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By Lochak (theory) and Urutskoev (experiment) the hypothesis has been suggested that during
electric discharges in water (fluids) light magnetic monopoles can be created which according to
Lochak should be considered as a kind of excited neutrinos. Based on a quantum field theoretic
development of de Broglie’s and Heisenberg’s fusion ideas and the results of preceding papers a
transparent proof is given that such magnetic monopoles can occur during discharges. In the the-
oretical description these circumstances are formulated within the scope of an extended (effective)
Standard Model and the monopoles with vanishing electric charge arise from neutrinos whose states
are modified by the symmetry breaking caused by the discharge. In the introduction some technical
implications are referred to. The article is divided into two parts.
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1. Parafermionic Boson and Lepton States

To ensure transparency of the formalism a symbolic
notation for the spinor field operators is used with
ψI := ψZ(x), where Z contains all algebraic indices of
the field. Then in this representation a state |a〉 is char-
acterized by the set of matrix elements

τn(a) := 〈0|A(ψI1 . . .ψIn)|a〉, n = 1 . . .∞, (1)

where A means antisymmetrization in I1 . . . In (only for
conserved symmetries!)

Within this formalism bound state equations can be
defined for the set of matrix elements (1) for fixed n.
These equations were introduced as generalized de
Broglie-Bargmann-Wigner equations (GBBW equa-
tions) in previous papers. For their solutions as well
as for corresponding test functions the symbols CI1 ...In
were defined by which the set of basis elements for the
weak mapping method can be described in a simple
way [Part I, 20].

Before going into details of the definition of wave
functions, attention must be paid to two facts:

1.1. Representation with G-conjugated Fields

The algebraic indices of the spinor field operator ψI
are defined by the four-dimensional indices κ and α
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and the auxiliary indices i for regularization. The four-
dimensional index κ can be splitted into the double in-
dex κ = (B,b) and the superspinors are defined by

ψκα i(x)≡ ψBbα i(x) =
(

ψbα i(x); B = 1
ψc

bα i(x); B = 2

)
, (2)

where b denotes the isospin index.
Considering isospin transformations only, the spinor

fields transform in isospace as

ψ ′ = exp(−iεkσ k)ψ , (3)

while the charge conjugated spinor fields transform in
isospace according to

ψc′ = exp(iεkσ∗k)ψc. (4)

Owing to the equivalence of the σ -algebra to the σ∗-
algebra one can surmise that concerning the corre-
sponding transformations the system contains a hid-
den symmetry. Indeed this symmetry can be realized
by replacing the charge conjugated spinor fields by G-
conjugated spinor fields. The latter are defined by [1]

ψG
bα i(x) = c−1

bb′ψ
c
b′α i(x) (5)

with c :=−iσ2. One easily verifies that ψG transforms
according to (3) under isospin transformations.
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Therefore for isospin transformations the fields ψ
and ψG cannot be distinguished. In addition it can be
shown that for Lorentz transformations the fields ψ
and ψc as well as ψG transform with the same trans-
formation law [2, 3].

This fact allows to describe bound states by mix-
tures of these fields without destroying homogeneous
transformation properties which are required for an ap-
propriate physical interpretation of these states. In or-
der to avoid a confusion of the index G with mag-
netic fields, this kind of isospinors can be called a D-
representation as in this representation the decompo-
sition of wave functions into products between super-
spinors and spinors is possible.

1.2. Definition of Macro-Observables

If by weak mapping macroscopic (effective) observ-
ables have to be derived, attention must be paid to the
fact that exact solutions of the GBBW equations can-
not be used as test functions themselves.

If a composite particle is inserted into an assem-
blage of other particles, its internal structure must be
adapted to the influence of this surrounding and the
state of this particle can no longer be described by an
eigensolution of the GBBW equations.

Therefore in deriving effective theories, one is
forced to consider test functions with freely variable
parameters which can react to external forces.

In the case of CP-symmetry breaking for vector
bosons exact state solutions of the GBBW equations
were derived [I, 21]. Hence, if one uses approximations
to simplify the calculation for corresponding test func-
tions all group theoretical properties can be adopted
from the exact solutions.

For the evaluation of the effective theory the sin-
gle time wave functions are needed. To perform the
transition to equal times we refer to [I, 17]. Owing
to the translational invariance of the system we use
the limit t1 = t2 = 0 without loss of generality. With
Z := (i,α,κ) in this limit the wave functions of the
vector bosons read with (Sl + T l)D ≡ (Sl + T l)S (in
this special case) where the S-label denotes ordinary
superspin-isospin representation. Then one can define
test functions by splitting the exact solutions into parts:

CA
Z1Z2

(r1,r2|k, l,µ) := (Sl +T l)S
κ1κ2

e[−ik 1
2 (r1+r2)]

·(γµC)α1α2 f A(r1 − r2|k, l,µ)i1i2 ,

CG
Z1Z2

(r1,r2|k, l,µ) := (Sl +T l)S
κ1κ2

e[−ik 1
2 (r1+r2)]

·(γ5γµC)α1α2 f G(r1 − r2|k, l,µ)i1i2

CF
Z1Z2

(r1,r2|k, l,µ ,ν) := (Sl +T l)S
κ1κ2

e[−ik 1
2 (r1+r2)]

·(Σ µνC)α1α2 f F (r1 − r2|k, l,µ ,ν)i1i2 , (6)

where A means the electric vector potential, G the mag-
netic axial vector, and F the common field tensor. The
influence of the surrounding can be expressed by vari-
able coefficients which later on are to be identified with
the effective field variables.

