= @) le, u= 20 v= Ao+

Xt —Yoox—Xzz I 44
S5, an = .
A dw s

3. Some Novel Localized Excitations in the Burgers
System

In this part, we reveal some interesting localized co-
herent structures for the Burgers system. The intrusion
of the (3+1)-dimensional arbitrary function p(x,z,t)
and the function ¢(y,?) (a solution of the linear heat
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Fig. 3. Time evolutional profiles of a solitonic bubble for the field U given by (28) with the condition (34) and the parameters

fixedaij=ay=k=1,a90=a3 =

equation) in the above solutions implies that the phys-
ical fields u, v, and w or their potentials may possess
rich localized structures. In [34, 35], the authors dis-
cussed some localized excitations of a potential R =
2uy =2vy, ie.,

R = 2((11(12 — a0a3)qypx . (27)

(ao+aip+arg+azpq)?

Comparing the special potential R expressed by (27)
with the so called common formula (1.1) in [18], one
can find they possess the completely same form. The
only differences are that the function ¢ is a solution
of a linear heat equation and p is an arbitrary func-
tion of three independent arguments. Therefore, simi-
lar to the (2+1)-dimensional cases, some special local-
ized excitations based on the common formula may be

0 at times: (a) r = —2, (b) t =0, (c¢) t = 2. (d) Sectional view related to (c) at z = 0.

re-derived in the (3+1)-dimensional Burgers system.
Since these localized structures have been reported in
the previous literature [34, 35], we neglect the related
discussions in this section.

However, as far as we know, the physical field u of
the Burgers system is little discussed in previous liter-
ature. For convenience, here we do not study the gen-
eral field u (9) but only discuss the special field uy ex-
pressed by (23), i.e.,

(a2 +a3p)‘1y
ao+aip+aq+azpq

U=uy= (28)
From (28), we do know that for general selections of
the functions p and ¢, there may be some singulari-
ties for the field U. We have to choose the functions p
and g carefully to avoid these singularities. However,
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Fig. 4. Time evolutional profiles of the interaction between a solitonic bubble and a plateau-type ring soliton for the field U
given by (28) with the condition (35) and the parameters fixed a; =a, =k =1, ag = a3 = 0 at times: (a)t = —4, (b) 1 =0,

(c) t = 4. (d) Sectional view related to (b) at z = 0.

even in the special situation, one can still find rich lo-
calized structures for the (3+1)-dimensional Burgers
system by selecting the functions p and g appropri-
ately. For example, when we consider g = ky and set p
to be

p~ ! =3 —expltanh(x* 4 22 + %)), (29)
p = 1+tanh(x* 472 +1%), (30)
p=1+exp\/(x2+22+12), (1)
p = 1+tanh(x? 4 2%) sin(x? + 2% +1?), (32)

respectively, then we can obtain a plateau-type ring
soliton, a standard dromion excitation, a taper-like soli-
ton, and a periodic wave excitation for the physical
field U (28) shown by Figure 1.

It should be mentioned that in Figure 1, which is
similar to the following cases to be discussed, we are

taking y = 0 section of the solution; as a result the so-
lution looks localized on the (x,z) plane. One may ask:
Are these solutions localized in three dimensions, i.e.
when considered as functions of x, z, and y? The an-
swer is positive as we choose the parameters of func-
tion ¢(y,t) shown by (26) appropriately. The similar
cases have be reported in [34, 35].

3.1. Solitonic Bubbles

In the following discussions, we will focus our at-
tention on a novel type of localized structure which
may exist in certain situations. In [26 —31], the authors
have reported some solitonic bubbles. Actually, these
localized excitations also exist in the Burgers system.
For instance, when choosing ¢ = ky and setting p to be

p = 14exp(x* +2%)sin(x* 4+ 22 — 1?), (33)
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Fig. 5. Time evolutional profiles of the interaction between a solitonic bubble and a taper-like soliton for the field U given by
(28) with the condition (36) and the parameters fixed a; =a, =k =1,a9 =a3 =0 at times: (a) r = —4, (b)r =0, (c) t = 4.

(d) Sectional view related to (b) at z = 0.

then we can derive a solitonic bubble for the physi-
cal field U expressed by (28) with the fixed parameters
ai =ap =k =1, ag = a3 = 0. The time evolutional
profiles of the solitonic bubble are shown by Figure 2.
From this figure, one can find the solitonic bubble with
periodic behaviour since the bubble vibrates periodi-
cally. Atinitial time, the amplitude of the bubble moves
along the negative direction of the field U shown by
Figure 2(a). With time elapsing, the amplitude of the
bubble becomes smaller and smaller till to a minimal
amplitude presented in Figure 2(b). To the time of Fig-
ure 2(c), the amplitude of the bubble evolves along the
opposite direction, i.e., along the positive direction of
the field U.
Similarly, if taking ¢ = ky and p to be

p =1+ (sin(x?+22—12)),, (34)

then we can derived another type of solitonic bubble
also with periodic behaviours for the physical field U
(28) presented in Figure 3.

3.2. Interactions among Solitonic Bubble and other
Solitons

Now let us pay our attention to the interaction
among solitonic bubble and other solitons. First, we
consider a simple case: an interaction between a soli-
tonic bubble and a plateau-type soliton. For example,

when g = ky and p is chosen to be
p ' =2+sech[(x—1)? 472 — 4] 5)
—0.5exp[tanh((x+21)* + 22 —4)],

then we derive a combined excitation with a solitonic
bubble and a plateau-type soliton for the physical field
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U (28) presented in Figure 4. From this figure and by
detailed analysis, we find the interaction between the
solitonic bubble and the plateau-type soliton is com-
pletely elastic since their amplitudes, velocities, and
wave shapes do not undergo any change after their
collision. The elastic collision is a trivial interaction,
which follows simply from the fact that (35) provides
the exact solution both for ¢ equal to plus and minus
infinity. In other words, the elastic collision solution
is effectively a solution to a linear equation; due to the
linear superposition principle there cannot be any inter-
action between terms in the solution. The same reason
applies to the next case (Fig. 5).

Along with the above line, we consider another case:
the interaction between a solitonic bubble and a taper-
like soliton. If ¢ = ky and p is set to be

p 1 =0.5sech[(x—1)* + 72 —4]

+exp {— ((x+2l)2+22):|7 (36)

then we can derive another type of combination excita-
tion with a solitonic bubble and a taper-like soliton for
the physical field U (28) shown by Figure 5. Similar
to the case of Figure 4, one can find the interaction be-
tween the solitonic bubble and the taper-like soliton is
also completely elastic since their amplitudes, veloc-
ities, and wave shapes are completely preserved after
their collision. It should be mentioned that the com-
pletely elastic behaviours occurred in Figures 4 and 5
are rather determined by the selections of the function
p: (35) and (36).

4. Summary and Discussion

In summary, starting from a special Cole-Hopf
transformation, the nonlinear Burgers system in (3+1)
dimensions is reduced to a linear system. Then by
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