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The energy band structure and its characteristics of a two-dimensional metallic photonic crystal
with square lattice structure have been studied by using the finite-difference time-domain (FDTD)
algorithm. In order to determine the band structure accurately, the spatial distribution of the eigen-
function has been analyzed. By comparing the distribution of different wave vectors and of different
energy band eigenmodes, an effective method to determine the band structure was found, which has
been verified by the simulation results.
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1. Introduction

Photonic crystals [1 – 3] are a new type of functional
materials with artificial structure. Due to its periodic
structure, the photonic crystal shows the characteristics
of the photonic band gap and the photon location and
has broad applications. Especially the metallic pho-
tonic crystals, used in many fields in recent years [4,5],
show many advantages. Therefore it is very important
and meaningful to study the properties of the band
structure of the metallic photonic crystals.

The finite-difference time-domain (FDTD) method
is an effective tool for studying the band structure
and its characteristics of the photonic crystals. Raineri
et al. [6] presented a simple 2D FDTD code able to
describe the second-harmonic generation in 1D or 2D
structured materials, which is applied to a semiconduc-
tor defective photonic crystal waveguide. Zheng [7]
studied the wave propagation in optical wave-guide de-
vices. It is shown from the researches that the FDTD
method is very effective for studying photonic crystals.
One of the important features of this method is that it
can be used to study the absorption and the dispersion
of the photonic crystals.

In this paper, we used the Drude model [8] to
deal with the metal dielectric, and the FDTD method
has been used to simulate a 2-D metallic (gold) pho-
tonic crystal with square lattice structure. An effective

0932–0784 / 11 / 0500–0339 $ 06.00 c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

method to determine the band structure was found, that
is, the eigenfunctions vary widely with the same wave
vectors and slowly with the same energy bands.

2. Model and Theory

The schematic of a two-dimensional metal photonic
crystal with square lattice in the x,y-plane is shown in
Figure 1. The lattice constant a is 0.6 mm. The cross
sectional radius r of the gold rods is fixed at 0.2a. The
dielectric constant εb(r) of the medium around the rods
is 1.0. We divided the unit cell into 41×41 discretized
grid points. The computational grid point coordinates
are given in Figure 1 b and only the transmission (TM)
polarization is considered in the paper.

The FDTD algorithm is based on the difference of
the Maxwell’s equations,

∇×E =−µ0
∂H
∂ t

, (1)

∇×H =
∂D
∂ t

, (2)

where D stands for the electric displacement vector
and is given by the convolution integral of the electric
field E and the dielectric response function Φ,

D(t) = ε0

∞∫
−∞

d t ′Φ(t− t ′)E(t ′), (3)
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Fig. 1. Schematic of a 2D metal photonic crystal with the square lattice in the x,y-plane.

where Φ is the Fourier transform of the dielectric con-
stant εr(ω).

Φ(t) =
1

2π

+∞∫
−∞

εr(ω)exp(−iωt)dω. (4)

The dielectric constant for the metal is described by the
Drude model,

εr(ω) = ε∞

[
1−

ω2
p

ω2 + iωγ

]
, (5)

where ε∞ is the dielectric constant for the metal at suf-
ficiently high frequencies, ωp the plasma frequency,
and γ the relaxation rate in the Drude model.

The relationship between D and E in the metal re-
gion has been obtained from (3), (4), and (5) to

1
ε0

∂D(r, t)
∂ t

= ε∞

∂E(r, t)
∂ t

(6)

+ ε∞ω
2
p

+∞∫
0

d t ′ exp(−γt)E(r, t− t ′).

The relationship between D and E in the non-metallic
region is very simple and reads

D(r, t) = ε0εb(r)E(r, t). (7)

Since then, we can make (1) and (2) discrete by the
Yee method in the different regions [9]. It is worth no-
tice that the FDTD method is the simulation of eletro-
magnetic problems in a limited space, therefore we

need recommend boundary conditions:

⇀

E(⇀r + ⇀a, t) = exp(i
⇀

k ·⇀a)
⇀

E(⇀r , t), (8)
⇀

H(⇀r + ⇀a, t) = exp(i
⇀

k ·⇀a)
⇀

H(⇀r , t), (9)

where
⇀

k is the wave vector in the first Brillouin zone
and ⇀a the elementary lattice vector. The resonance fre-
quency as a function of

⇀

k has been calculated in order
to get the energy band structure.