1.3. Lepton States for Broken Symmetry

Concerning the fermion states, their group theo-
retical analysis has been performed in several papers
[4 – 8].

For conserved symmetries the permutation group
representations play an essential role in the construc-
tion of appropriate wave functions. Being based on
the theory of representations of the permutation group
elaborated by Kramer et al. [9], they guarantee the
complete antisymmetrization in the basic spinor field
quantities.

This can only be achieved by using mixed represen-
tations of the permutation group. Such mixed represen-
tations are generated by the application of Young oper-
ators. For two-dimensional representations these oper-
ators can be found in [6, 8, I, 32].

The quantum numbers of these states coincide with
the phenomenological quantum numbers where the last
column in [I, 32], eq. (37), corresponds to the phe-
nomenological spinor fields ψG afterwards.

Based on these sets the effective coupling of leptons
to electroweak bosons was calculated in previous pa-
pers [I, 25; I, 32; I, 33].

But attention must be paid to the fact that in these
calculations the boson states (6) are referred to bro-
ken CP-symmetry, while according to their construc-
tion the lepton states are referred to conserved symme-
tries.

Therefore for being free from contradiction in anal-
ogy to the parafermionic boson states (6) also the lep-
ton states must contain parafermionic elements in or-
der to be adapted to the broken CP-symmetry.

For the constructions of such parafermionic lepton
states holds: Any superspin-isospin symmetry breaking
states must still allow to identify neutrinos.

While for conserved symmetries in [6 – 8] GBBW
equations were analysed which were invariant under
the permutation group, it is obvious that for symmetry
breaking this type of equations cannot be used for the
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construction of parafermionic states. In [4] such asym-
metric GBBW equations were discussed.

The corresponding lepton states are then products
between superspin-isospin states and spin-orbit states.
According to [I, 17] such states read

Cκ1κ2κ3
α1α2α3(r1,r2,r3|k, j,n) := exp

[
− ik

1
3
(r1 + r2 + r3)

]

· [Θ j
κ1κ2κ3Ω n

α1α2α3
ψ(r2 − r1,r3 − r2|k)]. (7)

For the spin tensor Ω n we apply lepton fields l j
α(x)

which are not eigenstates of the Dirac operator for a
definite k-vector. Furthermore, as the leptons are as-
sumed to occupy the ground states of the three-parton
system, the spin tensor as well as the orbit functions
must show the highest possible invariance under sym-
metry operations, which for these parts of the wave
functions are the little group operations with all dis-
crete transformations. This leads to the spin tensor and
its charge conjugated counterpart

Ω n
α1α2α3

=Cα1α2ξ n
α3
, Ω̄ n

α1α2α3
=Cα1α2Cα3α ξ n

α , (8)

where ξ n
α are the four unit spinors δαn, n = 1,2,3,4,

while C is invariant under rotations and the discrete
operation PC [10]. The orbit part is assumed to have s-
wave character which automatically is invariant under
parity transformations.

In [I, 17] a set of superspin-isospin states was given
which respects the identification of leptons by quantum
numbers, but violates the complete antisymmetrization
in (7). Hence, it has to be analysed whether these states
are suitable canditates for parafermionic representa-
tions.

The corresponding superspin-isospin tensor for neu-
trinos is explicitly given in [I, 17] by

Θ 2
κ1,κ2,κ3

= 3−1/2
[
δ4,κ1δ4,κ2δ3,κ3

+ δ4,κ1δ3,κ2δ4,κ3 + δ3,κ1δ4,κ2δ4,κ3

]
,

(9)

where the index 2 serves for the identification of
the neutrino state in [I, 17]. The complete list of
superspin-isospin states in [I, 17] shows that aban-
doning the Young construction leads to higher isospin
states and higher charge states which at present have
not been observed so far. It was shown in [6, 7] that
for superspin-isospin states with permutation symme-
try the ansatz (7) allows an exact solution of the sym-
metrical as well as the asymmetrical GBBW equations.

For instance with ϕ̂κ1κ2κ3
α1α2α3 =Θ l

κ1κ2κ3
ϕ̂α1α2α3(x1x2x3)

from the asymmetric equations in [4] the following
equation results:

Θ l
κ1κ2κ3

ϕ̂α1α2α3(x1,x2,x3)=

∫
dx∑

i
λiGα3α ′

1
(x3 − x,mi)

· ∑
h

6
{
− vh

α ′
1β ′(vhC)β β ′′Θ l

κ1κ3κ2

·
[
−∑

j
λ j(−i)Fβ α2(x− x2,m j)ϕ̂α1β ′β ′′(x1,x,x)

]

−vh
α ′

1β ′(vhC)β β ′′Θ l
κ2κ3κ1

·
[
−∑

j
λ j(−i)Fβ α1(x− x1,m j)ϕ̂α2β ′β ′′(x2,x,x)

]

−vh
α ′

1β ′′(vhC)β ′βΘ l
κ1κ2κ3

·
[
−∑

j
λ j(−i)Fβ α2(x− x2,m j)ϕ̂α1β ′β ′′(x1,x,x)

]

−vh
α ′

1β ′′(vhC)β ′βΘ l
κ2κ1κ3

·
[
−∑

j
λ j(−i)Fβ α1(x− x1,m j)ϕ̂α2β ′β ′′(x2,x,x)

]}
,

(10)

where for short the symmetry breaking part of the
propagator has been omitted. One easily verifies
that with (9) owing to its permutation invariance,
the superspin-isospin part of (7) can be eliminated
from (10).

