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The Kadomtsev-Petviashvili and Boussinesq equations (uxxx − 6uux)x − utx ± uyy = 0, (uxxx −
6uux)x + uxx ± utt = 0, are completely integrable, and in particular, they possess the three-soliton
solution. This article aims to expose a uniqueness property of the Kadomtsev-Petviashvili (KP) and
Boussinesq equations in the integrability theory. It is shown that the Kadomtsev-Petviashvili and
Boussinesq equations and their dimensional reductions are the only integrable equations among
a class of generalized Kadomtsev-Petviashvili and Boussinesq equations (ux1x1x1 − 6uux1)x1 +
∑

M
i, j=1 ai juxix j = 0, where the ai j’s are arbitrary constants and M is an arbitrary natural number, if

the existence of the three-soliton solution is required.
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1. Introduction

It is interesting to search for nonlinear integrable
equations and study their integrable characteristics in
mathematical physics. The task is remarkably difficult
due to the nonlinearity involved. No general theory is
available for dealing with nonlinear differential equa-
tions, indeed. Each method focuses on a specific aspect
or is based on a specific mathematical subject.

Hirota’s bilinear method [1], however, proposes
a direct algebraic approach to nonlinear integrable
equations [1 – 3], and it is pretty powerful in presenting
multi-soliton solutions, particularly three-soliton solu-
tions [2, 4]. It is a common sense that the existence of
the three-soliton solution usually implies the integra-
bility [5] of the considered equations.

In this article, we will consider a class of gener-
alized Kadomtsev-Petviashvili (KP) and Boussinesq
equations:

(ux1x1x1 −6uux1)x1 +
M

∑
i, j=1

ai juxix j = 0, (1)

where M is a natural number and we assume that the
constants ai j’s satisfy the symmetric property ai j = a ji,
1 ≤ i, j ≤ M, without loss of generality. This is the
most general class of generalizations of the station-
ary Korteweg-de Vries (KdV) equation by adding the

second-order partial derivatives. Using the Hirota bi-
linear technique, we would like to show a kind of
uniqueness property for the KP and Boussinesq equa-
tions

(uxxx−6uux)x−utx±uyy = 0,

(uxxx−6uux)x +uxx±utt = 0,
(2)

in mathematical physics. That is, we will show that
among the above class of nonlinear differential equa-
tions, the KP and Boussinesq equations and their di-
mensional reductions are the only integrable equations,
if the existence of the three-soliton solution is required.
We also mention that Hirota’s bilinear method is used
to determine nonlinear superposition formulas for the
KP and Boussinesq equations [6, 7].

2. The Three-Soliton Condition

A general Hirota bilinear equation reads

P(Dx,Dt , · · ·) f · f = 0, (3)

where P is a polynomial in the indicated variables just
to satisfy

P(0,0, · · ·) = 0, (4)
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and Dx,Dt , · · · are Hirota’s differential operators de-
fined by

Dp
y f (y) ·g(y) = (∂y−∂y′)

p f (y)g(y′)|y′=y

= ∂
p
y′ f (y+ y′)g(y− y′)|y′=0, p≥ 1.

Let us introduce new variables

ηm = kmx+ωmt + · · ·+ηm,0, m≥ 1, (5)

and define a set of constants

Amn =−P(p̄m− p̄n)
P(p̄m + p̄n)

, m,n≥ 1, (6)

where the involved parameters

p̄m = (km,ωm, · · ·), m≥ 1, (7)

satisfy the dispersion relations

P(p̄m) = 0, m≥ 1, (8)

and ηm,0, m ≥ 1, are arbitrary constant shifts. Obvi-
ously, we have the one-soliton and two-soliton solu-
tions to the bilinear equation (3):

f = 1+ ε eη1 , f = 1+ ε(eη1 + eη2)

+ ε
2A12 eη1+η2 ,

(9)

where ε is an arbitrary perturbation parameter. Noting
that

P(Dx,Dt , · · ·)eη1 · eη2 = P(p̄1− p̄2)eη1+η2 ,

the existence of the two-soliton solution requires that
the constant A12 must be determined by (6). The one-
periodic and two-periodic wave solutions have the
same situation of existence of solutions [8].

However, in general, we do not have the three-
soliton solution automatically. Let us fix

f = 1+ ε
(

eη1 + eη2 + eη3
)
+ ε

2(A12 eη1+η2 (10)

+A13 eη1+η3 +A23 eη2+η3
)
+ ε

3A123 eη1+η2+η3 ,

where A123 = A12A13A23 and ε is an arbitrary perturba-
tion parameter. Then generally we have a three-soliton
condition

∑
σ1,σ2,σ3=±1

P(σ1 p̄1 +σ2 p̄2 +σ3 p̄3)P(σ1 p̄1−σ2 p̄2)

(11)·P(σ2 p̄2−σ3 p̄3)P(σ1 p̄1−σ3 p̄3) = 0,

to guarantee the existence of the three-soliton solution
(10). If this condition is automatically satisfied, then
the considered equation (3) is called integrable in the
sense of existence of the three-soliton solution.

