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Steady state boundary layer equations of an upper convected Maxwell fluid with magnetohydro-
dynamic (MHD) flow are considered. The strength of the magnetic field is assumed to be variable
with respect to the location. Using Lie group theory, group classification of the equations with re-
spect to the variable magnetic field is performed. General boundary conditions including stretching
sheet and injection are taken. Restrictions imposed by the boundary conditions on the symmetries are
discussed. Special functional forms of boundary conditions for which similarity solutions may exist
are derived. Using the symmetries, similarity solutions are presented for the case of constant strength
magnetic field. Stretching sheet solutions with or without injection are presented. Effects of physical

parameters on the solutions are depicted.
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1. Introduction

A wide range of fluids exhibits complex behaviour
which can not be examined within the context of the
Newtonian fluid theory which predicts a linear rela-
tionship between the shear stress and the velocity gra-
dient. Usually, the stress constitutive relations inherit
complexities which lead to highly nonlinear equations
of motion with many terms. To simplify the extremely
complex equations with excess terms, one alternative
is to use the boundary layer assumptions which are
known to effectively reduce the complexity of Navier-
Stokes equations and reduce drastically the computa-
tional time. Since there are many non-Newtonian mod-
els and further new models are proposed continuously,
the boundary layer theory for each proposed model
also appears in the literature. It is beyond the scope
of this work to review vast literature on the boundary
layers of non-Newtonian fluids. A limited work on the
topic can be referred as examples [1 —20].

In this work, the boundary layer equations of upper
convected Maxwell fluids are considered. The steady-
state case with two-dimensional flow is considered.
A variable magnetic field with location is introduced
into the equations. Some of the closely related recent
works are the following: Sadeghy et al. [21] examined
the Sakiadis flow of a Maxwell fluid. Hayat et al. [22]

considered MHD flow of an upper convected Maxwell
fluid on a porous stretching plate. Abbas et al. [23] ex-
amined a similar problem with porous channel flow.
Hayat and Abbas [24] further investigated the influence
of chemical reactions on the flow of a Maxwell fluid
through a porous channel. Sadeghy et al. [25] exam-
ined the stagnation point flow of a Maxwellian fluid.
MHD flow over impulsively stretching sheet was in-
vestigated by Pahlavan and Sadeghy [26]. Thermal ef-
fects were further considered by Aliakbar et al. [27].
In all mentioned works [21 —27], the partial differ-
ential equations were converted to ordinary differential
equations via a similarity transformation found by ad
hoc methods. The resulting ordinary differential equa-
tions were then solved by some series type solutions,
and the homotopy analysis method (HAM) has been
employed frequently. A detailed investigation of the
equations and the complete symmetries of the equa-
tions using Lie group theory [28,29] are lacking in
the literature. A group classification with respect to
the variable magnetic field is also new in this study.
Since fairly general boundary conditions are taken,
moving plate, stretching sheet or porous plate with in-
jection cases can be covered. It is well known that
boundary conditions impose severe restrictions on the
symmetries of differential equations which may lead
to even annihilation of all symmetries. In our prob-
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lem, the restrictions imposed by the boundary con-
ditions are treated in a fairly general manner, and it
is found that some symmetries are stable while some
others are unstable after application of the boundary
conditions. The treatment of boundary conditions with
respect to the symmetries of boundary layers of an
upper-convected Maxwell fluid is new and may guide
researchers looking for similarity transformations of
such boundary value problems. Finally, a similarity
transformation stemming from a scaling symmetry is
employed to transfer the partial differential system to
an ordinary differential system for the case of constant
magnetic strength. Stretching sheet solutions with or
without injection are presented by numerically solving
the resulting ordinary differential equations. Effects of
elasticity number, magnetic number, inverse Reynolds
number, and injection velocities on the solutions are
depicted in the figures.

2. Equations of Motion

The two-dimensional boundary layer equations for a
steady state upper convected Maxwell fluid with MHD
flow is [26]

du* I

ox* + oy* 0, M
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where x* is the spatial coordinate along the plate, y* is
vertical to it, u* and v* are the velocity components
in x* and y*-coordinates. A is the relaxation time of
the fluid, u the viscosity, p the density, ¢ the electri-
cal conductivity, and By (x*) the variable magnetic field
strength.