But although the Young-construction is avoided
by (7), the states (9) cannot be the correct description
of the CP-symmetry breaking because in this case the
exact superspin-isospin boson states are neither sym-
metric nor antisymmetric. Therefore, in analogy to the
boson states, for CP-symmetry breaking the superspin-
isospin lepton states ought not have a permutation
symmetry like (9).

A detailed information about the consequences of
this insight will be given in Section 3.

2. How Magnetic Monopoles are Linked
to Discharges

The crucial formula which decides whether mag-
netic monopoles do exist follows from the effective
lepton-boson coupling term given in [I, 32] and also
[I, 20]:

H1
b f = 3WI1I2I3I4 Rq

II′I1Cp
II′I4Cl

I2I3 fq∂ b
l ∂ f

p . (11)

This term can be evaluated under the assumption
that all wave functions are referred to broken CP-
symmetry.
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In the first step the expression WI1I2I3I4Ck
I2I3 ∂ b

k has to
be calculated. If Ck

I2I3 is projected on W the third term
of the algebraic part of the vertex drops out and the
same holds for the terms connected with ∂ E and ∂ B

(for W cf. [I, 17]). Then one obtains

WI1I2I3I4Ck
I2I3 ∂ b

k = ∑
k

∑
I2I3

λi1Bi2i3i4

∫∫
d3r2d3r3

·δ (r1 − r2)δ (r1 − r3)δ (r1 − r4)∑
h
[(γ0vh)β1β2

·(vhC)β3β4δρ1ρ2γ5
ρ3ρ4

− (γ0vh)β1β3(v
hC)β2β4δρ1ρ3γ5

ρ2ρ4
]

·(T b + Sb)ρ2ρ3 [ f
A
i2i3(r2 − r3|k)(γkC)β2β3∂ A

k,b(k)

+ f G
i2i3(r2 − r3|k)(γkγ5C)β2β3∂ G

k,b(k)]

· exp
[
− ik

1
2
(r2 + r3)

]
(12)

which leads to

WI1I2I3I4Ck
I2I3 ∂ b

k =−4[(γ0γk)β1β4(T
bγ5)ρ1ρ4 f̂ A(k)

·∂ A
k,b(k)+ (γ0γkγ5)β1β4(S

bγ5)ρ1ρ4 f̂ G(k)∂ G
k,b(k)]λi1

·Bi4 δ (r1 − r4)exp[−ikr1], (13)

where f̂ A and f̂ G are the values of the corresponding
boson functions (6) at the origin. Furthermore, the vari-
able coefficients which are assumed to be the effec-
tive field variables are hidden in the state functional
for composite particles |P(b, f )〉 [I, 32].

If one substitutes the wave functions CI1I2I3 together
with the dual fermion functions RI1I2I3 [5] into (11),
integrates over r4 and renames r1 to r′′, then one gets
with (13)

H1
b f =−12

∫
···
∫

d3kd3k′d3k′′d3rd3r′d3r′′

· [(γ0γk)β1β4(T
bγ5)ρ1ρ4 f̂ A(k)∂ A

k,b(k)+ (γ0γkγ5)β1β4

·(Sbγ5)ρ1ρ4 f̂ G(k)∂ G
k,b(k)]∑

i1i4i
λi1Rρρ ′ρ1

β β ′β1
(r,r′,r′′|k′,l,n)ii′i1

· exp
[

ik′ 1
3
(r+ r′+ r′′)

]
Cρ4ρρ ′

β4β β ′(r′′,r,r′|k′′, j,m)ii′ i4

· exp
[
− ik′′ 1

3
(r+ r′+ r′′)

]

· exp
[
− ikr′′

]
fln(k′)∂ f

jm(k
′′) (14)

with l, j as superspin-isospin state numbers, and n, m
as spin state numbers. Note that in (11) the summation
convention has been used which in (12) and (14) is ex-
plicitly expressed by integrations!

Introduction of center of mass coordinates

z =
1
3
(r+r′+r′′); u = r′ −r; v = r′′ −r′ (15)

and

r = z− 2
3

u− 1
3

v; r′ = z+
1
3

u− 1
3

v;

r′′ = z+
1
3

u+
2
3

v
(16)

yields

H1
b f =−12

∫
···
∫

d3kd3k′d3k′′d3zd3ud3v

· [(γ0γk)β1β4(T
bγ5)ρ1ρ4 f̂ A(k)∂ A

k,b(k)+ (γ0γkγ5)β1β4

·(Sbγ5)ρ1ρ4 f̂ G(k)∂ G
k,b(k)] ∑

i1i4i
λi1Rρρ ′ρ1

β β ′β1
(u,v|k′, l,n)ii′i1

·Cρρ ′ρ4
β β ′β4

(u,v|k′′, j,m)ii′ i4 fln(k′)∂ f
jm(k

′′)exp(ik′z)