Let us now turn back to the class of nonlinear equa-
tions defined by (1). It is direct to see that under the

dependent variable transformation

u =−2(ln f )x1x1 (12)

every nonlinear equation defined by (1) can be written
as

P(Dx1 ,Dx2 , · · · ,DxM ) f · f =(
D4

x1
+

M

∑
i, j=1

ai jDxiDx j

)
f · f = 0,

(13)

which exactly gives

fx1x1x1x1 f −4 fx1x1x1 fx1 +3 f 2
x1x1

+
M

∑
i, j=1

ai j( f fxix j − fxi fx j) = 0.

We assume that the three-soliton solution f to (13) is
given by (10) with

ηm = kmx1 +
M

∑
j=2

lm, jx j +ηm,0,

Amn =−Rmn

Smn
, 1≤ m,n≤ 3,

(14)

where

Rmn = (km− kn)4 +a11(km− kn)2

+
M

∑
j=2

2a1 j(km− kn)(lm, j− ln, j)

+
M

∑
i, j=2

ai j(lm,i− ln,i)(lm, j− ln, j), 1≤ m,n≤ 3,

Smn = (km + kn)4 +a11(km + kn)2

+
M

∑
j=2

2a1 j(km + kn)(lm, j + ln, j)

+
M

∑
i, j=2

ai j(lm,i + ln,i)(lm, j + ln, j), 1≤ m,n≤ 3.

Taking advantage of the dispersion relations of (1),

P(p̄m) = 0, p̄m = (km, lm,2, · · · , lm,M), 1≤ m≤ 3, (15)

which leads to

k4
m =−a11k2

m−
M

∑
j=2

2a1 jkmlm, j−
M

∑
i, j=2

ai jlm,ilm, j,

1≤ m≤ 3,

(16)

we can expand the three-soliton condition (11) for (1)
and show that the three-soliton condition (11) is equiv-
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alent to a determinant relation

k2
1k2

2k2
3

M

∑
i, j,p,q=2

ai japq det(K,Li,Lp)det(K,L j,Lq)

= 0,

(17)

where

K = (k1,k2,k3)T, Li = (l1,i, l2,i, l3,i)T, 2≤ i≤M. (18)

The proof is given in the appendix. Obviously, as an
example, the three-soliton condition (17) gives rise to

k2
1k2

2k2
3

(
a22a33−a2

23

)
det(K,L2,L3)2 = 0, (19)

when M = 3 [9].
The condition (17) is an integrability condition for

the bilinear equation (13). Not every equation in (1) has
this property, and two counterexamples are the (2+1)-
dimensional Boussinesq equation [10]

(uxxx−6uux)x +uxx−utt +uyy = 0, (20)

and the (3+1)-dimensional KP equation [11]

(uxxx−6uux)x−utx +uyy +uzz = 0. (21)

3. Uniqueness Property

Based on the above three-soliton condition (17), we
would like to prove that for whatever value M, any
nonlinear equation defined by (1) can be transformed
into one of the KP and Boussinesq equations (2) and
their dimensional reductions. This exposes a unique-
ness property of the KP and Boussinesq equations in
the integrability theory. The result includes all cases of
the value of M, generalizing the case M ≤ 3 discussed
in [9].

In what follows, let us present our proof in five steps.

Step 1: Take an invertible linear transform of inde-
pendent variables

X2 = QY2, X2 = (x2, · · · ,xM)T,

Y2 = (y2, · · · ,yM)T,
(22)

where Q is an orthogonal matrix transforming the sym-
metric matrix

A2 = (ai j)2≤i, j≤M (23)

into a diagonal matrix:

QTA2Q = diag(b2, · · · ,bM). (24)

Therefore, under the transform (22), we have

M

∑
i, j=2

ai juxix j =
M

∑
j=2

b juy jy j , (25)

and further, an original equation defined by (1) be-
comes

(ux1x1x1 −6uux1)x1 +a11ux1x1 +
M

∑
j=2

c1 jux1y j

(26)
+

M

∑
j=2

b juy jy j = 0

for some constants c1 j, 2≤ j ≤M.

Step 2: Now, apply the three-soliton condition (17)
to the transformed equation (26), and then we see from
the arbitrariness character of the parameters li, j that
there is at most one non-zero constant, let us say b2,
among the coefficients bi, 2≤ i≤M.