The FDTD simulated time series is the linear su-
perpostion of all eigenfunctions. In order to obtain the
eigenfunction of a single eigenfrequency, we have to
do a separation. The Bruch theorems can be expressed
as:

⇀

E(r) = exp(i
⇀

k ·⇀r − iωt)⇀u(r), (10)

⇀u(r) = exp(−i
⇀

k ·⇀r + iωt)
⇀

E(r), (11)

where ⇀u(r) corresponds to the eigenfunction.
Using trigonometic orthogonality, we obtain

nmax

∑
n=1

exp(iω jn∆ t)exp(−iωkn∆ t)

=
{

nmax ( j = k),
0 ( j 6= k),

(12)

and the eigenfunction of a single eigenfrequency:

u(r,ω j) =
1

nmax
exp(−i

⇀

k ·⇀r )

·
nmax

∑
n=1

Ψ(r,n)exp(iω jn∆ t),
(13)
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Fig. 2 (colour online). (a) Eigenspectrum of grid point (03,03), where kx = ky = 0.75; (b) Eigenspectrum of grid point (37,30),
where kx = ky = 0.75.
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Fig. 3 (colour online). Distribution of the electric field of the
eigenmode, where the eigenfrequency is 0.9243.

Fig. 4 (colour online). Distribution of the electric field of the eigenmode at different energy bands with the same wave vector
(kx = ky = 0). (a) at the first energy band; (b) at the second energy band; (c) at the third energy band; (d) at the fourth energy
band.

where Ψ(r,n) is the FDTD simulated time series
in r, ω j the eigenfrequency of the wave vector

⇀

k ,∆t the
interval of time, n the time step, nmax is the maximum
of n.

3. Calculation, Results, and Analysis

The output of the laser used in the calculation
is a Gaussian beam. For a given wave vector k =
(kx,ky)π/a, in order to obtain the resonance frequency
(eigenfrequency), it is necessary to do a Fast fourier
transform (FFT) to the FDTD simulated time series of
one grid point. If the grid point selected is not very
suitable, some eigenmodes may be missing. So it is
difficult to distinguish the band informations of eigen-
frequencies accurately.
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The FFT results of two different grid points are
shown in Figure 2: (a) the eigenspectra of grid point
(03,03) and (b) the eigenspectra of grid point (37,30).
The horizontal axis shows the normalized frequency
and the vertical one the amplitude which depends on
the amplitude of the Gaussian pulse and the frequency.
Comparing (a) and (b), we find that the eigenmodes
of the normalized frequencies 0.9243 and 1.4630 are
missing in (a).

The distribution of the electric field of the eigen-
mode is shown in Figure 3, where the eigenfre-
quency ω is 0.9243. On the grid point (37,30), the elec-
tric field strength is−32 256+ 21108i, the electric field
strength of grid point (03,03) is just−367+72i. It can
be seen from the results that the corresponding eigen-
mode may be missing, when the grid point’s electric
field of the eigenmode is weak. It provided some sug-

Fig. 5 (colour online). Distribution of the electric field of the eigenmode at different wave vectors within the same energy
band (at the second energy band). (a) kx = ky = 0.1; (b) kx = ky = 0.25; (c) kx = ky = 0.50; (d) kx = ky = 0.75.

gestions to select the appropriate grid point and avoid-
ing to select the grid point in the metal region.

Figure 4 shows the contour charts of eigenfunction
at different energy bands with the same wave vector.
The results shown in (a), (b), (c), and (d) are very dif-
ferent to the distribution of the electric field. It has
been known from linear algebra that the eigenfunc-
tions of different eigenmodes are linearly independent,
so their spatial distribution must vary widely and dif-
ferently. The results, shown in Figure 4, confirm this
theory well.

Figure 5 shows the contour charts of the eigenfunc-
tion at different wave vectors within the same energy
band. The results in (a), (b), (c), and (d) are very sim-
liar to that of the distribution of the electric field. This
feature is also consistent with the theory of the energy
band in solid state physics.
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Fig. 6. Electronmagnetic band structure. The eigenfrequencies ω2 and ω3, marked by circles, determine the low- and upper-
frequency edges of band gap 2, and for band gap 1, the low-frequency is 0, the upper-frequency is ω1.

It has been seen from the above analysis that the dis-
tribution law of the eigenfunctions can be easily ob-
tained, that is, the eigenfunctions vary widely with the
same wave vector and slowly with the same energy
band. Thus we can determine the band structure ac-
curately.

Figure 6 shows the electronmagnetic band structure
and demonstrats the effectiveness of this approach to
determining it. It is found from the calculated results
that the 2D metallic photonic crystals have two band
gaps for TM polarization. The eigenfrequencies of ω2
and ω3 at the high symmetry points M and X decide
the low- and upper-frequency edges of the band gap 2.
Their frequencies are 0.7314 and 0.8548. The band
gap 1 is unique compared with other nonlinear pho-
tonic crystals. The lower frequency is 0 and the upper
frequency 0.5227.

4. Conclusion

In this letters, the band structure of a 2D metal-
lic photonic crystal structure with TM polarization
has been studied. By analyzing the spatial distribution
of the eigenfunction law, i.e. the eigenfunctions vary
widely with the same wave vector and slowly with
the same energy band, the method to determine the
band structure has been obtained. The simulation re-
sults well verify the validity of the method.
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