· exp(−ik′′z)exp
[
− ik

(
z+

1
3

u+
2
3

v
)]

. (17)

The further evaluation depends upon the fermionic
wave functions (7) and (9). In particular with (7) and
with

Y s ∈ {(T aγ5),(Saγ5), a = 0,1,2,3},
Xt ∈ {(γ0γk),(γ0γkγ5), k = 1,2,3}

(18)

the parts containing the wave functions in (17) can be
written as follows:

Rρρ ′ρ1
β β ′β1

(u,v|ln)Y s
ρ1ρ4

Xt
β1β4

Cρρ ′ρ4
β β ′β4

(u,v| jm) ≡
∑

i1i2i3i4

{(Θ l)ρρ ′ρ1 [Ω
n
β β ′β1

ψ∗(u,v)]}i1i2i3Y
s
ρ1ρ4

Xt
β1β4

·{(Θ j)ρρ ′ρ4 [Ω
m
β β ′β4

ψ(u,v)]}i1i2i4 ,

(19)

where the summation over the auxiliary indices is ex-
plicitly indicated. The special form of the wave func-
tions in (19) allows the formal definition

〈Θ l |Y s
(3)|Θ j〉=: Y s

l j ∀s, (20)

and as the broken symmetry manifests itself mainly in
the superspin-isospin part (9), we adopt the exact spin
formulas for conserved symmetry [I, 32] as

〈C12Ω̄ nψ |Xt
(3)|C12Ω̄ mψ〉=

ξ n
α Xt

αβ ξ m
β ϒ (u,v,k′,k′′, l,n, j,m).

(21)
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With ξ n
α Xt

αβ ξ m
β = Xt

nm this gives for (17)

H1
b f =−12

∫
···
∫

d3kd3k′d3k′′d3zd3ud3v

· [(γ0γk)nm(T bγ5)l j f̂ A(k)∂ A
kb(k)+ (γ0γkγ5)nm(Sbγ5)l j

· f̂ G(k)∂ G
kb(k)]χ(u,v|k′,k′′,n,m, l, j) fln(k′)∂ f

jm(k
′′)

· exp(ik′z)exp(−ik′′z)exp
[
− ik

(
z+

1
3

u+
2
3

v
)]

. (22)

Fourier transformation of the functional operators
∂ A(k), ∂ G(k), f (k′), ∂ f (k′′) yields for (22)

H1
b f =−12

∫
···
∫

d3kd3k′d3k′′d3zd3ud3vd3xd3pd3y

· [(γ0γk)nm(T bγ5)l j f̂ A(k)∂̃ A
kb(x)+ (γ0γkγ5)nm(Sbγ5)l j

· f̂ G(k)∂̃ G
kb(x)]χ(u,v|k′,k′′,n,m, l, j) f̃ln(y)∂̃

f
jm(p)

· exp
[

ik′(z+ y)exp
[− ik′′(z+p)

]]

· exp
[
− ik

(
z+

1
3

u+
2
3

v+ x
)]

, (23)

where the transformed functional operators are de-
noted by tilde.

A reduction of this expression can be achieved if
assumptions about the form factors are made.

By careful calculations it was demonstrated in [11]
that for conserved symmetries the dependence of
f̂ A(k) on k drops out. If one transfers this to the sym-
metry breaking boson functions and extends this to the
magnetic boson value at the origin, a further simplifi-
cation of (23) can be achieved.

But before proceeding further the formalism must
be adapted to the concept of excited neutrinos.

Following the idea of excited neutrinos as magnetic
monopoles, from the point of view of weak mapping
theorems, the excited neutrino states must be intro-
duced as new additional basis states, i. e. particles,
into the theory.

We introduce functional sources f ∗(k) and their du-
als ∂ ∗(k) for the excited neutrinos. In analogy to ordi-
nary leptons the latter must possess a functional Dirac
Hamiltonian. This gives

H∗
f =

∫
d3z f ∗α(z)[−i(γ0γk)∂ z

k +m∗γ0]αβ ∂ f∗
β (z). (24)

Furthermore, we need the coupling of the excited neu-
trinos to the boson fields. The general formula for this

lepton-boson coupling is given by (11). The symbolic
state numbers and corresponding quantum numbers
q, p,k run over all relevant particle states of the system
including the hypothetical excited neutrino states.

A characteristic property of (11) is that this equation
in principle any q can interact with any p and any k.
Really, this enormous assemplage of interaction terms
can be reduced by appropriate evaluation, for instance,
to the interactions terms in (23). In addition, searching
for monopoles one can suppress the 1,2-charged vector
fields in (23).

To separate the excited neutrino states from the
other leptonic states we postulate:

Postulate: The excited neutrino states are ortho-
gonal to the lepton ground states

By this obvious postulate no mixture between
ground states and excited states can occur and if one
simply replaces the functional sources for ordinary lep-
tons by the star functionals, then from (23) one obtains

H1∗
b f =−12cb

∫
···
∫

d3kd3k′d3k′′d3zd3ud3vd3xd3yd3p

· [ξ n
α(γ0γk)αβ ξ m

β (T bγ5)l j f̂ A(0)∂̃ A
kb(x)+ ξ n

α(γ0γkγ5)αβ

·ξ m
β (Sbγ5)l j f̂ G(0)∂̃ G

kb(x)]ϒ (u,v|k′,k′′,n,m, l, j) f̃ ∗ln(y)

· ∂̃ f∗
jm(p)exp[ik′(z+ y)]exp[−ik′′(z+p)]

· exp
[
− ik

(
z+ 1

3 u+ 2
3 v+ x

)]
. (25)

In this context note that according to (20), (21) the
indices n, l, j, m represent the quantum numbers of
the states involved which should not be confused with
the ordinary algebraic indices of spin, superspin, and
isospin degrees, denoted by Greek letters.