The associated boundary conditions are taken as
fairly general

u (x*,0)=U"(x*), v'(x",0)=V"(x"), 3)
u(x*,00) =0,
so that special forms of the functions U*(x*) and
V*(x*) which do not annihilate symmetries and, hence,
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do not spoil similarity transformations can be deter-
mined in a systematic manner. By introducing the di-
mensionless variables for universality of the results
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the equations and boundary conditions are converted
into
du Jdv

g‘Fa—y*Oa )

du  du
U—=—+v-—

dx dy
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2%u
=& <a—y2) —M(X)I/t,

u(x,0)=U(x), v(x,0)=V(x), u(x,00)=0, (7)

where f3 is the elasticity number, M(x) the magnetic
number, and € = 1/ Re. In the next section, symmetries
of the above equations will be calculated assuming the
physical parameters 3 and € to be of order 1. If one or
both of the parameters are small, an approximate sym-
metry theory may also be employed to enrich symme-
tries. See [30—32] for some of the different theories on
approximate symmetries.

3. Lie Group Theory

Lie group theory is employed in search of symme-
tries of the equations. Details of the theory can be
found in Bluman and Kumei [28] and Stephani [29].
The infinitesimal generator for the problem is

J d
X= él (x,y,l/l,V)— + éZ(X,y,M,V)—
o Ve
+ m (xvyvuvv)a + HZ(X,y,M,V)E.

Higher-order variables are defined next and the gen-
erator is prolonged to the higher-order variables. The
infinitesimals of the higher-order variables are cal-
culated using the standard recursion formulas given
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in [28,29]. The prolonged generator is then applied
to (5) and (6) yielding the invariance conditions which
constitute a block of polynomial equations with respect
to the higher-order variables. Separation with respect
to higher-order variables and solving the simplest sepa-
rated equations yield an over-determined linear system
of equations (calculations verified by DOLIE symbolic
program of MuMath developed by Alan Head [33]).
Solving the over-determined linear system yields

&i=ax+b, & =cx+d,
)
m =au, 1y=cu
with the below classifying relation
bM'(x) =0, aM'(x)=0 (10)

with respect to the variable magnetic number. Two
cases arise.

3.1. Arbitrary M(x)

If M is an arbitrary function of the spatial variable x,
then to satisfy (10), @ = 0, b = 0. Hence the infinitesi-
mals are

él :07

The above symmetries are the principal Lie algebra of
the equations. For special forms of M, symmetries are
expected to increase.

& =cx+d, m=0, Mm=cu (11)

3.2. Constant M

From (10), the second alternative is M’(x) = 0,
hence, M is either a constant or zero. Equations (10)
are then satisfied and the infinitesimals are

El=ax+b, & =cx+d,

m =au, 71=cu.

(12)

Results are summarized in Table 1.

Note that for constant M or non-existent magnetic
field, there are four-parameter finite Lie group trans-
formations whereas for arbitrary M (x), they reduce to
two-parameter finite Lie group transformations.

4. Restrictions Imposed by the Boundary
Conditions

Usually boundary conditions put much restriction
on the symmetries which may lead to a removal of all
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Table 1. Group Classification Summary.

Functional Dependence Symmetries
& =ax+b,& =cx+d,m =au,m =cu
é] :0,§2 =cx+d,n =0, =cu

M constant or zero
M (x) arbitrary

the symmetries. In our case, however, some of the sym-
metries remain stable after imposing the boundary con-
ditions. For nonlinear equations, the generators should
be applied to the boundaries and boundary conditions
also [28]. Two cases are treated separately.

4.1. Arbitrary M(x)

For arbitrary M(x) the generator was found to be

d d
X = (Cx+d)8_y +C“E'
Applying the generator to the boundary y = 0 yields
¢ =0and d =0, hence all symmetries are lost. One is
left with X = 0, which means that for arbitrary M(x),
with the given boundary conditions, similarity solu-
tions are impossible.

(13)

4.2. Constant M

For constant M, the generator was found to be
0 0 d 0
X= (ax—l—b)g + (cx—l—d)a—y +au$ +cu$. (14)

Application of the generator to the boundary y = 0
yields ¢ = 0 and d = 0. Hence

d 0
X= (ax—l—b)a +au$.