Step 3: Assume that there is at least one non-zero
constant, say c13 6= 0, among the coefficients c1 j, 3 ≤
j ≤ M. Then making another invertible linear trans-
form of independent variables

r = x1, s = y2,

(t,z4, · · · ,zM)T = R(y3,y4, · · · ,yM)T,
(27)

where the invertible constant matrix R satisfies

R(c13,c14, · · · ,c1M)T = (c13,0 · · · ,0)T, (28)

the transformed equation (26) becomes

(urrr−6uur)r +a11urr + c12urs

+ c13urt +b2uss = 0.
(29)

This equation with c13 = 0 corresponds to the trans-
formed equation (26) with all c1 j = 0, 3 ≤ j ≤ M.
Therefore, we only need to consider (29) with arbitrary
constant coefficients.

Step 4: Let b2 = 0. If c12 = c13 = 0, then (29)
becomes the stationary Boussinesq equation when
a11 6= 0 and the stationary derivative KdV equation
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when a11 = 0, both of which are the dimensional re-
ductions of the KP and Boussinesq equations. Other-
wise, let us assume c12 6= 0 without loss of generality,
and choose two constants α and β satisfying

a11 +αc12 +βc13 = 0. (30)

Then the invertible linear transform of r, s, and t,

r′ = r +αs+β t, t ′ = c12t− c13s, s′ = s, (31)

can transform (29) into

(ur′r′r′ −6uur′)r′ + c12ur′s′ = 0. (32)

This presents the derivative KdV equation – the dimen-
sional reduction of the KP equation.

Step 5: Let b2 6= 0. Then an invertible linear trans-
form of independent variables,

r′ = r− c12

2b2
s, t ′ = t, s′ = s, (33)

removes the mixed partial-derivative term urs, and (29)
becomes

(ur′r′r′ −6uur′)r′ +
(

a11−
c2

12

4b2

)
ur′r′

+ c13ur′t ′ +b2us′s′ = 0.

(34)

Now if c13 = 0, then this presents the Boussinesq equa-
tion, and it can be further transformed into the standard
Boussinesq equation for whatever values of a11, c12,
and b2 6= 0 [12]. If c13 6= 0, then under a further invert-
ible linear transform of independent variables

r′′ = r′−
(

a11

c13
− c2

12

4c13b2

)
t ′, t ′′ = t ′, s′′ = s′, (35)

(34) becomes

(ur′′r′′r′′ −6uur′′)r′′ + c13ur′′t ′′ +b2us′′s′′ = 0, (36)

which presents the KP equation.

4. Concluding Remarks

To conclude, we discussed a class of generalized KP
and Boussinesq equations (1), and proved that among
the considered class of equations, the only integrable
equations are the KP and Boussinesq equations (2) and
their dimensional reductions. This shows that the KP
and Boussinesq equations possess a uniqueness prop-

erty in the integrability theory, presenting a kind of par-
ticular integrable equations. In particular, the (2+1)-
dimensional Boussinesq equation (20) and the (3+1)-
dimensional KP equation (21) do not have the three-
soliton solution (see also [13, 14] for exact solutions to
the (3+1)-dimensional KP equation).

In analyzing the existence of the three soliton solu-
tion for the generalized KP and Boussinesq equations
(1), the difficulty is to compute the three-soliton condi-
tion (11), and our success is to rewrite the three-soliton
condition (11) as a determinant relation (17), which is
put in the appendix. An approach of Darboux transfor-
mations [15] could be used to generate multi-soliton
solutions directly from the three-soliton solution.

There are various discussions about the (2+1)-di-
mensional Boussinesq equation and the (3+1)-dimen-
sional KP equation as well as another class of higher-
dimensional generalizations of the Boussinesq equa-
tion [16]. Those equations are shown to be connected
with Ricatti-type integrable ordinary differential equa-
tions, and correspondingly, abundant exact solutions
can be worked out [16 – 20].
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Appendix: A Proof of the Three-Soliton
Determinant Condition

We verify that the three-soliton condition (11) can
be written as a determinant relation (17). Noting the
even property of the polynomial

P(x1,x2, · · · ,xM) = x4
1 +

M

∑
i, j=1

ai jxix j

for the generalized KP and Boussinesq bilinear equa-
tion (13), the three-soliton condition (11) can be com-
puted as follows:

Sum :=
1
2 ∑

σ1,σ2,σ3=±1
P(σ1 p̄1 +σ2 p̄2 +σ3 p̄3)

·P(σ1 p̄1−σ2 p̄2)P(σ2 p̄2−σ3 p̄3)P(σ1 p̄1−σ3 p̄3)
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= ∑
(σ1,σ2,σ3)∈S

P(σ1 p̄1 +σ2 p̄2 +σ3 p̄3)