To emphasize this difference we introduce, in addi-
tion to the spin unit spinors ξ n

α in (25), unit spinors
ζ l

ρ in superspin-isospin space. The latter are a conse-
quence of the wave functions for broken symmetry and
result from an evaluation of formula (19) and defini-
tion (20). With

ζ l
ρ ⊗ ζ j

ρ ′ :=Θ l
κ ,κ ′,ρΘ j

κ ,κ ′,ρ ′ (26)

one gets for (20)

(T bγ5)l j ≡ ζ l
ρ(T

bγ5)ρρ ′ζ j
ρ ′ ,

(Sbγ5)l j ≡ ζ l
ρ(S

bγ5)ρρ ′ζ j
ρ ′ .

(27)
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Now attention must be paid to the fact that with (25)
the coupling of one and the same particle to the bo-
son fields has to be examined. Hence in (25) the ‘in-
going’ particles characterized by the functional oper-
ator f̃ ∗ln and the ‘outgoing’ particles characterized by
the operator ∂̃ f∗

jm must be identical. This means that the
superspin-isospin quantum numbers as well as the spin
quantum numbers of these particles must be the same.

In particular for the superspin-isospin states of the
excited neutrino, one obtains with (9) the expression

ζρ(ν∗)⊗ ζρ ′(ν∗) :=Θ 2
κ ,κ ′,ρΘ 2

κ ,κ ′,ρ ′ . (28)

Suppressing a possible dependence of ϒ on the quan-
tum numbers, one can eliminate the unit spinors in (25)
leading to the replacement n → α and m → β and
f ∗ln → f ∗2α , ∂ f∗

jm → ∂ f∗
2β .

With the transformation to the new variable s = z+
1/3u+ 2/3v and the above replacements (25) reads

H1∗
b f =−12cb

∫
···
∫

d3kd3k′d3k′′d3sd3ud3vd3xd3yd3p

·[(γ0γk)αβ ζ (ν∗)ρ(T bγ5)ρρ ′ζ (ν∗)ρ ′ f̂ A(0)∂̃ A
kb(x)

+ (γ0γkγ5)αβ ζ (ν∗)ρ(Sbγ5)ρρ ′ζ (ν∗)ρ ′ f̂ G(0)∂̃ G
kb(x)]

·ϒ (u,v) f̃ ∗2α (y)∂̃
f∗

2β (p)exp
[
ik′

(
s− 1

3
u− 2

3
v+ y

)]

·exp
[
− ik′′

(
s− 1

3
u− 2

3
v+p

)]
exp[−ik(s+ x)]. (29)

The further evaluation depends on an information
about the neutrino wave functions. The three-body
GBBW-bound state equations of the (composite) neu-
trino were discussed in [4, 5, 8]. As the exact neutrino
wave functions are unknown, we use test functions to
describe a possible neutrino structure which should be
in accordance with the properties of the exact solutions
of the GBBW equations. The following results were
obtained:

(i) The product wave function (7) is a compati-
ble solution of the GBBW equations if the superspin-
isospin part of (9) satisfies

γ5
κ2κ3

Θ 2
κ1κ2κ3

= 0. (30)

(ii) The condition (30) is satisfied by construction
and holds for conserved symmetries as well as for CP-
violation. In the latter case (9) and (7) can still be ap-
plied, but for CP-violation the GBBW equations them-
selves are modified. Obviously, if use is made of such

an ansatz in any case a special physical interpretation
of the resulting set of states is required.

(iii) For conserved symmetries the ground state
wave functions can be constructed by products of
mixed representations of superspin-isospin states as
well as of orbital and spin states for the little group and
the permutation group. This leads to an orbital state
which is a completely symmetric s-state under permu-
tations of the Cartesian coordinates [8].

In view of these conditions the following states for
orbital test functions can be defined where it has to
be noted that the function ϒ (u,v) contains densities of
wave functions with respect to u and v.