Application of (15) to the boundary condition u(x,0) =
U (x) yields the differential equation

(15)

aU = (ax+b)U’ (16)
and application of (15) to v(x,0) = V(x) yields
(ax+b)V' =0. (17)

The last condition u(x, o) = 0 does not impose further
restrictions. If the injection velocity V (x) is an arbi-
trary function and with the given boundary conditions
a =0 and b = 0 all symmetries are lost. Therefore the
injection velocity can not be location dependent to en-
sure similarity transformations. It can be a constant or
Zero:

V(x) =vy or V(x)=0. (18)
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If U(x) is an arbitrary function of location, then again
a =0 and b = 0 and the symmetries are lost. However,
for the specific form satisfying (16),

U(x) = up(ax+D), (19)

a and b are nonzero and symmetries of the equation
(generator (15)) are stable. This type of boundary con-
dition corresponds to the stretching sheet case or the
plate moving case with a constant velocity. In conclu-
sion, if the injection velocity is a constant or zero and if
the problem is a stretching sheet or constantly moving

plate problem, similarity solutions exist for the con-
stant magnetic number case. If M(x) and V(x) depend
on x, no similarity solutions are possible. U(x) on the
other hand can utmost have a linear dependence on x
as given in (19) to preserve symmetries.

5. Stretching Sheet Problem

In the light of the previous analysis, it is proven that
similarity solutions exist for constant or zero magnetic
field. It is also shown that the injection velocity should
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be a constant or zero. The x velocity component can at
most be a linear function in terms of the spatial vari-
able. Therefore, the stretching sheet solution of a con-
stant magnetic field case is treated in this section. Tak-
ing parameter ‘a’ in (15) and selecting b = 0, the asso-
ciated equations which define the similarity variables
are

dx

ax

dy _du_dv

0 - (20)

0
Solving the system yields the similarity variables

=y, u=xf(u),

au

v=2g(u). 2

velocity (B =1,e=1).

Substituting these into the boundary layer equations
yields the ordinary differential system

f+g =0,

P2 ef + Bl +2ff'g] —ef +Mf=0. (23)
The boundary conditions also transform to
S(0) = uo, Sf(e0) =0.

Without loss of generality ug is selected as 1. By us-
ing a special finite difference scheme, (22) and (23)

(22)

8(0) =vo, (24)



326

G. Deger et al. - Boundary Layer Equations of an Upper Convected Maxwell Fluid with MHD Flow

0.9

0.8

0.7

0.6

0.5

0.4 e=1, 5,10, 15, 20

0.3~

0.2

Fig. 5 (colour online). Effect of in-
verse Reynolds number on the sim-
ilarity function f related to the x-

component of velocity (8 =1, M =

1).

0.5 /'

e= 20, 15, 10, 5, 1

-2.5

Fig. 6 (colour online). Effect of in-
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are integrated subject to the boundary conditions (24).
In Figure 1, function f and in Figure 2 function g
related to the x and y-components of the velocities
are drawn for different elasticity numbers. With an
increase in the elasticity number, the boundary layer
becomes narrower. A decrease in f (related to the x-
component of the velocity) and an increase in g (y-
component of velocity) is observed. The effect of the
magnetic field is depicted in Figures 3 and 4. As mag-
netic strength increases, the boundary layer narrows

14 16 component of velocity (f =1, M =

1).

and an increase in the y-component of the velocity is
observed. A converse effect is observed for the pa-
rameter € = 1/Re. € is the ratio of the viscous forces
to the inertia forces. As seen in Figures 5 and 6, the
increase in € thickens the boundary layer and lowers
the y-component of the velocity. In Figures 1 -6, there
is no injection. Figures 7 and 8 compare the injec-
tion and the no-injection case. Injection thickens the
boundary layer and increases the y-component of the
velocity.
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6. Concluding Remarks

Two-dimensional steady state boundary layer equa-
tions of an upper convected Maxwell fluid with vari-
able magnetic field are considered. Lie group theory
is applied to the equations. A group classification with
respect to the variable magnetic field strength has been
performed for the first time. It is found that the ar-
bitrary magnetic field function case (principle Lie al-
gebra) sustains two-parameter finite Lie group trans-
formations whereas symmetries increase to four para-

meters for the constant or zero magnetic field case. Re-
strictions imposed by the boundary conditions on the
symmetries are discussed. For a fairly general set of
boundary conditions including stretching sheet, mov-
ing plate, and injection, the stability of the symme-
tries are discussed. For the variable magnetic field case,
all symmetries are lost due to boundary conditions.
For the constant or zero magnetic field case, the four-
parameter Lie group transformations reduce to two pa-
rameters if the injection velocity is constant or zero and
the velocity of the plate is a linear function of the spa-
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tial variable. From the remaining stable symmetries,
a group invariant (similarity) solution is constructed.
The partial differential equation system is converted to
an ordinary differential system, and the resulting equa-
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