·P(σ1 p̄1−σ2 p̄2)P(σ2 p̄2−σ3 p̄3)P(σ1 p̄1−σ3 p̄3),

where S = {(1,1,1),(1,1,−1),(1,−1,1),(−1,1,1)}
and p̄m, 1 ≤ m ≤ 3, are defined as in (15). Then we
expand it to obtain

Sum = 576
(
k6

1k6
3k4

2 + k6
2k6

3k4
1 + k6

1k6
2k4

3

)
+1152a11

(
k6

1k4
2k4

3 + k4
1k6

2k4
3 + k4

1k4
2k6

3

)
+1728a2

11k4
1k4

2k4
3

+1152
M

∑
j=2

a1 j
(
k3

1k6
2k4

3l1, j + k6
1k3

2k4
3l2, j + k4

1k3
2k6

3l2, j + k4
1k6

2k3
3l3, j + k6

1k4
2k3

3l3, j + k3
1k4

2k6
3l1, j

)
+2304

M

∑
i, j=2

a1ia1 j
(
k4

1k3
2k4

3l2,il3, j + k4
3k3

1k3
2l2, jl1,i + k4

2k3
1k3

3l1, jl3,i
)

+2304a11

M

∑
j=2

a1 j
(
k4

1k3
2k4

3l2, j + k4
1k4

2k3
3l3, j + k3

1k4
2k4

3l1, j
)

+1152a11

M

∑
i, j=2

ai j
(
k3

1k3
2k4

3l1,il2, j + k4
1k3

2k3
3l2,il3, j + k3

1k4
2k3

3l1, jl3,i
)

+2304k3
1k3

2k3
3

M

∑
i,p,q=2

a1iapq
(
l1,il2,pl3,q + l1,pl2,ql3,i + l1,ql2,il3,p

)
+1152

M

∑
i, j=2

ai j
(
k3

1k3
2k6

3l1,il2, j + k6
1k3

2k3
3l2,il3, j + k3

1k6
2k3

3l1, jl3,i
)

+576
M

∑
i, j,p,q=2

ai japq
(
2k3

1k2
3k3

2l1,il3, jl2,pl3,q +2k3
1k3

3k2
2l1,il2, jl2,pl3,q +2k2

1k3
3k3

2l1,il2, jl1,pl3,q

− k4
1k2

3k2
2l2,il3, jl2,pl3,q− k4

2k2
3k2

1l1,il3, jl1,pl3,q− k2
2k4

3k2
1l1,il2, jl1,pl2,q

)
.

Plugging a consequence of the dispersion relations (16),

k6
m =−a11k4

m−
M

∑
j=2

2a1 jk
3
mlm, j−

M

∑
i, j=2

ai jk
2
mlm,ilm, j, 1≤ m≤ 3,

into the above expression and carrying out cancelations, we have

Sum = 576k2
1k2

2k2
3

[
k2

2

( M

∑
i, j=2

ai jl1,il1, j

)( M

∑
i, j=2

ai jl3,il3, j

)
+ k2

1

( M

∑
i, j=2

ai jl2,il2, j

)( M

∑
i, j=2

ai jl3,il3, j

)
+ k2

3

( M

∑
i, j=2

ai jl1,il1, j

)( M

∑
i, j=2

ai jl2,il2, j

)]
−1152k2

1k2
2k2

3

[
k1k2

( M

∑
i, j=2

ai jl1,il2, j

)( M

∑
i, j=2

ai jl3,il3, j

)
+ k1k3

( M

∑
i, j=2

ai jl3,il1, j

)( M

∑
i, j=2

ai jl2,il2, j

)
+ k2k3

( M

∑
i, j=2

ai jl2,il3, j

)( M

∑
i, j=2

ai jl1,il1, j

)]
+576k2

1k2
2k2

3

(
2k1k2

M

∑
i, j,p,q=2

ai japql1,il3, jl2,pl3,q +2k1k3

M

∑
i, j,p,q=2

ai japql1,pl2, jl2,ql3,i

+2k2k3

M

∑
i, j,p,q=2

ai japql1,ql2,il1, jl3,p− k2
1

M

∑
i, j,p,q=2

ai japql2,il3, jl2,pl3,q
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− k2
2

M

∑
i, j,p,q=2

ai japql1, jl3,il1,ql3,p− k2
3

M

∑
i, j,p,q=2

ai japql1,il2, jl1,pl2,q

)
= 576k2

1k2
2k2

3

M

∑
i, j,p,q=2

ai japq det(K,Li,Lp)det(K,L j,Lq).

This implies that the three-soliton determinant condition (17) holds for the generalized KP and Boussinesq bilin-
ear equation (13).
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