ϒ (u,v) = e−au2
( a

π

)3/2
e−av2

( a
π

)3/2
(31)

with a � 1 but leave it open to find a meaningful value
later on. Then the integrals∫

d3u exp
[
− i(k′ −k′′)

1
3

u− au2
]∫

d3v

· exp
[
− i(k′ −k′′)

2
3

v− av2
]( a

π

)3

= exp
[
− 5

9a
(k′ −k′′)2

]
(32)

can be substituted in (29). After integration over k
and s formula (29) reads

H1∗
b f =−12cb

∫
···
∫

d3k′d3k′′d3xd3yd3 p

· [(γ0γk)αβ ζ (ν∗)ρ(T bγ5)ρρ ′)ζ (ν∗)ρ ′ f̂ A(0)∂̃ A
kb(x)

+ (γ0γkγ5)αβ ζ (ν∗)ρ(Sbγ5)ρρ ′ζ (ν∗)ρ ′ f̂ G(0)∂̃ G
kb(x)]

· f̃ ∗2α(y)∂̃
f∗

2β (p)exp[ik′(x+ y)]exp[−ik′′(x+p)]

· exp
[
− 5

9a
(k′ −k′′)2

]
. (33)

By means of the transformation k′ = v+ h and k′′ =
v (33) can be changed into a form which allows ex-
act integrations. Furthermore, expression (33) is invari-
ant under the replacement x by −x. After these opera-
tions (33) passes into

H1∗
b f =−12cb

∫∫
d3xd3y[(γ0γk)αβ ζ (ν∗)ρ(T bγ5)ρρ ′

·ζ (ν∗)ρ ′ f̂ A(0)∂̃ A
kb(x)+ (γ0γkγ5)αβ

·ζ (ν∗)ρ(Sbγ5)ρρ ′ζ (ν∗)ρ ′ f̂ G(0)∂̃ G
kb(x)] f̃

∗
2α (y)∂̃

f∗
2β (y)

· exp
[
− 1

2
(y− x)2

](π9a
5

)1/2
(34)
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which approximately yields after integration over y

H1∗
b f =−12cb

∫
d3x

[
(γ0γk)αβ ζ (ν∗)ρ(T bγ5)ρρ ′

·ζ (ν∗)ρ ′ f̂ A(0)∂̃ A
kb(x)+ (γ0γkγ5)αβ ζ (ν∗)ρ(Sbγ5)ρρ ′

·ζ (ν∗)ρ ′ f̂ G(0)∂̃ G
kb(x)

]
f̃ ∗2α (x)∂̃

f∗
2β (x)

(2π29a
5

)1/2
. (35)

In analogy to the derivation of classical equations
from an effective functional equation [I, 17] from (24)
and (35) an effective Dirac equation can be derived. In
this equation the coupling to the charged vector bosons
b = 1,2 is not relevant to the monopol problem. Thus
these parts will be omitted. Then one gets for the effec-
tive spinor amplitude of the excited neutrino ψ(x) the
reduced equation

i∂tψ2α(x) = [−i(γ0γk)αβ ∂k + γ0
αβ m∗]ψ2β (x)

+ {g∗A(γ
0γk)αβ ζρ(ν∗)(T 0γ5)D

ρρ ′ζρ ′(ν∗)A0
k(x)

−g′∗A (γ0γk)αβ ζρ(ν∗)(T 3γ5)D
ρρ ′ζρ ′(ν∗)A3

k(x)}ψ2β (x)

+ {ig∗G(γ
0γkγ5)αβ ζρ(ν∗)(S0γ5)D

ρρ ′ζρ ′(ν∗)G0
k(x)

− ig′∗G(γ
0γkγ5)αβ ζρ(ν∗)(S3γ5)D

ρρ ′

·ζρ ′(ν∗)G3
k(x)}ψ2β (x) (36)

with the effective coupling constants

g∗Z := f̂ Z(0)
(

2π29a
5

)1/2

;

g′∗Z :=
1
3

f̂ Z(0)
(

2π29a
5

)1/2

; Z = A,G.

(37)

First we evaluate the superspin-isospin parts in (36).

2.1. Coupling to Symmetric Superspin-Isospin States

For broken CP-symmetry the lepton as well as the
boson states must violate the antisymmetry condition
and become parafermionic states. A possible candidate
for such a parafermionic state was proposed by (9). But
at the end of Section 1 objections were raised to the
use of this state. Nevertheless it is instructive to treat
the coupling terms of this state to bosons first.

For this state one gets from (28) and (9)

ζ S
ρ (ν

∗)⊗ζ S
ρ ′(ν∗) =

1
3
[δ3ρδ3ρ ′ +2δ4ρδ4ρ ′ ], (38)

where the index S means standard representation, i. e. a
representation of the superspinors by ψ and ψc which

is the formulation originally used for the spinor field [I,
17] and which was used for the construction of (9).

In the meantime G-conjugated spinors have been in-
troduced and preferred as the latter permit a completely
homogenous transformation of the superspinors for the
Lorentz group as well as for the isospin group. If the
correspondence

ρ = 1 → Λ = 1, A = 1,

2 → Λ = 1, A = 2,

3 → Λ = 2, A = 1,

4 → Λ = 2, A = 2

(39)

is used where A is the isospin index, while Λ is the
superspin index, defined by ordinary spinors ψ and
ψc fields, the transformation to G-conjugated spinors
reads

ψD
ρα = Gρρ ′ψS

ρ ′α , G =

(
1 0
o c−1

)
(40)

with c = −iσ2. Application of this transformation
to (38) yields

ζ D
ρ (ν∗)⊗ζ D

ρ ′(ν∗) =
1
3
[δ4ρδ4ρ ′ +2δ3ρδ3ρ ′ ]. (41)

Substitution of such states into (36), then leads to the
superspin-isospin matrix elements

ζ D+(ν∗)(T 0γ5)Dζ D(ν∗) =−1,

ζ D+(ν∗)(T 3γ5)Dζ D(ν∗) =
1
3

(42)

and

ζ D+(ν∗)(S0γ5)Dζ D(ν∗) = 1,

ζ D+(ν∗)(S3γ5)Dζ D(ν∗) =−1
3
,

(43)

where the explicit expressions of the Sγ5- and T γ5-
elements in G-conjugated form, i. e. D-representation
can be found in [I, 33].

If these values are substituted into (36) this results
in

i∂tψ2α(x) = [−i(γ0γk)αβ ∂k + γ0
αβ m∗]ψ2β (x)

−(γ0γk)αβ

[
g∗AA0

k(x)+
1
3

g′∗A A3
k(x)

]
ψ2β (x)

+ i(γ0γkγ5)αβ

[
g∗GG0

k(x)+
1
3

g′∗GG3
k(x)

]
ψ2β (x).

(44)
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In order to study the coupling of the excited neutrino
to the ‘physical’ bosons, the Weinberg transformation
must be applied to obtain the boson mixing of the Stan-
dard Model which is imperative for the experimental
identification of theoretically predicted effects.

Applying this transformation to (44) one has to take
into account three conditions:

(i) Although in general there are various lepton-
boson couplings, for reasons of consistency there can
be applied only one universal Weinberg transformation
for all couplings.

(ii) For reasons of consistency the universal Wein-
berg transformation for magnetic bosons must be the
same as that for the electric bosons.

(iii) The universal Weinberg transformation should
be chosen as the phenomenological one. The latter
transformation slightly differs from that ‘Weinberg’
transformation which is required for the diagonaliza-
tion of the boson mass matrix [I, 25].

If the extended Standard Model is to be formulated
by means of a Lagrangian, a renormalization of the bo-
son fields and the fermion fields must be performed in
order to secure the consistency of the currents in the
various field equations. But this will not be carried out
in detail.

Due to the regularization all renormalization con-
stants are finite. Hence, their introduction poses no es-
sential problem and is of minor interest with respect to
the monopol problem. So one can omit this step and
can directly apply the universal Weinberg transforma-
tion to the monopol equations (44).

If for conserved symmetries the electric vector po-
tential A0 is coupled to g and A3 to g′ then the universal
Weinberg angle is introduced by the definitions [12],
where in contrast to definition (45) the coupling con-
stants in [12] (6.23) are interchanged

sinΘW =
g
N
, cosΘW =

g′

N
(45)

with N := (g2 + g′2)1/2. The Weinberg transformation
can then be written as

A3
k = Zk

g′

N
+Ak

g
N
, A0

k =−Zk
g
N
+Ak

g′

N
(46)

and

G3
k = Xk

g′

N
+Gk

g
N
, G0

k =−Xk
g
N
+Gk

g′

N
, (47)

where Ak and Gk are the genuine electromagnetic vec-
tor potentials.

Substitution of these transformations into (44) then
yields for the coupling terms in (44)

−(γ0γk)αβ

[
Ak(x)

(
g∗Ag′

N
+

1
3

g′∗A g
N

)

−Zk(x)
(
− g∗Ag

N
+

1
3

g′∗A g′

N

)]
ψ2β (x),

i(γ0γkγ5)

[
Gk(x)

(
g∗Gg′

N
+

1
3

g′∗Gg
N

)

+Xk(x)
(
− g∗Gg

N
+

1
3

g′∗Gg′

N

)]
ψ2β (x).

(48)

To simplify matters I assume that the coupling con-
stants to the electric boson fields correspond to those
values which are used for the definition of the univer-
sal Weinberg transformation, i. e. g∗A = g and g′∗A = g′.
Then the A-term in (48) has the nonvanishing coupling
constant

e =
4
3

gg′

N
, (49)

which clearly shows that for a nonvanishing electric
charge the symmetric superspin-isospin state (9) does
not allow the identification of the hypothetical ‘excited
neutrino’ with a neutrino in the effective theory. There-
fore the objections of Section 1 are justified, i. e. the
state (9) can not describe the broken CP-symmetry cor-
rectly.

2.2. Superspin-Isospin States with Broken
Permutation Symmetry

In [6 – 8] GBBW equations were analysed which
were invariant under the permutation group, while
asymmetric GBBW equations were treated in [4]. It
is therefore reasonable to look whether for broken per-
mutation symmetry only one term of the sum (9) can
be a solution of the latter equation in [4].

Proposition: If for a single term θ 2
κ1κ2κ3

of (9) the
condition (30) is satisfied, then this term is a solution of
the asymmetric GBBW equation in [4] with the prop-
agator in [21], provided the subsidiary conditions for
the spin-orbit states are satisfied which arise from pro-
jections on this equation with θ 2

κxκyκz where κx,κy,κz
are permutations of κ1,κ2,κ3.

Proof: The term θ 2 satisfies condition (30) and
from [4] it follows that the symmetry breaking part of
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the propagator does not require the fulfillment of an ad-
ditional condition. The remaining part of the statement
can be verified by means of (10). �

The single term θ 2
κ1κ2κ3

= δ4κ1δ4κ2δ3κ3 leads to

ζ D
ρ (ν∗)⊗ ζ D

ρ ′(ν∗) = δ3ρ δ3ρ ′ . (50)

Application of the Weinberg transformation then yields
for the corresponding coupling terms

(γ0γk)Ak
gg′

N
[(T 0γ5)33 +(T 3γ5)33] = 0,

i(γ0γkγ5)Gk[g′∗Gg(S0γ5)33 + g∗Gg′(S3γ5)33] �= 0,
(51)

i. e. the electric charge vanishes, which agrees with ex-
perimental findings [13], while for the coupling con-
stant e∗ν to the magnetic vector potential Gk one gets
the nonvanishing magnetic charge

e∗ν =
8
9

f̂ G(0)
(

2π29a
5

)1/2

. (52)

From (31) it follows that the constant a−1/2 is propor-
tional to the neutrino radius r∗ν .

Some additional comments are given in the next sec-
tion.

3. Summary of Part Two and Conclusions

According to Lochak (theory) and Urutskoev (ex-
periment) magnetic monopoles should be considered
as a new species of light leptonic particles with a
magnetic charge but without an electric charge. This
hypothesis includes that for these particles no dual-
ity transformations should exist which could lead to
a transmutation of a magnetic charge into an electric
charge and vice versa. Lochak showed that the postu-
lated independence of both types of charges must be
theoretically expressed by an additional magnetic vec-
tor potential besides the ordinary Maxwellian electro
potential and that also for these quantities no mutual
duality transformation should be possible.

A hint about the existence of such quantities was
found by Lochak in de Broglie’s photon theory. In
this theory both types of potentials can be obtained
but with the reservation that either electric vector po-
tentials or magnetic vector potentials can be derived,
i. e. in de Broglie’s theory a coexistence of both kinds
of solutions is impossible. Nevertheless, if magnetic
monopoles do really exist, they must coexist with elec-
trically charged particles. A solution of this problem

was found in a quantum field theoretic generaliza-
tion of de Broglie’s photon theory where a coexis-
tence of both species can be achieved. The correspond-
ing states are defined by solutions of generalized de
Broglie-Bargmann-Wigner (GBBW) equations. These
equations explicitly depend on the groundstate of the
system and it can be shown that the simultaneous exis-
tence of electric and magnetic boson states is only pos-
sible under the condition that a CP-symmetry breaking
of their common ground state is present.

Based on this result it is imperative to apply de
Broglie’s fusion idea also to the states of the leptonic
monopoles as according to Lochak the latter should be
considered as excited neutrinos which necessarily im-
plies a substructure of these particles.

The properties of such hypothetical monopoles can
be studied by calculating their coupling to the elec-
tromagnetic vector potentials which include electric as
well as the new magnetic parts. Such coupling terms
stem from the effective dynamical equations of the ex-
tended Standard Model which result by use of a map-
ping formalism applied to the basic spinor field model.
The mapping is based on many (composite) particle
states which are algebraically generated from the set
of one (composite) particle states of the GBBW equa-
tions. The fact that this procedure depends on the struc-
ture of the set of composite one-particle states implies
that in this way modifications and extensions of the or-
dinary Standard Model can be generated, if ‘new’ one
particle states appear in this set, as for instance, mag-
netic bosons and excited neutrinos.

A further complication must be taken into account:
According to the present knowledge photons are mix-
tures of U(1)-states and SU(2)-states. Hence indepen-
dently of the interest in only the electromagnetic parts
of the theory which classically are connected with
the U(1) group, in quantum field theory the full elec-
troweak formalism must be applied as otherwise elec-
tromagnetic properties cannot be studied. The neces-
sity to start for physical reasons with a U(1)⊗SU(2)
spinor field theory from the beginning, prevents the
application of duality transformations for the resulting
effective Standard Model. Hence, the electric and mag-
netic charges are really independent quantities.

Furthermore, the CP-symmetry breaking (and the
additional isospin symmetry breaking) cannot be re-
stricted to bosons only. Due to the common vacuum
the fermions must be also included. This leads to
the formation of parafermionic boson as well as of
parafermionic fermion states. The exact boson calcu-
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lation shows that the CP-symmetry breaking manifests
itself primarily in the group theoretical structure of the
superspin-isospin part of the boson wave functions. If
this by symmetry breaking induced modification of the
boson states is analogously applied to the superspin-
isospin group structure of the leptons, then the exis-
tence of magnetic monopoles can be proven.

Finally it should be noted: The CP-symmetry break-
ing depends on the presence of a suitable medium,
for instance water. Sparks in water tanks are bounded
space-time phenomena. Hence such a discharge
generates only a local CP-symmetry breaking. If
excited neutrinos leave the region of broken symmetry
and enter into the domain of ordinary conserved
symmetry, the reason for being excited, i. e. magnetic,
is dropped. Thus there will be a tendency that the
excited neutrinos rearrange themselves into ordinary
neutrinos in order to adapt themselves to the new
symmetry conserving medium, for instance air. Thus
the magnetic monopoles become unstable particles in
dependence of boundary conditions according to com-
ments about experiments by Ivoilov [13] and Lochak

[14]. In addition in the effective Dirac equation no
conservation law can be derived for magnetic charges.

In summary it holds:

(i) Without symmetry breaking no magnetic mono-
poles can be created.

(ii) The excited neutrinos are neutrino states for bro-
ken CP-isospin symmetry.

(iii) The magnetic charges are new independent quan-
tities.

(iv) Magnetic charges have no conservation law.
(v) The decay of magnetic monopoles depends on

boundary conditions.
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